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Volumetric models with known biases are shown to provide bounds for the

uncertainty in estimations of volume for ecologically interesting objects,

observed with a terrestrial laser scanner (TLS) instrument. Bounding cuboids,

three-dimensional convex hull polygons, voxels, the Outer Hull Model and

Square Based Columns (SBCs) are considered for their ability to estimate the

volume of temperate and tropical trees, as well as geomorphological features

such as bluffs and saltmarsh creeks. For temperate trees, supplementary geo-

metric models are evaluated for their ability to bound the uncertainty in

cylinder-based reconstructions, finding that coarser volumetric methods do

not currently constrain volume meaningfully, but may be helpful with further

refinement, or in hybridized models. Three-dimensional convex hull polygons

consistently overestimate object volume, and SBCs consistently underestimate

volume. Voxel estimations vary in their bias, due to the point density of the

TLS data, and occlusion, particularly in trees. The response of the models to

parametrization is analysed, observing unexpected trends in the SBC estimates

for the drumlin dataset. Establishing that this result is due to the resolution of the

TLS observations being insufficient to support the resolution of the geometric

model, it is suggested that geometric models with predictable outcomes can

also highlight data quality issues when they produce illogical results.
1. Introduction
This study investigates whether methods with guaranteed directions of bias can

constrain the uncertainty in volume estimates of ecosystem objects observed by

terrestrial laser scanner (TLS) data. TLSs are light detection and ranging (lidar)

instruments [1] that are either mobile [2,3], or mounted on ground-based

platforms such as tripods [4–8], towers [9] and all-terrain vehicles [10,11].

Lidar data have been used to retrieve many important ecosystem properties

[12–14], including tree volume for carbon storage estimation [15–19]; canopy

structure for radiative transfer [20–22]; aspects of geomorphological form,

such as the width and depth of channels, for hydrological modelling [23];

and geomorphological change for coastal management [24].

Retrievals of ecosystem structural properties from lidar data, particularly from

TLS instruments, are often achieved through modelling approaches, referred to hen-

ceforth as geometric models, that reconstruct approximations of the geometry of

objects in the ecosystem from the discrete and discontinuous observations of structure

made by the TLS lidar. For example, the detailed reconstruction of tree structure from

TLS data uses quantitative structure models to form a hierarchical, connected net-

work of cylinders [25]. These cylinder models permit estimates of woody volume,

linked to biomass estimates with allometric equations for wood density [18,26,27].

While geometric models for use with TLS data have become increasingly

refined, the uncertainty in the resulting estimations of ecosystem properties can

only be calculated as error, validated with direct measurement of the ecosystem

properties. For example, uncertainties in TLS observations of woody volume are
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Figure 1. Diagram of lidar pulses (red lines) sampling a hypothetical surface
(black line), featuring an image of the Compact Biomass Lidar (CBL2) instru-
ment. Note the discontinuous sampling of the surface and the range-
dependency of the density of lidar returns along the object’s surface.
(Online version in colour.)

rsfs.royalsocietypublishing.org
Interface

Focus
8:20170043

2
established by destructive sampling of observed trees [26–28].

However, validating every TLS observation with direct

measurements of the ecosystem properties of interest would

be pointless. It is possible to provide some inference about the

quality of the representation of an object in a set of TLS obser-

vations by examining the stability of geometric models by

varying their parametrization, or with repeats, if the models

include a random element. However, there is no guarantee

that the true value of the property of interest lies within the

observed range of variation. Therefore, estimates of uncertainty

established by direct validation for a particular instrument, for a

particular target, under particular conditions, will always have

questionable scope of inference, especially for ecosystem objects

with highly variable morphology, such as trees. Thus, it would

be highly desirable to retrieve valid estimates of uncertainty

from within a given TLS observation, rather than propagating

them from previously validated observations.

Geometric models that have a predictable interaction with

object geometry, and therefore have a known directional bias

of error, could provide uncertainty bounds for individual TLS

observations. In other words, methods whose estimates can be

assumed to be underestimations could provide lower bounds

to volume estimates, and methods whose estimates are assumed

to be overestimations could provide upper bounds. An example

would be a three-dimensional convex hull polygon (3D CHP)

[29], which encompasses a set of points without forming any

concave features. These constraints ensure the volume of the

resulting polygon to be an overestimation of the volume of the

object described by the points, and therefore a definite upper

bound on the estimate of volume.

