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Understanding complex genetic 
architecture of rice grain weight 
through QTL‑meta analysis 
and candidate gene identification
C. Anilkumar1*, Rameswar Prasad Sah1, T. P. Muhammed Azharudheen1, Sasmita Behera1, 
Namita Singh2, Nitish Ranjan Prakash3, N. C. Sunitha4, B. N. Devanna1, B. C. Marndi1, 
B. C. Patra1 & Sunil Kumar Nair2

Quantitative trait loci (QTL) for rice grain weight identified using bi‑parental populations in various 
environments were found inconsistent and have a modest role in marker assisted breeding and 
map‑based cloning programs. Thus, the identification of a consistent consensus QTL region across 
populations is critical to deploy in marker aided breeding programs. Using the QTL meta‑analysis 
technique, we collated rice grain weight QTL information from numerous studies done across 
populations and in diverse environments to find constitutive QTL for grain weight. Using information 
from 114 original QTL in meta‑analysis, we discovered three significant Meta‑QTL (MQTL) for grain 
weight on chromosome 3. According to gene ontology, these three MQTL have 179 genes, 25 of 
which have roles in developmental functions. Amino acid sequence BLAST of these genes indicated 
their orthologue conservation among core cereals with similar functions. MQTL3.1 includes the 
OsAPX1, PDIL, SAUR , and OsASN1 genes, which are involved in grain development and have been 
discovered to play a key role in asparagine biosynthesis and metabolism, which is crucial for source‑
sink regulation. Five potential candidate genes were identified and their expression analysis indicated 
a significant role in early grain development. The gene sequence information retrieved from the 3 K 
rice genome project revealed the deletion of six bases coding for serine and alanine in the last exon 
of OsASN1 led to an interruption in the synthesis of α‑helix of the protein, which negatively affected 
the asparagine biosynthesis pathway in the low grain weight genotypes. Further, the MQTL3.1 was 
validated using linked marker RM7197 on a set of genotypes with extreme phenotypes. MQTL that 
have been identified and validated in our study have significant scope in MAS breeding and map‑based 
cloning programs for improving rice grain weight.

Grain weight in rice is conventionally measured with one ‘thousand grains weight (TGW)’ and considered as 
a critical grain yield component trait. The TGW is influenced by associated grain traits like grain length, grain 
width, and  thickness1. These traits are genetically controlled by many minor/major genes and are quantitatively 
inherited through generations. Over decades, researchers focused their investigations on grain weight to improve 
the grain yield in  rice2,3. With the advent of molecular breeding technologies, plant breeding and botanical views 
have gained a deeper grasp of genetic control of TGW 4,5. Application of molecular markers and linkage mapping 
techniques paved the path for the identification of genetic loci controlling TGW. In the last two decades, more 
than a hundred major effect quantitative trait loci (QTL) exclusively controlling TGW have been mapped using 
different bi-parental populations over various environmental conditions. However, only a few of them have been 
validated and cloned using isogenic  lines6. Generally, QTL detected in different populations evaluated under 
different environments exhibit differential effects of phenotypic variance that create ambiguity in exploiting 
them in marker-assisted breeding programs. Further, bi-parental population based QTL identification is strongly 
influenced by contrasting parents, type of mapping population, size of population, growing environment, and 
choice of marker system that hinders application of these QTLs in breeding  programs7,8.
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QTL identified through bi-parental populations play a very modest role in rice breeding due to inconsist-
encies in growing environments, leading to discontinuities in their  use9. Thus, identification of constitutive, 
robust and large-effect QTL over environments and across populations is critical for deployment in genomics 
assisted breeding  programs10. Impact of G × E interaction, may bring change in level of correlation between 
phenotype and underlying QTL across  environments11. This is also augmented with effects from differed genetic 
 backgrounds12,13, thereby limiting their utilization. The efficacy of identified QTL in genomics-assisted breeding 
is further hampered by undesirable epistatic and modifier effects of distinct genetic  backgrounds14. The possible 
reasons behind the inability to use such identified QTL are their implausible genetic predictions (with low LOD 
scores, predicted in small populations, faulty genotyping, limited environmental evaluation, etc.) and ignorance 
of interaction effects of QTLs, which are important in determining QTL stability. Hence, it is important to identify 
a trait-related consensus genomic region that includes more than one QTL and is surrogated by a single  marker15. 
Such genomic regions are more useful to incorporate at least one or a few alleles from any of the constituent QTL 
to improve the target trait. Although, several QTL for grain weight characters in rice have been identified; leverag-
ing the available information to enhance the insights of the underlying genetic mechanisms is more appropriate.

