
membranes

Article

Enhancing H2O2 Tolerance and Separation Performance
through the Modification of the Polyamide Layer of a Thin-Film
Composite Nanofiltration Membrane by Using Graphene Oxide

Yi-Li Lin * , Nai-Yun Zheng and Yu-Shen Chen

����������
�������

Citation: Lin, Y.-L.; Zheng, N.-Y.;

Chen, Y.-S. Enhancing H2O2

Tolerance and Separation

Performance through the

Modification of the Polyamide Layer

of a Thin-Film Composite

Nanofiltration Membrane by Using

Graphene Oxide. Membranes 2021, 11,

592. https://doi.org/10.3390/

membranes11080592

Academic Editors: Mohammad

K. Hassan, Majeda Khraisheh and

Vivek Vasagar

Received: 25 June 2021

Accepted: 29 July 2021

Published: 31 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Safety, Health and Environmental Engineering, National Kaohsiung University of
Science and Technology, Kaohsiung 82445, Taiwan; naiyun@nkust.edu.tw (N.-Y.Z.);
f108107114@nkust.edu.tw (Y.-S.C.)
* Correspondence: yililin@nkust.edu.tw; Tel.: +886-7-6011000 (ext. 32328)

Abstract: Through interfacial polymerization (IP), a polyamide (PA) layer was synthesized on the top
of a commercialized polysulfone substrate to form a thin-film composite (TFC) nanofiltration mem-
brane. Graphene oxide (GO) was dosed during the IP process to modify the NF membrane, termed
TFC-GO, to enhance oxidant resistance and membrane performance. TFC-GO exhibited increased
surface hydrophilicity, water permeability, salt rejection, removal efficiency of pharmaceutical and
personal care products (PPCPs), and H2O2 resistance compared with TFC. When H2O2 exposure
was 0–96,000 ppm-h, the surfaces of the TFC and TFC-GO membranes were damaged, and swelling
was observed using scanning electron microscopy. However, the permeate flux of TFC-GO remained
stable, with significantly higher NaCl, MgSO4, and PPCP rejection with increasing H2O2 exposure
intensity than TFC, which exhibited a 3.5-fold flux increase with an approximate 50% decrease in
salt and PPCP rejection. GO incorporated into a PA layer could react with oxidants to mitigate
membrane surface damage and increase the negative charge on the membrane surface, resulting in
the enhancement of the electrostatic repulsion of negatively charged PPCPs. This hypothesis was
confirmed by the significant decrease in PPCP adsorption onto the surface of TFC-GO compared with
TFC. Therefore, TFC-GO membranes exhibited superior water permeability, salt rejection, and PPCP
rejection and satisfactory resistance to H2O2, indicating its great potential for practical applications.

Keywords: polyamide modification; interfacial polymerization; graphene oxide; hydrogen peroxide
resistance; pharmaceutical and personal care product; thin-film composite membrane

1. Introduction

Membrane separation processes such as forward osmosis–nanofiltration (FO–NF),
reverse osmosis–ultrafiltration (RO–UF), and membrane bioreactor (MBR) processes have
been widely employed for removing suspended solids, emerging contaminants such as
pharmaceuticals and personal care products (PPCPs) and persistent organic pollutants, mi-
croorganisms (e.g., bacteria and biofouling), and ion matter (e.g., monovalent, divalent, and
large ions) [1–3]. Thin-film-composite (TFC) NF and RO membranes are also commonly
used for the desalination of brackish water or seawater. TFC membranes consist of a selec-
tive top layer, which is typically polyamide (PA) formed through interfacial polymerization
(IP), on a porous substrate [4,5]. However, the PA layer of TFC membranes is vulner-
able to oxidative membrane cleaning reagents such as chlorine and hydrogen peroxide
(H2O2), which can damage polymeric structures and deteriorate membrane separation [6,7].
Therefore, the modification of PA layers to enhance both the contaminant removal and
physicochemical resistance properties of oxidative cleaning reagents is essential and urgent.