Since many of the geometric properties of objects observed

with TLS become inputs to larger scale ecological modelling

efforts, such woody volume for carbon storage monitoring

[30], or geomorphological influences on erosion rates [24], con-

straining the uncertainty for these inputs would help ensure

that the outputs of those ecological models can be relied

upon for decision-making and management. Furthermore,

providing meaningful constraints on ecological properties

should be useful to validate coarser resolution, but larger

extent estimates of ecosystem properties, such as those derived

from satellite resources. In particular, space-based remote-

sensing observation of structure, such as from the forthcoming

Global Ecosystem Dynamics Investigation (GEDI) mission [31]

could benefit from such structurally explicit evaluation tools.

This study explores the ability of geometric models to

bound the uncertainty in volume estimates for a variety of eco-

logical objects from various ecosystems, and of various forms,

represented in TLS observations. Several species of temperate

tree, Ceiba pentandra tree buttressed roots, an old-growth

Ficus aurea (strangler fig), the coastal bluff formed by an erod-

ing drumlin and a saltmarsh creek are all represented by

examples in this study. These highlight different opportunities

and challenges, from the simple continuous surface of a drum-

lin, observable from an unobstructed viewpoint, to the

convoluted structure of trees, which have large overall extents

with relatively small, but complexly arranged volumes.

The volumetric estimation methods evaluated in this study

include the Bounding Cuboid [32], 3D CHP [29], Square Based

Column (SBC) and the Outer Hull Model (OHM) [27]. For esti-

mating the volume of temperate trees, volume estimation

methods are assessed for their ability to provide uncertainty

bounds to supplement the cylinder-based quantitative

structure model [25].
2. Material and methods
2.1. Terrestrial laser scanner instruments
We make use of TLS datasets acquired using the first and second

iterations of the University of Massachusetts Boston Compact

Biomass Lidar (CBL1 and CBL2, figure 1, also described in [9]).

These 905 nm, discrete, time-of-flight instruments have moderate

sampling resolution (0.258 horizontal, 0.258/0.58 vertical for

CBL1 and CBL2, respectively) and maximum range (approx.

40 m). However, these instruments were used for these explora-

tory studies due to the deployment flexibility lent by their light

weight (3.5 kg) and rapid scan acquisition (33 s at 20 kHz pulse

rate, of pulses with first and second returns).

2.2. Data processing
For a variety of target objects of ecological interest, multiple con-

secutive scans were obtained, either with CBL1 or CBL2 (table 1

for details). The point clouds, derived from these scans as per [9],

were co-aligned (adjusted for relative scanning position and

orientation) using automatic approaches where possible. Final

co-alignments were adjusted manually in point cloud visualization

software by a single operator.

2.3. Datasets
The datasets included in this study comprise the buttress-rooted

bases of several Ceiba pentandra trees (La Selva Biological Station,

Sarapiqui, Costa Rica and Jardin Botanico UPR, San Juan, Puerto

Rico); a large, free-standing Ficus aurea (strangler fig) tree,

approximately 45 m in height, and with no remaining structure

from the original host tree (Corcovado, Costa Rica); a saltmarsh

creek (Plum Island LTER, MA, USA); a bluff formed from an

eroding drumlin, observed in both 2014 and 2015 (Lovell’s

Island, MA, USA); and 12, individually scanned, temperate

trees in managed urban environments (5 � Acer platanoides
(Norway maple), 3 � Acer rubrum (red maple), 3 � Quercus
rubra (red oak), 1 � Robinia pseudoacacia (black locust) (Boston,

MA, USA)). For full details, see table 1.

2.4. Volume estimation methods
Several geometric models for estimating the volume of objects of

ecological interest were used in this study. These methods are

described below, and their application to the various datasets,

as well as their expected biases, are documented in table 2.

The Bounding Cuboid is defined as the smallest cuboid that can

fully encompass a point cloud representation of an object [32],



Table 1. Description of Compact Biomass Lidar (CBL1 and CBL2) datasets, including scanning configurations and method applications.

dataset instrument no. scans year location

Ceiba pentandra 1 CBL1 8 2014 La Selva Biological Station, Sarapiqui, Costa Rica

Ceiba pentandra 2 CBL2 8 2017 Jardin Botanico UPR, San Juan, Puerto Rico, USA

Ceiba pentandra 3 CBL2 6 2017 Jardin Botanico UPR, San Juan, Puerto Rico, USA

temperate urban trees (�12) CBL2 4 2015, 2016 Boston, MA, USA

eroding drumlin bluff CBL1/CBL2 3 2014, 2015 Lovell’s Island, MA, USA

Ficus aurea CBL1 30 2014 Corcovado, Costa Rica

saltmarsh creek CBL2 4 2016 Plum Island LTER, MA, USA

Table 2. Results from the Bounding Cuboid, three-dimensional convex hull polygons (3D CHP), Outer Hull Model (OHM), voxels and Square Based Column (SBC)
of estimating volume for the objects analysed in this study. All volumes are in cubic metres.