A computational technique, Meta-QTL (MQTL) analysis, which combines the reported QTL information 
precisely, has been developed and deployed to refine QTL positions by constructing a consensus  map16,17. The 
consensus QTL predicted using meta-analysis of a group of QTL with a confidence interval of 95% is denoted 
as meta-QTL. These MQTL show high consistency, a small confidence interval, and a major effect on traits that 
can be effectively utilized in MAS breeding programs upon their validation in a set of germplasm accessions. 
To date, only a few MQTL studies have been reported in rice for grain  yield18,19, plant  characters20,21 and yield 
under drought  stress14. Further, these studies were done by considering more than one trait (meta-trait), which 
is generally contributed by several component traits. Such analysis cannot conclusively describe the genetic and 
molecular mechanisms of component  traits22. Hence, no meta-analysis of genetic factors associated with exclusive 
evidence on grain weight alone is available.

In this milieu, the present study was hypothesized the presence of consistent large effect QTL controlling 
grain weight on rice genome and tested the hypothesis by genome-wide meta-analysis with objectives, (1) predic-
tion of MQTL exclusively for grain weight considering reported QTL, (2) identification of peak (tightly linked) 
molecular markers associated with MQTL, (3) validation of identified MQTL using linked peak markers in a 
set of genotypes comprising of two extreme phenotypes and (4) identification of candidate genes in the MQTL 
interval and predict their possible biological, molecular and cellular functions in rice grain weight development.

Results
Identification of MQTL for grain weight. The information from 114 QTL found in 22 distinct inde-
pendent research undertaken over the previous two decades was used to create the consensus genetic map (Sup-
plementary file 1). The consensus map consisted of 1272 SSR markers evenly distributed over all 12 rice chromo-
somes (Fig. 1). While gathering the information, every precaution was made to ensure that only thousand grain 
weight specific QTL were extracted and no other seed shape related features were taken into account. Among all 
the QTL mapping studies included in the analysis, the mapping populations included a minimum of 39 and a 
maximum of 353 individuals tested under various environments. The number of QTL found in each investiga-
tion ranged from 3 to 22 and were spread across all 12 rice chromosomes (Fig. 2). The most QTL were found on 
chromosome 3 (22 QTL), whereas the fewest were found on chromosome 12 (4 QTL) (Fig. 3A). Further, the 114 
QTL analyzed were grouped based on PVE (%) and LOD score. Almost 49% of the initial QTL were found to 
have a LOD score less than 5 (Fig. 3B). The PVE (%) of all 114 QTL ranges from 0.4 to 60% with a mean of 10.8%, 
with nearly 50% of them having a PVE (%) between 5 and 10% (Fig. 3C). After combining individual maps from 
22 reported experiments, a consensus genetic map was created.

According to the meta-analysis description, chromosomes with less than nine original grain weight QTL 
were analysed using the Goffinet and  Gerber23 algorithm, which identified 36 MQTL across 11 chromosomes 
(except chromosome 3) with a 95% confidence interval and the lowest akaike information content AIC value 
(Table 1). The model that had a low AIC value while analysing was thought to indicate the importance of the 
MQTL discovered in this method. The chromosome 3 with 22 initial QTL was analysed using the Goffinet and 
Gerber algorithm as well as the Veyrieras approach resulted in identification of three MQTL with a 95 percent 
confidence interval. These three MQTL (MQTL3.1, MQTL3.2 and MQTL3.3) were declared true MQTL and 
considered for further analysis and validation, since they were identified using both methods with low AIC, 
corrected AIC (AICc and AIC3), Bayesian information criterion (BIC), and average weight of evidence (AWE) 
criteria. These three significant MQTL were located on chromosome 3at 39.5 cM, 92.82 cM, and 116.66 cM, 
respectively. These MQTL had incredibly small intervals, with MQTL3.1 having 0.49 Mb, MQTL3.2 having 
0.63 Mb, and MQTL3.3 having just 0.08 Mb intervals (Fig. 4). The weights of these MQTL, on the other hand, 
were highly significant, with values 0.19, 0.33 and 0.37, respectively (Table 2). The fact that MQTL’s physical 
lengths were so modest in comparison to their genetic lengths demonstrates the significance of these three MQTL 
(Supplementary Figure S1).

Mining genes underlying MQTL regions. For discovering the genes underlying MQTL regions, the 
relative physical positions of the closest flanking markers of MQTL were sought from the Gramene database. 
Genes within intervals of three MQTL on chromosome 3 were obtained from Rice MSU (http:// rice. plant biolo 
gy. msu. edu/). Information on a total of 179 genes was extracted from intervals of identified MQTLs (Supple-
mentary file 2). The MQTL3.1, having an interval of 0.49 Mb, accommodates a total of 73 genes, while MQTL3.2, 
with an interval of 0.63 Mb, accommodates 93 genes. The MQTL3.3 was found to have a very small interval of 
just 0.08 Mb containing 13 genes with a higher weight factor than the other two MQTL (Table 2). Even though 

http://rice.plantbiology.msu.edu/
http://rice.plantbiology.msu.edu/
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179 genes were found within the intervals of identified MQTL, only 25 genes were characterized for different 
biological functions (Table 3), including five genes controlling biological processes associated with grain weight 
and shape. Even though MQTL3.2 had the largest number of genes among the three MQTL, a greater number 
of characterized genes were found in MQTL3.1, followed by MQTL3.2, and a very small number were found 
in MQTL3.3. Among the characterized genes, four loci in the MQTL3.1 interval (LOC_Os03g17690, LOC_
Os03g17860, LOC_Os03g18050 and LOC_Os03g18130) and one locus in MQTL3.3 interval (LOC_Os03g51330) 
were found associated with grain development related functions. Conserved domain information for all the 