Graphene oxide (GO) consists of hydroxyl, epoxide, diols, ketones, and carboxyl
functional groups that can significantly alter van der Waals interactions and increase
compatibility with organic polymers [8,9]. GO has been used to modify TFC membranes
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because it has numerous hydrophilic functional groups that can help water molecules
intercalate into its interlayer structures, which act as channels for water diffusion to achieve
high permeate flux with excellent chemical stability [10,11]. For example, Alammar et al.
prepared polybenzimidazole -GO nanocomposite membranes and reported remarkably
enhancement in oil-removal efficiency and maintaining permeance, and resistance to
biofouling via a polydopamine (PDA) coating [12]. Muscatello et al. reported that the
membrane consisting of layered graphene sheets can improve the antifouling viability,
antimicrobial effect, and desalination for separations [13]. In the studies incorporating
GO for various membrane modifications, they all have one comment point, which is that
adding GO with low concentrations has profound enhancement on membrane separation
performance [11,14]. For example, Lin et al. indicated that adding 0.0125–0.0175 wt% of GO
to the PA support layer of an FO membrane can reduce internal concentration polarization,
enhance water flux, and maintain high rejection of salts and dyes [2,15]. Higher doses
of GO usually lead to significant aggregation problems, which compromise membrane
performance [16,17]. However, most researchers have only reported the favorable water
permeability and salt rejection (i.e., NaCl) of the GO-modified top selective layers of
TFC membranes (TFC-GO). Few studies have systematically investigated the effects of
TFC-GO membranes on the rejection performance of other valence salts and emerging
contaminants (i.e., PPCPs) and chemical resistance to oxidative cleaning agents (i.e., sodium
hypochlorite (NaOCl) and H2O2 [18]) for long-term operation, and such properties are
crucial for developing membranes suitable for practical applications.

The separation performance of different salt solutions can vary greatly. Lai et al. embed-
ded GO nanosheets on a PA layer to provide nanochannels with higher membrane surface
hydrophilicity, permeate flux, and salt rejection (in an aqueous solution of 0.00087 w/v% GO
aqueous solution decreased in the order MgSO4 > Na2SO4 > MgCl2 � NaCl), as well as
greater antifouling properties in dyes (Rose Bengal > Reactive Black 5 > Methyl Blue) [19].
Song et al. prepared a three-dimensional flower NF membrane with a PA layer modi-
fied using MIL-101(Cr) nanoparticles with abundant porous topological structures; the
membrane exhibited increasing water flux with considerable variation in monovalent
and divalent salt rejection (32–97% under 0.75 MPa, decreasing in the order of MgSO4
> Na2SO4 � MgCl2 > NaCl) [20]. Therefore, in terms of TFC membrane separation per-
formance, MgSO4 and NaCl as monovalent and divalent salts, respectively, have gained
increasing attention in several applications, including desalination, water purification, and
wastewater treatment [20–22]. Moreover, trace emerging contaminants, namely PPCPs,
have been detected in groundwater and seawater and could not be completely removed in
traditional treatment processes (i.e., drinking water/wastewater) [23,24]. Therefore, dense
RO and NF membranes have attracted considerable attention for their capability to mitigate
biological and organic fouling and improve PPCP removal for water reclamation. However,
commonly used chemical cleaning agents, namely NaOCl and H2O2, can oxidize foulants
with complex functional groups such as ketonic, aldehyde, or carboxyl groups [25]. Ling
et al. reported that free chlorine species (HOCl and OCl−) can damage the PA layer of TFC
membranes [26]. Compared with NaOCl, H2O2 may be preferable because it does not yield
toxic by-products after reacting with organics, whereas NaOCl has been proven to form
numerous disinfection by-products such as carcinogenic trihalomethanes and absorbable
organic halogen [27,28].

In the current study, during PA layer synthesis, GO nanoparticles were embedded
through IP on the top of a commercial PSf substrate to form TFC NF membranes by using
the optimal dosage determined in our previous study [2]. The objectives of the current
study are to enhance the separation performance and oxidant resistance of TFC membranes.
The permeate flux, monovalent, and divalent salt rejection (NaCl and MgSO4), and PPCP
rejection of TFC and TFC-GO membranes were compared before and after intensive H2O2
exposure. Membrane characteristics were evaluated, including surface morphology and
roughness, functional groups, and hydrophilicity before and after intensive H2O2 exposure.
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Finally, the mechanisms of GO embedded in PA in the enhancement of PPCP rejection and
membrane resistance to H2O2 were evaluated.