method of volume estimation expected bias

object

C. pentandra 1 C. pentandra 2 C. pentandra 3 F. aurea saltmarsh creek

Bounding Cuboid overestimate 291.28 274.35 169.17 111984.76 1445.88

3D CHP overestimate 111.55 68.08 45.14 44 748 881.89

OHM (max.) overestimate 71.275 50.28 31.34 24693.43 857.25

OHM (min.) overestimate 65.32 21.92 20.10 20452.94 769.66

voxels (max.) unknown 122 86 50 4087.88 —

voxels (min.) unknown 34.01 6.82 4.98 581.06 —

SBC (max.) underestimate 27.11 14.70 7.93 — 631.81

SBC (min.) underestimate 19.38 3.32 3.25 — 615.08
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given rotation only about the Z-axis. The 3D CHP is the shape of

smallest volume, consisting of connected polygons, and with no

concave features, that can encompass a set of points [29].

Voxelization establishes equally sized cubes arranged on a local

grid to describe a point cloud [33,34]. In this study, voxels are

established in response to the presence of one or more returns in

the space enclosed by the voxel. For the datasets representing

complete trees, we apply a quantitative structure model developed

by Raumonen et al. [25] that describes TLS representations of

trees as a connected network of cylinders. This model was

parametrized based on prior investigations (PatchDiam1 ¼ 0.20;

BallRad1¼ 0.10; nmin1¼ 15; PatchDiam2¼ 0.07; BallRad2¼ 0.08;

nmin2 ¼ 10; lcyl ¼ 5). Visualizations of the methods for the

temperate trees can be seen in figure 2.

The OHM [27] consists of a series of convex hull polygons.

Each convex hull polygon in the OHM methods is fitted to

two-dimensional Euclidean coordinates of a subset of a point

cloud, delineated by binning the points into sections of consistent

thickness. Multiplying the sum of the area of these convex hull

polygons by the thickness of the bins therefore produces an

estimate of the total volume of an object. In this study, OHM is

exclusively employed with the convex hull polygons stacked

in the Z-axis (therefore, delineated by height).

The SBC method involves the projection of columns of equal-

sized square profile from a grid arranged on a two-dimensional

plane, until they encounter a point in a representation of an

object. If a point is not encountered, then a column is not estab-

lished. The plane is arranged based on the typical geometry of

the archetype of object being represented, such that the largest

proportion of the volume of the object, and only the volume of

the object (rather than the space around it) is expected to be
represented. The arrangement of the SBC plane can be thought

of, and potentially solved, as a maximization problem for the

volume of the object, but a good rule of thumb is that the geo-

metry of the object should be predominantly concave relative

to the viewpoint of the plane. For example, the plane for SBC

is established across the top of the saltmarsh creek, and directly

beneath the bases of trees with buttressed roots. For the analysis

of the eroding drumlin in this study, the volume established with

SBC describes the relative space between the plane and the sur-

face of the bluff in 2014 and 2015, and therefore the change

resulting from erosion.

The influence of the parametrization of several of the

geometric models on their estimation of volume was of interest

in this study. Therefore, for each object of ecological interest,

we implemented a range of voxel size, grid sizes for SBC and

bin heights for OHM, as described in table 2.
3. Results
The results of this study are described below and summarized

in table 2. In general, volume estimates were highest for each

object using the Bounding Cuboid method, followed in des-

cending order by the 3D CHP method, then the OHM, with

SBC producing the lowest volume estimates. For example,

the saltmarsh creek had an estimated volume of 1445.88 m3

by Bounding Cuboid, 881.89 m3 with 3D CHP, 769.66 m3

with OHM (0.5 m bin height) and 631.81 m3 with SBC. Voxel

estimates sometimes resided between OHM and SBC

estimates, as in Ceiba pentandra Tree 1 (27.11 m3 with 0.1 m



bounding cuboidpoint cloud + 3DCHP
point cloud + voxels

Outer Hull Model
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Figure 2. Visualizations of the geometric models applied to the Robinia pseudoacacia tree. Top left: point cloud, three-dimensional convex hull polygon (3D CHP)
and Bounding Cuboid (dashed lines). Top right: voxels (0.5 voxel size). Bottom left: Outer Hull Model (OHM, 0.5 m bin height). Bottom right: cylinder-based
quantitative structure model [25]. (Online version in colour.)
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voxel size) and Ceiba pentandra Tree 2 (52.92 m3 with 0.3 m voxel

size) (figure 3). However, some voxel sizes produced estimates

of volume exceeding even the 3D CHP, as in Ceiba pentandra
Tree 3 (50 m3 with 1 m voxel size, 45.14 m3 with 3D CHP).