Figure 1.  Distribution of the markers on the rice consensus map constructed and utilized for meta-QTL 
analysis in the present study (Color intensity from white to red indicate low to high density of marker, 
respectively).

Figure 2.  Distribution of reported grain weight QTL on all 12 rice chromosomes (name of the first author of 
original report is used as prefix while naming the QTL in this study).
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genes under three MQTL were used to understand the gene functions and found many ubiquitination pathway 
related genes, auxin biosynthesis genes, pectin methyl biosynthesis genes, and sucrose metabolism regulating 
genes in these regions (Supplementary file 3). Amino acid sequence BLAST of 25 characterized genes underlying 
three MQTL regions identified orthologue protein sequences in the other four core cereals. Complete syntenic 
relationship between rice and sorghum for all 25 amino acid sequences followed by maize and barley lack-
ing synteny to amino acid sequences of LOC_Os03g42290 and LOC_Os03g18120, respectively. However, wheat 
genome displayed lower synteny than the other three cereals (Supplementary file 4).

Ontology of genes within the MQTL regions and expression analysis of candidate genes. The 
GO analysis of genes within MQTL regions was performed by taking genes in individual MQTL. Gene ontology 
analysis within the MQTL3.1 and MQTL3.3 regions was unsuccessful due to low gene numbers and gene ontol-
ogy terms. However, MQTL3.2, with a 0.63 Mb interval containing 93 genes, was found to have sufficient GO 
terms to map. Ontology annotation for these genes predicted the involvement of genes in many biological pro-
cesses such as biological regulation, metabolic process, macromolecule synthetic pathways, transcription, gene 
expression, etc., indicating direct or indirect association of these genes in grain development (Supplementary 
Figure S2). Further, the five genes identified as directly related to grain development and considered as candidate 
genes (Table 4) were analyzed separately for functional annotation using the ShinyGO v0.741 (http:// bioin forma 
tics. sdsta te. edu/ go/) online tool. These genes were found to be associated with many asparagine metabolism 

Figure 3.  Detailed information on initial QTL utilized for QTL-meta analysis (A) chromosome distribution of 
initial QTL (B) LOD score information of initial QTL and (C) information on phynotypic variation explained 
by initial QTL considered for the study.

Table 1.  Chromosome-wise list of initial QTL and identified MQTL.

Chromosome Number of QTL Number of MQTL Model Method

1 8 4 Model 4 Gerber and Goffinet

2 14 4 Model 4 Gerber and Goffinet

3 22 3 AIC, AICc, AIC3,BIC, AWE Veyrieras

4 3 3 Model 3 Gerber and Goffinet

5 14 4 Model 4 Gerber and Goffinet

6 9 2 Model 2 Gerber and Goffinet

7 5 3 Model 3 Gerber and Goffinet

8 12 4 Model 4 Gerber and Goffinet

9 9 3 Model 3 Gerber and Goffinet

10 8 3 Model 3 Gerber and Goffinet

11 6 4 Model 4 Gerber and Goffinet

12 4 2 Model 2 Gerber and Goffinet

Total 114 39

http://bioinformatics.sdstate.edu/go/
http://bioinformatics.sdstate.edu/go/
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Figure 4.  Magnified view of significant meta-QTL identified in the study (A) MQTL3.1 having interval of 
0.49 Mb with peak marker RM7197, (B) MQTL3.2 having interval of 0.63 Mb with peak marker RM15456 and 
(C) MQTL3.3 having interval of 0.08 Mb with peak linked marker RM15832.
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related pathways (Fig. 5). These genes play a significant role in understanding the source-sink relationship in 
 rice24. Micro-array based expression analysis datasets from RiceXPro revealed changes in the expression patterns 
of five candidate genes studied. Among five candidate genes, locus LOC_Os03g17860 (PDIL gene) was found to 
have continuous expression from early stages of ovary and embryo development to later stages of maturation 
(Fig. 6). Locus LOC_Os03g18050 (SAUR  gene) was found to up regulate early ovary development followed by 
down regulation during embryo development. Other three candidate genes were found to have significant up 
regulation during early stages of ovary and embryo development.

Table 2.  List and information on identified significant MQTL in the study.