2. Materials and Methods
2.1. Chemicals and Reagents

M-phenylenediamine (MPD, 99%, Acros Organics, New Jersey, USA), sodium lau-
rylsulfate (SDS, 90%, Showa Chemical Industry, Tokyo, Japan), trimesoyl chloride (TMC,
99%, Tokyo Chemical Industry, Tokyo, Japan), and hexyl hydride (n-hexane, 99%, Seed-
chem, Camberwell, Australia) were used for the IP of the PA selective layer. GO was
prepared according to the modified Hummers method through the chemical exfoliation of
graphite [11] and had flaky and oval shape observed using a scanning electron microscopy
(SEM, in Figure 1). The GO sheets were ground into powders and sieved through a 0.45 µm
stainless filter before use. Sulfuric acid (H2SO4, 97%, Honeywell, Charlotte, NC, USA),
sodium nitrate (NaNO3, 99%, Sigma-Aldrich, St. Louis, USA), potassium permanganate
(KMnO4, 99%, Showa, Tokyo, Japan), hydrogen peroxide (H2O2, 30%, Showa, Tokyo,
Japan), hydrochloric acid (HCl, 97%, Aencore Chemical Pty., Ltd., Surry Hills, Australia),
and ethanol (C2H6O, 95%, Echo Chemicals Co., Ltd., Miaoli County, Taiwan) were also
used in this study.
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Figure 1. SEM micrograph of GO (400×).

Sodium chloride (NaCl, 99%, Taiyen, Tainan, Taiwan) and magnesium sulfate (MgSO4,
99%, Sigma-Aldrich, St. Louis, USA) were used to evaluate the salt rejection properties of
the TFC and TFC-GO membranes. Six PPCPs frequently detected in aqueous environments
in Taiwan were selected to evaluate the removal efficiency of the fabricated membranes,
including sulfamethazone (SMZ), ibuprofen (IBU), triclosan (TRI), sulfadiazine (DIA),
sulfamethoxazole (SMX), and carbamazepine (CBZ). High-purity (>99%) SMZ, IBU, and
TRI were purchased from Alfa Aesar (Ward Hill, USA), and DIA, SMX, and CBZ were
purchased from MP Biomedicals (Irvine, USA). The physicochemical properties of the
selected PPCPs are presented in Table S1.

2.2. Preparation of TFC and TFC-GO Membranes

A commercial UF PSf membrane (PSf UF1812; A-spring Technology, Taiwan) was
used as a substrate to form the TFC membrane. The physicochemical properties of this
membrane are presented in Table 1, which was provided by the manufacturer. The mem-
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brane was washed using Milli-Q water and stored at 4 ◦C in the dark prior to use. PSf
is a stable UF membrane for eliminating small-sized particles (<0.02 µm). The PA top
layer was intensively polymerized on the PSf substrate using 2.0 wt% MPD solution with
0.1 wt% SDS in deionized (DI) water and 0.1 wt% TMC solution (in n-hexane) [2]. First, the
MPD solution was poured on the PSf substrate and allowed to react for 3 min, after which
the excess MPD solution was removed with a rubber scraper. Next, the TMC solution
was gently poured on top to react with the residual MPD for 3 min to form the PA active
layer and complete TFC membrane fabrication. The TFC-GO membrane was prepared
with 0.015 wt% GO in the MPD solution for incorporating GO nanoparticles into the PA
layer. We did not explore the effect of GO concentration on the oxidant resistance of the
membrane in this study but adopted the optimal GO dosage developed in our previous
study [29]. The TFC and TFC-GO membranes were thoroughly rinsed using DI water to
remove residual monomers and were air-dried for 5 min, after which the surface of the
membrane was activated using an oven at 80 ◦C for 10 min. Finally, the prepared TFC-PA
membrane was stored in DI water until further experiments were conducted.

Table 1. Physicochemical characteristics of the PSf substrate.

Property UF

Manufacture A-spring Technology
Membrane type UF

Membrane material Polysulfone
Pure water permeability (L/m2 h bar) 379.2

Contact angle (◦) 60.4 ± 3.3
Average pore size (nm) 20

The pH range of operation 2–13
NaCl rejection (%) 1.4

MgSO4 rejection (%) 2.2

2.3. Filtration Experiments

The performance of the TFC and TFC-GO membranes was tested using three laboratory-
scale parallel rectangular cross-flow filtration modules composed of 316 stainless steel [23].
Membrane coupons with a surface area of 137.75 cm2 were pre-compacted for 6 h using DI
water to reach a steady-state permeate flux (L/h-m2) before the start of each experiment.
The filtration system was operated in the recycling mode with 30 L of feed solution supplied
using a high-pressure pump (Hydracell, Wanner Engineering Inc., USA). The experiment
was performed under a constant cross-flow velocity of 0.1 m/s, a transmembrane pressure
of 100 psi, and a temperature of 25 ± 0.5 ◦C. The schematic and detailed specifications
are presented in Figure S1 and Table S2. In our preliminary experiments for a longer
period of time (to 3 days), membrane performance reached stability within 1 day and was
maintained in the following 2 days. Therefore, we shortened the separation experiments
to 24 h, which meets a commonly adopted experimental period in the literature [3,30,31].
To evaluate the salt rejection performance, experiments were conducted using the feed
solution comprising 1 g/L NaCl or MgSO4 at the same aforementioned cross-flow velocity,
transmembrane pressure, and temperature. The schematic variation of permeate flux with
time during filtration is displayed in Figure S2.