Parametrization produced a consistent response in volume

estimations for OHM, with smaller bin heights producing

higher estimates of volume in all cases. For example, Ceiba
pentandra Tree 3 was estimated to be 31.34 m3 with 0.1 m bin

height, 26.65 m3 with 0.3 m bin height, and 20.10 m3 with

0.5 m bin height (figures 4 and 5). The response of volume esti-

mations with SBC was consistent in most cases, with smaller

grid sizes producing higher estimates of volume. For example,

the saltmarsh creek was estimated to be 631.81 m3 with 0.5 m

grid size, 620.01 m3 with 0.3 m grid size and 615.08 m3 with

0.05 m grid size (figures 6 and 7). However, for the eroding

drumlin, estimates of the volume decreased at smaller grid

sizes (figure 8). This counterintuitive tendency was found to

be closely related to the equivalent area sampled by the SBC

at the various grid sizes. At smaller grid sizes, the resolution

of the grid exceeded the resolution of the TLS sampling of

the surface of the bluff, resulting in a proliferation of gaps evi-

dent in the reduction of sampled area (figures 8 and 9).

Adjusting the volume estimates according to the area sampled

restored the intuitive increase in volume with smaller grid

sizes in both the coarser CBL1 (2014) and the finer CBL2

(2015) datasets (figure 8).

For the Ficus aurea, estimates of volume derived from OHM

far exceeded those from voxels, regardless of parametrization

of the two methods (24693.43–20452.94 m3 with OHM;

4087.88–581.06 m3 with voxels). The disparity between the
methods’ estimates was found to have a relationship to

height. The lower regions of the Ficus aurea, comprising

many, tightly packed vertical stems, had more closely related

OHM and voxel estimates of volume. However, in the

higher, canopy regions, estimates of volume with OHM were

much larger than with voxels, reflecting the more diffuse

branching structure of the tree, with less volume of vegetation

spread over a much larger volume of space.
4. Discussion
In this study, we analysed estimates of volume for objects of

ecological interest, including trees of various morphologies,

a section of saltmarsh creek and a bluff on an eroding drum-

lin. The consistent relationships between the volume estimates

of the various methods (Bounding Cuboid highest, then 3D

CHP, then OHM and SBC lowest) was expected, given their

intuitive interactions with object geometry. Bounding

Cuboids and 3D CHP, by definition, encompass entire objects,

characterizing the geometry of the space they occupy, rather

than the geometry of the objects themselves. On the other

hand, OHM and SBC provide geometric representations that

conform more closely to the shape of the object. These prin-

ciples also apply, at a finer structural scale, to explain the

consistently higher volume estimations of OHM than SBC.

OHM conservatively bounds the space occupied by each sec-

tion of an object, while SBC allows the representation of more

subtle geometric variation, particularly for undulating

surfaces such as the saltmarsh creek (figure 7).
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using maximum height (0.3 m grid size) and (e) SBC using minimum height (0.3 m grid size). (Online version in colour.)
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4.1. Bounding uncertainty in volume estimations
The predictable interactions of some of the geometric

methods employed in this study with the geometry of the

objects of ecological interest was leveraged to try and provide

bounds on the uncertainty for the volume estimations of the

various objects. Because the interactions of the methods with

object geometry produce a consistent direction of bias, com-

bining estimates of volume from multiple methods can help

constrain the uncertainty in the true object volume. For

example, 3D CHP will always overestimate object volume

because it is limited to describing the largest spatial dimen-

sions of the object. Conversely, SBC fitted to the interior of
an object should always underestimate the volume because

it will not integrate beyond the nearest component of the

surface to the SBC plane.