Sl No Meta-QTL Chromosome Positions Start (cM) End (cM) Peak marker Weight CI (95%) Interval (Mb)
Number of genes 
in the interval Flanking markers

1 MQTL3.1 3 39.5 38.32 40.64 RM7197 0.19 2.33 0.49 73 RM14757-RM4321

2 MQTL3.2 3 92.82 91.54 94.13 RM15456 0.33 2.64 0.63 93 RM15442-
RM15484

3 MQTL3.3 3 116.66 116.47 116.8 RM15832 0.37 0.36 0.08 13 RM15829-
RM15834

Table 3.  List of characterized genes underlying identified significant MQTL. *genes directly involved in grain 
weight or grain shape related biological processes.

Sl. No MQTL Locu ID Position

1 MQTL3.1 LOC_Os03g17460 9,710,092—9,708,206

2 MQTL3.1 LOC_Os03g17470 9,714,748—9,712,370

3 MQTL3.1 LOC_Os03g17480 9,719,907—9,717,252

4 MQTL3.1 LOC_Os03g17570 9,768,656—9,759,479

5 MQTL3.1 LOC_Os03g17610 9,797,352—9,799,915

6 MQTL3.1 LOC_Os03g17690* 9,843,327—9,846,747

7 MQTL3.1 LOC_Os03g17700 9,850,473—9,847,700

8 MQTL3.1 LOC_Os03g17780 9,893,421—9,896,633

9 MQTL3.1 LOC_Os03g17790 9,900,400—9,899,758

10 MQTL3.1 LOC_Os03g17860* 9,955,138—9,952,788

11 MQTL3.1 LOC_Os03g17870 9,957,429—9,958,013

12 MQTL3.1 LOC_Os03g17980 9,961,503—9,960,708

13 MQTL3.1 LOC_Os03g18050* 10,057,658—10,058,281

14 MQTL3.1 LOC_Os03g18110 10,105,981—10,108,026

15 MQTL3.1 LOC_Os03g18120 10,116,219—10,120,924

16 MQTL3.1 LOC_Os03g18130* 10,124,384—10,119,873

17 MQTL3.1 LOC_Os03g18140 10,147,977—10,153,118

18 MQTL3.1 LOC_Os03g18150 10,163,441—10,165,477

19 MQTL3.2 LOC_Os03g41600 23,127,983—23,128,906

20 MQTL3.2 LOC_Os03g42020 23,341,805—23,347,331

21 MQTL3.2 LOC_Os03g42100 23,434,712—23,433,316

22 MQTL3.2 LOC_Os03g42110 23,442,337—23,438,157

23 MQTL3.2 LOC_Os03g42200 23,475,827—23,472,278

24 MQTL3.2 LOC_Os03g42290 23,533,463—23,538,865

25 MQTL3.3 LOC_Os03g51330* 29,370,719—29,373,265

Table 4.  Details of candidate genes identified under MQTL regions associated with grain development.

MQTL Locus ID MSU ID GO term Gene description

MQTL3.1 Os03g0285700 LOC_Os03g17690 Metabolic process Similar to L-ascorbate peroxidase

MQTL3.1 Os03g0287900 LOC_Os03g17860 Cellular homeostasis Similar to Protein disulfide isomerase

MQTL3.1 Os03g0290300 LOC_Os03g18050 Molecular function Auxin responsive protein

MQTL3.1 Os03g0291500 LOC_Os03g18130 Biosynthetic process Asparagine synthase domain containing protein

MQTL3.3 Os03g0723000 LOC_Os03g51330 Cellular component GRAS transcription factor domain containing protein
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Validation of MQTL. Considering the consensus map as reference, three peak markers present in the 
middle of the identified MQTL region were opted for validation of MQTL. Markers RM7197, RM15456, and 
RM15832 from MQTL3.1, MQTL3.2, and MQTL3.3, respectively, were used for validation of these MQTL. Out 
of three selected markers, only RM7197 could clearly differentiate the genotypes into two phenotypic classes, i.e., 
high and low grain weight. Hence, MQTL3.1 was validated beyond doubt by RM7197. The allele with an ampli-
con size of 100 bp was found specifically associated with low grain weight genotypes while the alternate allele 

Figure 5.  Network display of five grain related genes underlying identified MQTL involved in asparagine 
biosynthesis and metabolism pathways having significant role in regulating source to sink relation in rice. 
The green nodes in the network indicate different asparagine biosynthesis and metabolic pathways and grey 
connecting lines indicate interaction between the processes of pathways to contribute towards establishing 
source to sink relationship.

Figure 6.  Graphical representation of expression of candidate genes at early grain development stage. The 
yellow bars taken in two replicates indicate expression of candidate genes in ovary at different days after 
flowering, whereas the blue bars indicate expression of genes in embryo at different days after flowering, and 
represented in two replications.
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with an amplicon size of 85 bp was specific to higher grain weight (Fig. 7). The validated SSR marker RM7197 
is located at 9,888,524 bp on rice chromosome three between identified candidate genes LOC_Os03g17690 and 
LOC_Os03g17860. Even though the marker sequence was found within the inter-genic region, it was found to 
surrogate all four candidates in the MQTL3.1 region. However, the other two MQTL were not clearly validated 
in the study, indicating the need for the identification of more appropriate markers for further validation of those 
MQTL.