According to the acidic dissociation constant (pKa) and hydrophobicity (logKow) at
pH 7, the target PPCPs were classified as ionic (I) or nonionizable (N) and hydrophobic
(HPO) or hydrophilic (HPI) PPCPs. The PPCP rejection properties of the TFC and TFC-GO
membranes were assessed using 30 L of feed solution containing 800 µg/L of each PPCP
and background electrolytes (20 mM NaCl and 1 mM NaHCO3), and the results after
operating for 24 h were reported. The rejection of salts and PPCPs was calculated as
(1 − Cp/Cf) × 100%, where Cp and Cf are the concentrations of each target compound in
the permeate and feed solutions, respectively.
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2.4. Membrane Resistance to H2O2 Oxidation

To assess the antioxidant properties of the TFC and TFC-GO membranes, the PA
active layer of each membrane was exposed to 4000 ppm H2O2 solution for 0, 1, 4, 7, and
24 h to simulate field operations under a low H2O2 concentration with a long period of
contact times [32,33]. In addition, total H2O2 exposure is expressed as ppm-h, namely 0,
4000, 16,000, 28,000, and 96,000 ppm-h, which were calculated for H2O2 concentrations
by multiplying the exposure times. The pH of the H2O2 solution was adjusted to 7 with
0.1 N HCl. After the designated period, the membrane was taken out and washed with DI
water to remove residual H2O2 on the surface. Next, the H2O2-exposed TFC and TFC-GO
membranes were evaluated for permeate flux, salt rejection, and PPCP rejection through
the filtration experiment described in Section 2.3.

2.5. Analytical Methods

The TFC and TFC-GO membranes were completely dried before their analyses. The
surface area of functional groups was measured using attenuated total reflectance Fourier
transform infrared spectroscopy (ATR-FTIR, Spectrum 100, PerkinElmer, UK), and hy-
drophilicity was measured using a contact angle meter (Phx mini, Phoenix, Suwon City,
Korea). The contact angle and thickness of each membrane were reported as the average
values of at least five measurements applied at random sites. The ATR-FTIR spectrum was
averaged using 40 scans with a resolution of 4 cm−1 and a scanning range of 400–4000 cm−1

in the absorbance mode. The ratio of the intensities of the bands at 1547 and 1587 cm−1

(I1547/I1587) in the ATR-FTIR spectra were used to confirmed the degree of polymerization
of the PA layer. The bands at 1547 and 1587 cm−1 indicated the stretching vibration of
amide II (N–H and C–N) in the ATR-FTIR spectra and aromatic ring stretching in the
supporting PSf, respectively [10,34]. Membrane samples were sputtered with a thin layer
of gold (Au) for surface morphology and cross-section analysis using scanning electron
microscopy (SEM, ESEM Quanta 200, Graz, USA). Regarding the roughness variation of
the membranes, we have used the Image J software (Version 1.53k) to analyze membrane
surface roughness using the SEM images.

The salt concentrations of NaCl and MgSO4 were measured using a conductivity
meter (SC-110, Suntex, Kaohsiung, Taiwan). PPCP concentrations were analyzed using
high-performance liquid chromatography (LC-20A Prominence, Shimadzu, Kyoto, Japan)
according to our previous method [23,35]. The pH was measured using a frequently
calibrated pH meter (FE20-FiveEasy, Mettler Toledo, Greifensee, Switzerland). To evaluate
PPCP adsorption, a methanol extraction method was used, which is described in detail in
our previous study on mechanically separated PA + PSf and polyethylene terephthalate
(PET) layers [36].