Figure 10 provides a demonstration of the interaction of a

geometric model with object geometry as the parametrization

of the model changes (figure 10a). As the model increases in

resolution (from grey to green), the fit to the surface of the

object (black line) becomes closer, including more of

the volume of the object. However, as lidar data represent

the surfaces of objects only discontinuously (red crosses as

lidar returns, figure 10b), estimates based on lidar obser-

vations (blue rectangles) may not be constrained by the true

bounds of the object (black line). Additionally, if parametri-

zation of a geometric model leads to the resolution being

too fine, relative to the observation density of the lidar,

then portions of the structure may also be missed entirely

(yellow rectangles, figure 10c).

The potential to constrain uncertainty can be seen working

effectively for the Ceiba pentandra tree bases (figure 3) and the

saltmarsh creek (figure 7 and table 3), where the possibility

space, as described by the proportion of the Bounding

Cuboid, is substantially reduced in each case (figure 11). In

the examples shown in figure 11, the green area represents

the range between the maximum SBC estimate (where

applied), and the minimum OHM estimate, and therefore

should contain the true value in each case. However, the
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voxels visualization (bottom right, 2.5 – 3 m height) shows the relative operations of the methods in capturing the structure of the Ficus aurea. (Online version in colour.)
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geometric complexity of complete trees, including the twelve

temperate trees, and the Ficus aurea considered in this study,

resists meaningful constraint of the possibility space for

volume (figures 2, 5, 12, table 3). In figure 12, the green and

yellow areas, which represent the range between the maxi-

mum SBC estimate, and the minimum OHM estimate,

should contain the true value for tree volume. In fact, the

volume estimates from the overestimating methods are

orders-of-magnitude higher than the cylinder-based quantitat-

ive structure model (figure 12, table 3; see electronic

supplementary material). This is unsurprising, because trees

are the quintessential geometrically complex object, occupying

far more space than they comprise volume.

Methods such as SBC and OHM cannot effectively charac-

terize the internal structure of tree canopies, as they assume

consistent relationships between the structure of objects and
their surroundings, for example, that a saltmarsh creek is con-

cave relative to a flat plane across its top. However, beyond the

main stem, the branches and leaves of trees are numerous, and

highly variable in their directionality. The direction and shape

of each component of a tree canopy are heavily dependent on

the component to which it is connected, and it is this principle

that is leveraged by [25] in a quantitative characterization of

trees as connected cylinders, existing in a hierarchical network.

4.2. Utility of geometric models
SBC showed the ability to represent both large and continuous

forms of structure, such as the bluff, and structure which is

wide-spread but consists of discrete components, such as the

roots of the Ceiba pentandra (figure 3). Voxels can also achieve

this distinction and can do so even when the components of

structure have a complex three-dimensional spatial relation-

ship, as in the Ficus aurea (figure 5), as opposed to the Ceiba
pentandra tree roots (figure 3), which are primarily arrayed

on the plane of the ground. However, there are several appli-

cations and scenarios in which SBC could potentially provide a

more informative representation of structure than voxels. For

example, lidar is limited to line-of-sight, and therefore will

not produce any returns to mark the interior of objects. There-

fore, the interior volume of objects will not be represented in

voxels, but can be characterized with SBC, provided a suitable

grid plane is employed (figure 3).

The methods examined in this study also show the poten-

tial to extract additional metrics of ecological interest. For

example, SBC also provided the opportunity to retrieve

metrics relevant to the hydrology of the saltmarsh creek

from its structure. Estimates of water volume and water sur-

face area for different water levels, representing the typical

tidal range of the Plum Island saltmarsh were estimated

directly from the SBC geometric model (figures 6 and 7).

These metrics describe the influence of the structure of the

creek on its hydrological function, showing the distinctly

nonlinear surface area and volume gain with water level.

The SBC representations of Ceiba pentandra tree bases

(figure 3) are a good example of how geometric methods can
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be complementary not just in their comparison (as when con-

straining uncertainty in volume estimations), but also in their

combination. For example, SBC could conceivably be used to

characterize the volume of buttressed roots, to supplement the

characterization of the rest of a tree with the cylinder-based

model. Indeed, when SBC was applied to the stems of the tem-

perate trees in this study, it provided at least some lower bounds

for volume estimates (table 3). Additionally, [27] has shown

the OHM functioning to characterize tree stem taper.