The gene sequence differences between eight genotypes from the 3 K rice genome project (Supplementary 
file 6) revealed sequence variations between genotypes for five candidate genes identified under two MQTL. 
However, differences in sequences for loci LOC Os03g17690, LOC Os03g17860, and LOC Os03g18050 under 
MQTL3.1, and locus LOC Os03g51330 under MQTL3.3 did not distinguish low grain weight and high grain 
weight genotype classes. Interestingly, the gene sequence of eight genotypes at locus LOC_Os03g18130 under 
MQTL3.1 exhibited prominent sequence differences for genotypes of different grain weight classes. Three single 
nucleotide changes distinguished genotype classes at 317 bp, 349 bp, and 395 bp, followed by two nucleotide 
deletions in high grain weight genotypes, were noticed at 2037 bp from 5’ end. Unfortunately, these SNPs and 
two nucleotide differences were found in the intronic regions of the gene and their contribution to the grain 
weight difference was ruled out. A six nucleotide deletion at 3646 bp in low grain weight genotypes was observed, 
which is located on the last exon of the gene (Fig. 8a). The deleted nucleotides code for alanine and serine amino 
acids in high grain weight genotypes. The deletion of two amino acids interrupted the α-helix in the secondary 
structure of the asparagine synthetase B protein (Fig. 8b), which also made minimal changes to the 3D structure 
(Supplementary Figure S3). Since the deletion was found in the coding region, this sequence change is expected 
to have an impact on gene expression.

Figure 7.  (A) Validation of marker RM7197, peak marker of MQTL3.1 on set of seven low grain weight and 
seven high grain weight genotypes. The allele with 100 bp linked to low grain weight and 85 bp allele linked 
to high grain weight. (B) Representation of grain size and shape of genotypes used for validation of identified 
MQTL.

Figure 8.  Sequence variation between low and high grain weight genotypes for LOC_Os03g18130 under 
MQTL3.1 retrieved from 3 k rice genome project. (a) A six base pair deletion in the last exon of the gene in low 
grain weight genotypes and (b) two amino acids, alanine and serine deleted in amino acid coding sequence 
which led to interruption of secondary structure (α-helix) of asparagine synthetase b protein in low grain weight 
genotypes.
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Discussion
Understanding the genetic architecture of complex quantitative traits is a prelude to crop improvement. Grain 
weight in rice, being a metric trait, has a significant impact on grain yield, and thus needs a thorough dissection 
and deployment in the rice yield improvement breeding programme. Several researchers over the last couple of 
decades have characterised and mapped several genetic loci responsible for inheritance of rice grain  weight25–28. 
However, many of these findings done on different bi-parental populations often resulted in higher confidence 
interval that limited their validation and utilization in practical plant  breeding29,30. The information on QTL 
identified in independent experiments over various populations across diverse environments can be integrated 
to identify true and consistent QTL through a meta-analysis  approach23. Few studies have located  MQTL14,19,31 
to mine candidate genes.