3. Results and Discussion
3.1. Effects of Modification on the Physicochemical Characteristics of TFC Membrane
3.1.1. Surface Morphology

The cross-section morphology and top surface of all membranes were characterized
using SEM, and the related images are displayed in Figure 2a–c. The 3D images of TFC
and TFC-GO membranes before and after H2O2 exposure, respectively, are displayed in
Figure 2d,e. The thickness of the TFC-GO cross-section slightly increased compared with
that of the TFC (Figure 2a), indicating that GO molecules interacted with MPD and TMC
molecules to enhance the crosslinking structures of the PA layer, resulting in increased
thickness and compactness of the PA active layer [37]. The morphology of the membrane
has been suggested to be strongly dependent on the thickness of the PA layer [38]. The
PSf membrane had a highly smooth surface (Figure 2b,d), whereas the TFC and TFC-
GO membranes exhibited ridge-valley structures with some protuberances (Figure 2d),
which comprise the characteristic morphology of PA layers [39] and imply the successful
formation of the top layer. In particular, the TFC-GO membrane presented significantly
broadened ridge–valley structures and a slight agglomeration of GO nanoparticles on the
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membrane surface when compared with the TFC membrane (Figure 2b). The SEM images
of the surface morphology of the TFC and TFC-GO membranes after intensive exposure to
H2O2 are presented in Figure 2c. For the pristine TFC membrane (Figure 2c,e), significant
swelling and deformation of the PA layer occurred because the strong oxidant broke
down its polymer structure. However, the surface of the TFC-GO membrane (Figure 2c,e)
exhibited moderate swelling, which confirmed the robust protection efficiency and superior
stability of GO incorporated into the PA layer [14]. The TFC-GO membrane after H2O2
exposure had a slightly decreased Rq and Ra (5.8 µm and 4.1 µm; Table 2), which confirmed
a significant decline in roughness. These results suggest that H2O2 exposure might lead to
OH·radical formation on the membrane surface, the degradation of which is accelerated by
swelling of the PA layer, causing the uncoated TFC membrane to be more vulnerable to the
oxidant [26]. However, when the PA RO membrane was exposed to 248 mg/L chlorine for
10 h, the tensile strength of the PA layer decreased, resulting in the formation of a breached
area on the membrane surface [6].

Table 2. Surface characteristics of the fabricated TFC and TFC-GO membranes.

Membrane Surface Morphology Rq a (µm) Ra b (µm)

TFC before H2O2 Ridge–valley 11.2 8.9
TFC-GO before H2O2 Ridge–valley 17.9 14.5

TFC after H2O2 Ridge–valley 11.8 9.8
TFC-GO after H2O2 Smooth valley 5.8 4.1

a Root mean square deviation of surface roughness. b Arithmetical mean deviation of surface roughness.

3.1.2. Surface Functional Groups

The full scan and zoomed images from the ATR-FTIR of the PSf, TFC, and TFC-GO
membranes are presented in Figure 3a,b, and the degree of polymerization is presented
as the ratio of intensities at 1547 and 1585 cm−1 (I1547/I1585) in Figure 3c. Compared with
those of the PSf membrane, the spectra of the TFC and TFC-GO membranes had weaker in-
tensities, and several peaks disappeared because of the formation of extra chemical groups
on the membrane surface following PA polymerization (Figure 3a), which is consistent
with the results of previous studies [4,37]. The primary amide I band (C=O stretching) at
1664 cm−1, aromatic amide (N–H) at 1609 cm−1, amide I band (C=O stretching vibration)
at 1659 cm−1, and amide II band (in-plane N–H bending and C–N stretching vibrations) at
1547 cm−1 (Figure 3b) were observed [4,10,34], indicating successful PA layer formation.
The characteristic peak included amide band breathing at 795 cm−1 and carboxylic acid
(C=O stretching and O–H bending) at 1450 cm−1, which are associated with PA polymeriza-
tion caused by amide functional groups [4,10,34]. Moreover, the spectra exhibited C–O–C
asymmetric stretching at 1245 cm−1 and aromatic in-plane ring bending stretching at
1488 cm−1, indicating gradual weakening following the IP of the PA layer and the success-
ful polymerization of PA in the PSf layer. The peaks at 3300 cm−1 represent the stretching
vibrations of the O–H groups attached to the basal plane of the GO structure [10,11,14].
Although the intensity of this peak was weak because of the small amount of GO, it may
provide evidence of the successful incorporation of GO nanoparticles into the PA layer
(Figure 3c, Figure 4, and Figure 5). Ling.et al. exposed their TFC membranes to 2–50 mM
H2O2 for 16–24 days (which equals to 26,112–979,200 ppm-h H2O2 exposure intensity)
and did not observe significant changes of the polyamide functional groups of the amide
I band and aromatic amide band II [26]. Considering the H2O2 exposure intensity was
4000–100,000 ppm-h in our study, we do not expect significant changes of ATR-FTIR results
of the membranes before and after H2O2 exposure.
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Figure 3c presents the degree of polymerization (I1547/I1585) used to quantify the
degree of grafting, which increased from 0 for the PSf to 0.6 for the TFC and 1.0 for the
TFC-GO. These features confirm the effective crosslinking of MPD and TMC in the TFC
membrane, and the effective incorporation of GO nanoparticles enhanced the grafting of
PA structures in the TFC-GO membrane.