We can also see the potential for hybridized geometric

approaches in the structural characterization of the Ficus
aurea by OHM and voxels (figures 4 and 5). The lower region

of the Ficus aurea comprises many stem-like tap-roots creating

empty space within the region typically assumed to be solid
stem. OHM provides a representation of the overall

superstructure of the tree, while voxels reveal the internal

structure. Examining the volume estimates of the two methods

as a function of height demonstrated how the voxel method

discounts the empty regions that are included in the volume

estimates of OHM (figure 5). The canopy of the Ficus aurea
has a much higher ratio of overall extent to the volume of veg-

etation, and this is reflected by the much larger disparity in

volume estimation higher up the tree, with a distinct elbow

point at the transition from stem to canopy (figures 4 and 5).
4.3. Model response to parametrization can inform data
quality evaluations

Under ideal data quality conditions, models such as SBC and

OHM should have a response to their parametrization that is

predictable, at least in terms of directionality. The smaller the

grid size for SBC, for example, the more closely it can

conform the structure of an object, the more volume it will

integrate (figure 10). Likewise, the larger the bin height for

OHM, the more likely it will be forced to encompass wider-

spread points in each convex hull polygons, and therefore

the higher the resulting volume estimations.

In most cases in this study, we see these relationships

between model operations, object geometry and parameter

variation emerging as expected in the results of this study

(figures 4, 6 and 8, table 2). For the saltmarsh creek, Ficus
aurea and Ceiba pentandra trees, volume estimates increased

almost monotonically with reductions in SBC grid size and

OHM bin height (figures 4, 6 and 8). As already discussed,

the expectation of these relationships is based on assumptions

about the geometry of the object (its shape and orientation

within its surroundings). However, these relationships also

rely on the assumed geometric tendencies of the object being

preserved in the representation of the object by the TLS

point cloud. If the TLS observations are not of sufficient resol-

ution, or contain too much uncertainty from sources such as
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beam divergence and co-alignment error, then geometric

models may no longer perform predictably (figure 8).

We see a clear example of this in the volume estimation of

the eroding drumlin, where the volume estimation shows a

positive correlation with the size of the SBC grid (figure 8),
instead of the logical negative correlation. Examining the

area sampled at each grid size revealed a steady decline in

columns which found returns within their spatial bounds

(figure 8). The amount of area sampled was strongly related

to the resulting volume estimation, and dividing the volume
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estimation by the area sampled restored the logical relation-

ship between volume estimation and SBC grid size

(figure 8). While there is also change in the sampled area

with changing grid size for the saltmarsh creek (figure 8), it

is orders-of-magnitude less (8.9 � 1023 coefficient of vari-

ation for creek area sampled, 0.1 coefficient of variation for

eroding bluff). We can take away from this that the resolution

of the TLS representation of the bluff is insufficient for charac-

terization with smaller grid sizes of SBC. The anomalously

small estimated change in volume between 2014 and 2015

at 0.1 m grid size (figure 8) could suggest that SBC grid

size should be at least greater than 0.1 m for this dataset.

This example demonstrates how the predictability of the

bias and response of certain geometric methods can act as

an indicator of the quality of underlying data, in terms of its

representation of an object of ecological interest. Methods

such as SBC and OHM can provide a warning of, at least,

serious departures from assumptions about data quality, and

at most guide their own, and other geometric models’ para-

metrizations through examination of their responses. All

geometric methods will have tendencies, such as the tendency

for voxel estimates of volume to increase with an increase in

voxel size, because the presence of discrete points is always

being extrapolated into a minimum amount of volume. How-

ever, departures from these tendencies are just as likely to be a

function of the geometry of the object under scrutiny, as they

are to be indicative of a data quality issue.

4.4. Boundary effects in models that partition space
It is important to note that all geometric methods that employ

spatial partitioning of a point cloud (including OHM, SBC

and voxels) can be influenced by boundary effects when their

spatial parameters are changed. Boundary effects, in this case,

refer to the change in membership of a set of points within a par-

tition due to the movement of the boundaries of the spatial

partition. The aggregation of the different set of points holds

the potential for creating unexpected responses in volume

estimates. For example, the geometry of the saltmarsh creek

consists of slopes interspersed with plateaus (figure 7), which

could result in drastic boundary effects as each plateau is

included within different, or different numbers of height bins.

However, even with the pronounced geometry of the creek,

there is little evidence of boundary effects in the example in

this study, beyond a slight unevenness in the rate of volume esti-

mate change with SBC grid size (figure 6). Furthermore, when

extrapolated to useful hydrological modelling products such

as water volume and surface area over height (figure 6), SBC

grid size causes very little variation.