In the present study, meta-QTL analysis was conducted specifically for thousand grain weight in rice. For 
comprehensive identification of consistent QTL responsible for grain weight in rice, information from 22 inde-
pendent investigations identifying 114 QTL was used (Supplementary file 1). The initial QTL identified were 
spread across 12 rice chromosomes, indicating metric inheritance of the trait with several causative alleles 
over all the chromosomes (Fig. 2). A similar trend of QTL distribution on all chromosomes was reported by 
Islam et al.32 for salt tolerance in rice. Even though 39 MQTL were identified from 114 original QTL, only three 
MQTL on chromosome 3 were considered significant based on AIC information (Table 1). The presence of a 
greater number of initial QTL for grain weight on chromosome 3 hinted at the chances of identification of a 
consistent MQTL (Fig. 3A). Further, earlier researchers like Xu et al.33 and Zhu et al.34 identified a few major 
QTL on chromosome 3 for grain weight. Three MQTL identified on chromosome 3 were found to have very 
low interval and comparatively high weight (Table 2), which is advantageous for utilization in strategic breeding 
 programs35. The genome-wide association studies carried out on two diverse rice panels did not identify any 
QTL either for grain  weight36,37 or for grain  yield38 on chromosome three owing to population size and marker 
density used in these studies. Consensus projection of all the minor and major QTL identified in different studies 
into a single or few MQTL, which explains the variation of all included QTL, signifies the power of meta-QTL 
identification. Hence, identified consistent MQTL with short interval have potential use in marker assisted 
backcross breeding programs for rapid elimination of linkage drag. The identified MQTL regions were found 
rich in gene content, harboring a total of 179 gene loci within their intervals. Several of these genes were not 
annotated, and only 25 of them, were to be found characterized and annotated. These included important genes 
like GSTL3 (LOC_Os03g17460) and GSTL1 (LOC_Os03g17480) responsible for stress  tolerance39,40, while PRR73 
(LOC_Os03g17570) regulates salt  tolerance41 in rice. However, these characterized genes are not related to grain 
weight and are instead associated with some important biological processes. The Gene Ontology survey helped 
understand the functions of genes within MQTL. The gene ontology plot from the MQTL3.2 region depicted the 
roles of loci in different biological and metabolic processes (Supplementary Figure S2). These genes are associated 
with many physiological and molecular pathways related to grain  development42. The group of genes significantly 
associated with GO terms from MQTL regions might enrich phenotype expression of grain weight and aid in 
selection. Further, a sequence blast to identify conserved domains for all 179 genes unraveled the information 
on important genes and their functions, which contribute towards the biological process of grain development. 
Genes responsible for the ubiquitination pathway, auxin biosynthesis pathway, pectin methyl transferase coding 
genes and sucrose metabolism pathway regulating genes were found within the identified MQTL regions. These 
pathways have significant roles to contribute for early grain development, including cell division in  endosperm43 
and grain maturation by sink organ sucrose  metabolism44,45. The comparison of orthologue amino acid sequences 
of other closely related cereals revealed that these proteins are conserved across species and are responsible for 
important biological functions, leading to plant development as similar to rice. The availability of orthologue 
regions in closely related cereals increases the significance of identified MQTL and also verifies their  stability46,47. 
The orthologue sequence search also included the candidate genes identified in this study, the protein expressions 
of amino acid sequences in other cereals were found to be similar to those in the rice plant. Thus, that verifies 
the stability of identified candidate genes in this study.

Four loci from MQTL3.1 and one from MQTL3.3 were reported to have associations with grain development 
related processes. Locus LOC_Os03g17690 found in MQTL3.1 was associated with OsAPX1 gene plays significant 
role in  embryogenesis48 and also in heat stress  tolerance49. The Gene PDIL (LOC_Os03g17860) was responsible 
for accumulation of seed  storage50, gene SAUR  (LOC_Os03g18050) was influencing reproductive  development51 
while OsASN1 (LOC_Os03g18130) regulating asparagine dependent rice  development52. These functions of 
identified gene loci within MQTL3.1 define its importance in the improvement of rice grain weight. None of the 
genes identified within the MQTL3.2 region were found directly associated with grain weight. However, their 
importance in other biological processes leading to grain yield was found to be significant. Among the genes 
within MQTL3.3, gene OsGRAS19 (LOC_Os03g51330) was reported to regulate grain shape in  rice53. Apart 
from directly influencing grain development processes, these genes were found to be associated with asparagine 
biosynthesis and asparagine metabolic processes (Fig. 5). It is reported that asparagine along with glutamine 
regulates source to sink relations in rice  plant52. Glutamine and asparagine are the two important forms of N 
transport from root to shoot in rice plants. Further, reproductive organ specific expression of identified candidate 
genes under defined MQTL regions indicated the role of early embryo development stages for enhancing grain 
weight. Utilization of these MQTL in plant breeding enhances the chance of improving source to sink relations, 
thereby increasing grain weight and yield in rice.

Among three random rice markers used for validation of MQTL on a set of extreme genotypes consisting 
of seven low grain weights and seven high grain weights, only one marker (RM7197) clearly differentiated two 
extreme categories (Fig. 7). Segregation of marker amplicons with low and high seed weight classes of genotypes 
validates their linkage with the respective MQTL. The validated marker was the peak marker of MQTL3.1, 
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indicating the marker was tightly linked to MQTL3.1. The validated marker, RM7197, has scope in practical 
marker aided plant breeding to incorporate the MQTL3.1 region into an elite background to enhance grain 
weight. The association of the RM7197 marker with MQTL3.1 indicates its association with all other genes under-
lying MQTL3.1. Hence, it can be used as a surrogate to track them in marker-assisted rice breeding programs 
for improving grain weight. The remaining two markers related to the remaining two MQTL were not clearly 
validated owing to very few QTL/genes involved in the MQTL formation. In MQTL3.2, only one candidate gene 
and a few minor QTL were reported in the region; whereas, within MQTL3.3, no candidate genes were identified 
and only two minor QTL were present. Therefore, the marker linked to very small numbers of alleles responsible 
for grain weight might not be possible to associate with a complete phenotype of grain weight in genotypes with 
extreme phenotypes. Hence, there was a lack of association with phenotype in the validation.