3.1.3. Surface Hydrophilicity

Figure 4 displays the contact angle of the TFC and TFC-GO membranes after an
H2O2 exposure intensity of 0–96,000 ppm-h. In the absence of H2O2 exposure, the contact
angle of the TFC-GO membrane (34.2◦) was much lower than that of the TFC membrane
(43.8◦), indicating enhanced surface hydrophilicity. The contact angle of the prepared
membranes in this study was superior than those of Chae et al. embedding 0, 15, 38, and
76 ppm GO in the PA layer of a TFC membrane with contact angle of 47.0◦–75.0◦ [11]. With
increasing H2O2 exposure intensity, the contact angle of the TFC membrane significantly
decreased to 37.9◦ and gradually decreased to 22.1◦ at H2O2 exposure intensities of 4000
and 96,000 ppm-h, respectively. However, the contact angle of the TFC-GO membrane
only slightly decreased to 26.5◦ and 31.7◦ after H2O2 exposure intensities of 4000 and
96,000 ppm-h, respectively. The results correlated well to low surface swelling, deformation
of the TFC-GO observed using SEM (Figure 3c), and the increase permeate flux (Figure 5).
Furthermore, the contact angle of both membranes after H2O2 exposure was much lower
than those of the unexposed membranes, which is consistent with the findings of a study
involving PA RO membranes exposed to chlorine [6]. The observed hydrophilicity increase
could be attributed to the unbalanced dipole moments induced at the surface chains caused
by surface oxidation [6,25]. H2O2 can form OH radicals on the membrane surface, which
can cause the PA structure to be more vulnerable and can accelerate its degradation, thereby
causing swelling and deformation of the PA layer [26]. The contact angle of the TFC-GO
membrane was more stable than that of the TFC membrane, which may be due to the π–π
interactions between graphitic domains, which can mitigate damage to the PA layer [40].
Chae et al. indicated that the TFC membranes embedding GO in the PA layer exhibited
smoother surface with increasing hydrophilicity and negative surface charge [11]. These
results demonstrated that incorporating GO nanoparticles into the PA layer modified the
membrane surface characteristic and successfully enhanced its tolerance to H2O2, thereby
increasing its chemical stability and surface hydrophilicity.

3.2. Effects of Modification on Permeate Flux and Salt Rejection

Figure 5 presents the permeate flux of the TFC and TFC-GO membranes after H2O2
exposure intensities of 0−96,000 ppm-h. Although the TFC-GO membrane exhibited
slightly increased membrane thickness, the presence of GO provided extra channels in the
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dense PA layer for water molecules to pass through, resulting in increased permeate flux
compared with that of the TFC membrane [10,11]. The other reason could be the restricted
compaction of membrane polymer matrix due to the presence of GO [41]. With increasing
H2O2 exposure intensity, the permeate flux of the TFC membrane significantly increased
from 3.1 to 9.7 L/m2-h, with high variation in membrane performance (large error bar),
especially after the 96,000 ppm-h H2O2 exposure intensity. The phenomenon could be due
to PA structure damage caused by H2O2 (Figure 2c) and the decreasing contact angle of the
TFC membrane, as shown in Figure 4. In addition, the stable permeate flux of the TFC-GO
membrane (2.6–3.8 L/m2-h) indicates its superior chemical stability under intensive H2O2
exposure. Furthermore, GO has abundant negatively charged groups, which act as an
acceptor of OH radicals, resulting in a decrease in the number of oxidant radicals exposed
to the PA layer, thereby increasing the H2O2 resistance of the membrane [18,42]. Thus, the
TFC-GO membrane demonstrated highly stable permeate flux and mitigated damage to
the membrane structure caused by H2O2, thereby extending its lifetime. Ling.et al. exposed
their TFC membranes to 2–50 mM H2O2 for up to 24 days and found that the permeate
flux was stable in 50 mM H2O2 exposure for at least 18 days of operation, corresponding
to >734,400 ppm-h H2O2 tolerance [26]. On the other hand, Fei et al. covalently anchored
GO to the hydroxyl groups of the PBI membranes for molecular separations in organic
solvents and reported considerably improved solvent flux and long-term stability under
continuous operation of over 14 days [41]. It can be speculated from the above-mentioned
results that the prepared TFC-GO membrane could be robust and maintain a long-term
stable performance with continuous operation in a cross-flow filiation.