4.5. Terrestrial laser scanner data quality and processing
can violate assumptions of uncertainty bounds

Evidence of the interactions between sampling density of TLS

observations and geometric models has been described above,

but sampling density warrants direct consideration. Some geo-

metric techniques, such as cylinder-based reconstruction, can

be sensitive to uneven point densities, requiring normalization

of point densities. Most of the other geometric methods

included in this study are most vulnerable to the minimum

point density in a TLS observation, rather than the evenness

of the point density, hence the lack of normalization of point

density in the TLS data used. Additionally, the technology is
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advancing so rapidly, in terms of resolution and accuracy, that

many TLS instruments may be producing representations of

objects that are functionally continuous, such that they

would exhibit the same behaviour when interacting with

simple geometric models as the true object. However, this is

certainly not true of the instrument used in this study, and

an evaluation of the required point densities would be

required to make effective retrievals for larger scale studies.

Each lidar return can have error in its range, and therefore

its position in a point cloud, as well as errors resulting from

the interaction of lidar pulses with object geometry. These

sources of error in the position of points can have serious

implications with the simpler geometric models. Methods

that are controlled by the extremities of an object, such as

3D CHP, will essentially respond to the largest positional

error in the direction of its bias, because that positional

error will form the boundary of the resulting polygon. The

most extreme case is the Bounding Cuboid, which is ulti-

mately controlled by a single pair of points in each spatial

axis, and therefore a small deviation of any of those control-

ling points in the TLS data propagates to a large increase in

volume estimation.

A more fundamental challenge to the methods in this

study, and to TLS modelling of ecologically important objects

in general, is that TLS data do not represent objects continu-

ously, accurately or completely. Instead, we have discrete and

uncertain observations of an object, which vary in density. In

terms of this study, this means that the assumptions concern-

ing interactions between methods and object geometry may

be violated. As discussed, this can result in unexpected

relationships between methods and responses of methods
to parametrization, and also assumptions of bias in the

estimation of geometric properties.

One potential response to a TLS observation quality fail-

ing to meet the demands of a geometric model is to employ

interpolation and smoothing techniques to address density

and accuracy issues, respectively. While these are intuitively

appealing approaches it should be noted that their use

would immediately invalidate the assumptions of bias, as

elements of object structure are being established or modified

based on association, rather than by direct observation. Fur-

thermore, there are substantial challenges to appropriately

weighting interpolation, particularly for geometrically com-

plex objects, and to determine the regions of the object to

which such an interpolation should be applied.
4.6. Representativeness of results
This study considered multiple volume estimation methods and

several distinctly different forms of ecologically relevant objects.

However, the sample size for each method and object only qua-

lify as initial demonstrations and examples. Given that a major

consideration of the paper are the unique challenges of esoteric

object forms, it is important to note that there are many ecological

objects, even from the same categories and ecosystems featured

in this study, that will provide significant hurdles to application

of the methods in their current form. For example, Ficus aurea can

have extremely variable morphological arrangements that may

violate the assumptions of volumetric models, and the individ-

ual in this study was free-standing, while other examples may

still be structurally entwined with the host trees. Another example

would be that the geomorphology of saltmarsh creeks, even

within the same marsh as the sampled creek, has been observed

to be breaking down over time, losing the consistent plateaus and

potentially challenging the relative success of the methods

seen in the limited example herein.

Additionally, many of these datasets were acquisitions of

opportunity, targeting the most accessible examples of a type

of ecological object, or the most ideally situated object within

an ecosystem. To give some examples, the Ceiba pentandra
trees selected were those least obscured by understorey foliage,

and the temperate trees were all in open urban settings without

any canopy overlap. Such examples demonstrate that there

remain considerable challenges of characterizing ecosystems,

which are also well documented elsewhere [35–37]. However,

part of the reason that so many challenges have been identified

is because the continuing development of lidar technology,

TLS instruments in particular, and lidar data processing and

analysis is encouraging sampling in more inhospitable and
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remote ecosystems, comprehensive and higher quality acqui-

sitions within ecosystems, and sampling under less favourable

conditions. Therefore, while this study should not be treated

as validation of the operational readiness of any particular

method or instrument in any particular ecosystem, it is an

effort towards repurposing and expanding the tools of

geometric modelling to meet some of the existing and

forthcoming challenges of TLS sampling of ecosystems.
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5. Conclusion and further implications
The most prominent ecological applications of TLS data, such

as the estimation of tree volume, will typically give rise to

standardized geometric modelling methods, such as the

cylinder-based quantitative structure model described in

this study [25]. While such models are likely to provide the

most accurate estimates of geometric properties, the uncer-

tainty in those estimations can only be calculated as error,

established with direct validation. Since there is no guarantee

that the true value of a geometric property lies within the

bounds of error in a downstream product, this study investi-

gated whether geometric models with known directions of

bias could provide uncertainty bounds to supplement

methods which more closely conform to object geometry.