The six nucleotide deletion on the last exon of the gene was noticed in the gene sequence of low grain weight 
genotypes. The deleted sequence 5’GGC GGA 3’ with the complementary sequence 5’TCC GCC 3’ in high grain 
weight genotypes codes for two amino acids, serine and alanine, which play a significant role in aspargine 
 biosynthesis54. The efficiency of serine: glyoxylate aminotransferase or alanine: glyoxylate aminotransferase 
(AGT1) activity in the asparagine biosynthetic pathway significantly increases when glycolate is an amino accep-
tor and serine or alanine as an amino  donor55. The deletion of coding sequences of these amino acids negatively 
impacts the asparagine biosynthetic pathway, which indirectly reduces the strength of the sink-to-source rela-
tionship. Hence, this change in gene sequence may be one of the genetic causes of the change in grain weight. 
This evidence from gene sequence information of genotypes from the 3 K rice genome project reiterated the 
importance of identified MQTL for grain weight.

Conclusion
By collating the results of independent investigations conducted over various environments and identification 
of true consensus genomic region for grain weight paves new avenue for utilization in practical rice breeding. 
In this study, three significant and consistent consensus genomic regions for grain weight were identified in rice 
through a QTL-meta analysis approach. The intervals of these MQTL contains many candidate genes respon-
sible for asparagine metabolic pathway and GRAS transcription factor domains which regulates source to sink 
relationship and grain weight in rice. This provides insight into pathways underlying grain weight character and 
genes responsible for variable grain weight in rice. The marker RM7197 validated for identified meta-QTL has 
significant scope in incorporating all the genes underlying MQTL3.1 for improving grain weight in rice. The 
outcome of this investigation has significant application in practical rice breeding programs to incorporate these 
MQTL for grain weight improvement through marker-aided breeding programs.

Materials and methods
Bibliographic survey and data generation. A comprehensive survey of literature related to QTL map-
ping for grain weight in rice published over the last two decades was performed to aggregate the information 
(Supplementary file 1). The information on the number and type of molecular markers, genetic map, type and 
size of mapping populations, parents used, LOD scores, genetic distances in linkage groups and proportion of 
phenotypic variance explained  (R2 values) were collated from published literature. Information on a total of 114 
QTL mapped exclusively for grain weight over environments across populations along with their genetic maps 
were collected, tabulated, and summarized. A few studies with incomplete information on genetic maps were 
excluded from the study. The population size of progenies in the mapping populations of various studies varied 
from 39 to 353 progenies evaluated over different locations encompassing different studies. Separate input text 
files for map and QTL information were created as per the requirements of Biomercator v4.217. This information 
was considered as primary information for the present investigation.

Consensus map development and QTL projection. Forehand to MQTL analysis, a consensus genetic 
map was developed based on collated information of genetic maps from published studies using Biomercator 
v4.216,17. The genetic map well saturated with 19,180 SSR markers available in the Gramene database (https:// 
archi ve. grame ne. org/ marke rs/) was used as the reference genetic map for developing the consensus map. The 
information on individual map files for 114 grain weight specific QTL (original/initial QTL) was integrated on 
to the consensus map for QTL projection. In order to incorporate information from the SNP markers linked to 
original QTL, the positions of SNP markers in the rice genome were determined and the closest SSR markers 
corresponding to them were chosen for projecting QTL on the consensus map as suggested by Khahani et al.56. 
The QTL projection on the consensus map was based on  R2 explained by QTL, LOD score, QTL positions, and 
confidence intervals of initial QTL. For the original QTL, the confidence interval (CI) used to project them on 
the consensus map was calculated following the Darvasi and  Soller57 equation: 530

NR2
 , in which N is the size of the 

population and  R2 is the phenotypic variation explained by the QTL. The QTL position on the consensus map 
was projected by considering the marker interval of the QTL on the original map and the corresponding position 
on the consensus map. A Gaussian distribution rule was used to calculate the new CI on the consensus map as 
suggested by Veyrieras et al.16.

QTL meta‑analysis. A consensus genetic map of each chromosome with projected QTL for grain weight 
was subjected to MQTL analysis following the default parameter setting in BioMercator v4.2 (https:// urgi. versa 
illes. inra. fr/ Tools/ BioMe rcator- V4)16,17,58. The method of analysis was selected based on initial QTL numbers 
on each chromosome; if a chromosome contains more than nine QTL, the ‘Veyrieras’ method or otherwise the 
‘Gerber and Goffinet’ method was followed. An appropriate model for the identification of MQTL was cho-
sen based on Akaike Information Criterion (AIC), corrected Akaike Information Criterion (AICc and AIC3), 

https://archive.gramene.org/markers/
https://archive.gramene.org/markers/
https://urgi.versailles.inra.fr/Tools/BioMercator-V4
https://urgi.versailles.inra.fr/Tools/BioMercator-V4
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Bayesian Information Criterion (BIC) and/or Average Weight of Evidence (AWE)  criteria16. The lowest number 
of models predicted by at least three of these criteria was considered the best. The MQTL identified by the best 
model based on the lowest value for the aforesaid criteria was  reported59.