Figure 6 presents the NaCl and MgSO4 rejection of TFC and TFC-GO after H2O2
exposure intensities of 0−96,000 ppm-h. Both membranes exhibited a higher rejection
rate for the divalent salt (MgSO4; Figure 6b) compared with the monovalent salt (NaCl;
Figure 6a), which can be explained by the Gibbs–Donnan effect occurring between the
solutes and the membrane surface charge [19]. According to the Gibbs–Donnan effect
principle, the salt rejection properties of containing high-valent anions (e.g., Na2SO4 and
MgSO4) are greater than those of containing low-valent anions (e.g., MgCl2 and NaCl) for
negatively charged polyamide NF–RO membranes [19,40]. Thus, the Gibbs–Donnan effect
was indicated by the TFC-GO membrane exhibiting a higher NaCl and MgSO4 rejection
rate (94.3% and 96.9%, respectively) in the absence of H2O2 when compared with the TFC
membrane (87.0% and 92.3%, respectively). As H2O2 exposure intensities were increased,
the salt rejection properties of both membranes decreased, especially in the TFC membrane.
Moreover, the TFC-GO membrane maintained a considerably higher rejection rate for
both salts after the 96,000 ppm-h H2O2 exposure intensity than the TFC membrane did.
Shao et al. indicated that the embedment of GO in the PA layer of membrane could increase
ion transmission resistance, which further lad to the decrease of Na+ concentration in the
permeate side, thus increasing salt rejection [42]. Therefore, incorporating GO into PA
layers with increasing oxidant resistance enhanced salt rejection. Although the permeate
flux of the TFC-GO membrane after H2O2 exposure (2.6–3.8 L/m2-h) in this study was
lower than that of Shao et al., who used the spin-coating method to coat GO on a TFC-RO
membrane (50–150 L/m2-h) with 6000 mg/L chlorine exposure for 16 h, the NaCl rejection
of the TFC-GO membrane (96.9–65.5%) with increasing H2O2 exposure intensity in this
study was superior to that of the above-mentioned literature (95.3–63.0%) [42]. Overall,
the TFC-GO membrane exhibited increases in hydrophilicity (Figure 4), NaCl and MgSO4
rejection (Figure 6), and stable permeate flux (Figure 5), which would be advantageous
in numerous practical water treatment applications. No trade-off between rejection and
permeation was observed in this study, which was also reported in the study of Zhang et al.
using graphene oxide/carbon nanotube membranes [43].
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exposure. Error bars represent one standard deviation of triplicate measurements.

3.3. Effects of Modification on Permeate PPCP Rejection

Figure 7 presents the removal of PPCPs by the TFC and TFC-GO membranes under
H2O2 exposure intensities of 0−96,000 ppm-h. The dissociated and highly hydrophilic
compounds DIA (pKa = 6.4 and log Kow = 0.21), SMX (pKa = 5.7 and log Kow = 0.86), and
SMZ (pKa = 7.6 and log Kow = 1.62) were effectively removed by both the TFC and TFC-GO
membranes because of electrostatic repulsion and the steric hindrance (sieving) effect
demonstrated in our previous studies [3,35]. The hydrophobic and ionized IBU (pKa = 4.3
and log Kow = 3.14), with a molecular weight of only 151 Da, was also moderately removed
through electrostatic repulsion [3]. The highly hydrophobic nonionized TRI (pKa =8.0 and
log Kow = 4.86) and CBZ (pKa = 13.9 and log Kow = 2.45) were moderately removed through
steric hindrance along with membrane adsorption and penetration through membrane
pores [23,44], which is discussed in Section 3.4. With increasing H2O2 exposure intensity,
both membranes exhibited decreased removal for all PPCPs, which was similar to that for
salt rejection (Figure 6), especially the pristine TFC membrane. PPCP rejection of the TFC-
GO membrane was 10–24% higher than that of the TFC membrane when H2O2 exposure
intensity was increased from 0 to 96,000 ppm-h. Moreover, the PPCP rejection properties
of the TFC-GO membrane (52–60%) remained stable compared with the TFC membrane
(36–52%) under the high-intensity H2O2 exposure of 96,000 ppm-h. This phenomenon
demonstrated that GO can capture active radicals and H2O2, resulting in the alleviation
of damage to membrane structures [14,18]. In addition, GO nanoparticles can protect
the underlying PA from oxidation exposure [10] and enhance the mechanical stability
of membranes [45]. Therefore, the GO embedded in the active layer was efficient in
enhancing the oxidant resistance and PPCP rejection properties of the TFC-GO membrane.
Therefore, the TFC-GO membrane demonstrated remarkable resistance to high-intensity
H2O2 exposure with increases in PPCP rejection through synergistic contributions.