It was found that in less structurally complex objects such

as saltmarsh creeks, and even in the less structurally complex

regions of trees, such as the bases of Ceiba pentandra,

well-suited geometric models could provide meaningful

constraints to object volumes. However, where models were

less well suited to the morphology of an object, they did

little to constrain the uncertainty in volume estimates. For

trees canopies, which have a complex structural relationship

with the overall space they occupy, none of the coarser geo-

metric techniques investigated in this study could provide

meaningful bounds of uncertainty for the estimates of

volume from cylinder-based reconstructions.

Since many of the geometric properties of objects that we

seek to observe with TLS become inputs into larger area ecolo-

gical modelling efforts, constraining the uncertainty for these

inputs is important. Along with the potential of validating coar-

ser resolution satellite estimates of ecosystem properties,

especially relevant to the forthcoming GEDI mission [31],

these valuable potentially applications recommend that work

continues to provide constraints for TLS observations of even

structurally complex objects such as trees.

There may be potential for constraining the bounds of

uncertainty further in hybridized models that use more opti-

mal modelling techniques for different components of an

object, such as the stem and canopy of a tree, while maintain-

ing a consistent direction of bias between the models. Some

of the models described here may also directly augment

cylinder-based reconstructions. For example, the quantitative

structure model of [25] could be used to model the

upper stem and branching structure of tropical trees as a

hierarchical network of cylinders, supplemented by SBC

representations of the buttress root structure.

OHM and SBC, as emerging methods, showed the poten-

tial to be used to produce independent characterizations of

objects of appropriate geometry. In particular, the represen-

tations of the unique morphologies of tropical vegetation,

such as the buttressed roots of Ceiba pentandra trees and the

complex superstructure of Ficus aurea, encourage further
application of the methods. These methods may also provide

further technical benefits, such as the format of SBC provid-

ing an intuitive pathway for reducing the computational

intensity and storage requirements of voxel datasets.

As the cylinder-based tree modelling methods are already

being combined with stem identification techniques to move

to stand-level operation [26,38], the geometric models

described here could actually be used to classify the presence

of morphological features such as buttress roots (for example,

by detecting stem diameter changes with OHM), as well as

then providing the necessary hybridized modelling. In

general, as ecological assessment with lidar instruments

continues to expand, adding to the toolbox of geometric

models available to characterize fringe, outlier and novel

data scenarios should prove useful.

Hybridizing geometric models may also provide novel

ways to describe the geometry of objects. For example,

there will be more disparity between 3D CHP and Bounding

Cuboid volume estimates when there is more variation in the

dimensions of different regions of the object. In other words,

objects with more morphological heterogeneity will have

higher ratios of Bounding Cuboid to 3D CHP volume than

more homogeneously structured objects. Similarly, strong

disagreements between volume estimates from 3D CHP

and OHM suggest there is a wide range of spatial extents

across regions of an object. This concept is easily visualized

for trees, where the disparity between the extent of tree

crowns and trunks would be reflected in a large difference

in volume estimates between 3D CHP and OHM. Investi-

gating the characterization of object geometry according to

their relative representation by geometric models may have

particular application to airborne lidar observations, which

tend to be coarser but have larger spatial extents, and therefore

sample sizes for objects of ecological interest.

This study primarily discussed ecological geometric mod-

elling with volume as the response variable. While volume

may be a product of direct ecological interest in some cases,

such as for biomass and timber yield estimations in forestry,

work to examine other fundamental geometric products,

such as surface area [39–41], will be highly beneficial. Also

warranting consideration is the transfer of the findings of

this study from the upstream geometric modelling to

additional, downstream ecological modelling applications,

including hydrological properties of interest (water volume

and surface area as a function of tidal height) and geological

properties of interest (erosion of material over time).

Ultimately, the continuing expansion of TLS applications

will continue to bring established geometric modelling

methods into contact with novel, non-ideal and outlier cases

for which they may not have been designed, or to which

they may be unpredictably sensitive. The development and

understanding of diverse geometric modelling tools, as this

study sought to further, will best serve to adapt the most

refined models to new conditions. This is especially true for

forestry applications, as improvements in the capabilities,

qualities and practicalities of TLS instruments are encouraging

studies in ecosystems such as tropical forest which are

morphologically unusual and inaccessible, but increasingly

essential to characterize for management and global

modelling purposes.
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