Discovery of genes within Meta‑QTL regions. Based on the results of MQTL analysis, the anchor 
positions of significant MQTL were identified by considering flanking marker positions obtained from the 
Gramene database. For the process called mapping, physical positions of flanking markers were used as inputs 
in the search field of Rice MSU (http:// rice. plant biolo gy. msu. edu/) to discover and extract information on the 
number of genes, locus IDs, and annotated data related to MQTL regions. For each loci identified under MQTL 
region, the information on conserved domain and gene function was extracted from Rice MSU (http:// rice. plant 
biolo gy. msu. edu/) and NCBI-conserved domain database (https:// www. ncbi. nlm. nih. gov/ Struc ture/ cdd/ wrpsb. 
cgi). Further, amino acid sequences of characterized genes under identified MQTL regions were used to find 
orthologues in other core cereals using the NCBI orthologue search database (https:// www. ncbi. nlm. nih. gov/). 
The locus IDs of genes from the MQTL regions were used as input for the gene ontology (GO) search.

Gene ontology analysis and expression analysis. Selecting appropriate gene ontology terms from the 
list of mapped genes in a specific genomic region is termed as GO annotation. The information on locus ID of 
genes discovered in the MQTL region was functionally classified following the single enrichment analysis (SEA) 
tool in the web-based AgriGOv2.0 (http:// syste msbio logy. cau. edu. cn/ agriG Ov2/) interface. The necessary 
parameters like Benjamini-Yekutieli (FDR under dependency) under multiple adjustment test and significance 
at 5% were set before  analysis32. The GO terms include the involvement of genes in biological processes, cellular 
processes, metabolic processes and regulation, etc. Among these genes, grain development related genes were 
identified based on available literature and were considered as candidate genes for grain weight. The expression 
data of these genes were downloaded from RiceXPro database. RXP_0011 dataset, which contains micro-array 
based expression data of grain early stage development, was considered for further interpretation.

Validation of identified MQTL by linked markers. In traditional QTL validation, it is important to 
develop near isogenic or transgenic lines for assessing the effect of identified QTL. Validation of MQTL con-
ceptually differs from that of QTL validation owing to its property of inclusive  QTL32. According to the algo-
rithmic definition of meta-analysis, MQTL identification in a condensed genomic region assures the validation 
of known QTL in the  region23. Hence, the identification of a linked surrogate marker and validating it on a set 
of genotypes with extreme phenotypes is practically significant. Significant association of marker alleles with 
phenotypes ensures the presence of at least a few alleles of QTL present in the MQTL. Several researchers vali-
dated identified MQTL following the aforesaid  approach14,32,60. In the present study, MQTL associated peak-SSR 
markers from each MQTL were opted for validation on a set of 14 genotypes, comprising seven genotypes each 
from extreme low and high grain weight categories available at ICAR-National Rice Research Institute Cuttack. 
The experimental genotypes were selected from a panel of 300 genotypes evaluated over the last five years, and 
a mean of thousand grain weight data was considered. The genotypes with less than 12.50 g were considered as 
low grain weight set and those with more than 25.00 g were considered as high grain weight set. Among selected 
genotypes, Niiaw Hawm (37.27 g) the recorded highest grain weight, while Adam Chini (9.50 g) recorded the 
lowest grain weight (Supplementary file 5). Seedlings were grown in pots at laboratory conditions and genomic 
DNA was extracted using the CTAB  method61. The quality and quantity of genomic DNA were tested before 
thermal amplification of regions corresponding to MQTL-linked markers. Amplified fragments were visualized 
using gel electrophoresis and a documentation system.

Further, the gene sequences of four loci under MQTL3.1 and one locus under MQTL3.3 for a set of eight 
genotypes, four low grain weight and four high grain  weight62 in the 3 K rice genome project were retrieved from 
the rice functional genomics and breeding (RFGB) database (https:// www. rmbre eding. cn/ public/ searc hbak). 
The indica accessions of Indian origin were selected to understand the gene sequence differences between low 
grain weight and high grain weight genotypes (Supplementary file 6). The gene sequences of eight genotypes 
were subjected to multiple sequence alignment using the MUltiple Sequence Comparison by Log- Expectation 
(MUSCLE) tool (https:// www. ebi. ac. uk/ Tools/ msa/ muscle/). Upon identification of sequence differences between 
genotypes, their position on the gene sequence and functional contributions to variation were explored. The 
protein structure variation due to sequence differences was analyzed using the Phyre2 webportal (http:// www. 
sbg. bio. ic. ac. uk/ ~phyre2/ html/ page. cgi? id= index)63 and represented in for visualization.

Data availability
All data included in this study are available upon request by contact with the corresponding author. The data 
used for gene expression analysis was retrieved from RXP_0011 data set in RiceXPro database (https:// ricex 
pro. dna. affrc. go. jp/ Zappi ng/.) and sequence information for eight genotypes was retrieved from rice functional 
genomics and breeding database (https:// www. rmbre eding. cn/).
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