3.4. Effects of Modification of PPCP Adsorption on the Membrane Surface

PPCP reportedly adsorbs onto the membrane surface or the fouling layer, which
may cause the cake-enhanced concentration polarization phenomenon [23]. After the
PPCP rejection experiments, each membrane was mechanically separated from the PA
layer by using PSf and the nonwoven PET layer to extract PPCPs from different mem-
brane layers and verify whether the mechanisms of adsorption and penetration occurred.
Figure 8 displays the adsorption of PPCPs onto different TFC and TFC-GO layers under
an H2O2 exposure intensity of 0−96,000 ppm-h. Three crucial findings were obtained.
First, only the highly hydrophobic TRI and IBU were adsorbed onto both the TFC and
TFC-GO membranes in both the PA + PSf and PET layers. Moreover, only trace amounts
of the hydrophobic nonionized CBZ could be extracted from both membranes under the
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high-intensity H2O2 exposure of 4000 ppm-h (i.e., an H2O2 exposure time of 1 h). The
membrane surface with an organic hydrophobic polymer PA was demonstrated to adsorb
the hydrophobic PPCP through surface affinity [46]. The adsorption amounts on the PA +
PSf and PET layers for both membranes (0.5 ± 0.2 µg/cm2) were significantly lower than
those of the commercialized TFC NF and RO membranes (i.e., NF270, NF90, and XLE)
in the range of 20–36 and 2 ± 0.1 µg/cm2 for PA + PSf and PET layers [3,35], which may
have been due to additional modification of the functional groups on the PA layer. Second,
the adsorption of TRI and IBU gradually increased as H2O2 exposure intensity increased
for both the TFC and TFC-GO membranes. These results may be due to the hydrogen
bond and electrostatic interaction between the high adsorption of TRI and IBU onto the
membrane surface, which cannot prevent the significant penetration of PPCPs through the
membranes after extended exposure to H2O2, which results in attachment or adsorption
onto the membranes’ surfaces [47]. Third, the adsorption of TRI and IBU onto the TFC-GO
membrane was slightly lower than that of those extracted from the TFC membrane. These
results suggest that GO incorporation into the PA layer increased the negative charge of the
membrane surface, resulting in an increase in the electrostatic repulsion of the negatively
charged PPCPs [5].
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Figure 7. The removal of PPCP by (a) TFC and (b) TFC-GO membranes with the range of
0−28,000 ppm-h H2O2 exposure. Error bars represent one standard deviation of triplicate mea-
surements. SMX: sulfamethoxazole, DIA: sulfadiazine, IBU: ibuprofen, SMZ: sulfamethazine, TRI:
triclosan, CBZ: carbamazepine.
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4. Conclusions

A PA layer was synthesized using the IP method on the top of a commercialized PSf
substrate to form a TFC nanofiltration membrane, which was coated with GO (TFC-GO)
to enhance oxidant resistance and membrane performance. TFC-GO exhibited increased
surface hydrophilicity, water permeability, salt rejection, PPCP removal efficiency, and
H2O2 resistance when compared with TFC. Under H2O2 exposure, the surfaces of the
TFC and TFC-GO membranes were damaged and swollen. Notably, the permeate flux of
the TFC-GO remained stable with significantly higher NaCl, MgSO4, and PPCP rejection
under H2O2 exposure intensities than did TFC, which exhibited a 3.5-fold flux increase
with an approximate 50% decrease in salt and PPCP rejection. These results suggest
that GO incorporated into the PA layer could react with oxidants to mitigate membrane
surface damage and increase the negative charge on the membrane surface, resulting in
the enhanced electrostatic repulsion of negatively charged PPCPs. This hypothesis was
confirmed by the significant decrease in PPCP adsorptions on the surface of TFC-GO
compared with TFC. TFC-GO membranes exhibited superior water permeability, salt
rejection, PPCP rejection, and satisfactory resistance to H2O2, indicating great potential for
practical applications.
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