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Within thepast 25 years, tissue engineering (TE) has grown enormously as a science and as an industry. Although
classically concernedwith the recapitulation of tissue and organ formation in our body for regenerativemedicine,
the evolution of TE research is intertwinedwith progress in other fields through the examination of cell function
and behaviour in isolated biomimetic microenvironments. As such, TE applications now extend beyond the field
of tissue regeneration research, operating as a platform for modifiable, physiologically-representative in vitro
models with the potential to improve the translation of novel therapeutics into the clinic through a more in-
formed understanding of the relevant molecular biology, structural biology, anatomy, and physiology. By virtue
of their biomimicry, TE constructs incorporate features of extracellular macrostructure, molecular adhesive moi-
eties, and biomechanical properties, converging with computational and structural biotechnology advances. Ac-
cordingly, this mini-review serves to contextualise TE for the computational and structural biotechnology reader
and provides an outlook on how the disciplines overlapwith respect to relevant advanced analytical applications.

© 2019 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Since the seminal paper of Langer and Vacanti over 25 years ago [1],
tissue engineering (TE) has grown enormously as a science and as an in-
dustry. In 1993, it was introduced to the wider scientific community as
“an interdisciplinary field that applies the principles of engineering and
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the life sciences toward the development of biological substitutes that
restore, maintain, or improve tissue function”. As an industry, TE has
stabilised and becomeprofitable since the turn of this decade [2];within
Europe, for example, more TE products are regularly emerging in regis-
tered clinical trials as advanced therapeutic medicinal products
(ATMPs) [3]. Classically, TE recapitulates tissue and organ formation in
our body to varying degrees, bringing together cells in a three-
dimensional (3D) fabricated environment where appropriate signals
are provided for tissue formation. In parallel, the evolution of TE
research is intertwined with progress in other fields through the
examination of cell function and behaviour in isolated biomimetic
omputational and Structural Biotechnology. This is an open access article under the CC BY
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microenvironments. Expanding our knowledge of stem cell biology
[4,5], disease [6,7], and improved maintenance of cells in culture with-
out dedifferentiation [8,9]. As such, TE applications now extend beyond
regeneration strategies alone, operating as a platform for modifiable,
physiologically-representative in vitro models [10]. Indeed, studies
with TE in vitro models can answer questions that potentially improve
the translation of novel therapeutics and ATMPs from the laboratory
bench into the clinic, through amore informedunderstanding of the rel-
evant molecular biology, structural biology, anatomy, and physiology.

The manufacture of a successful TE construct is underpinned by
three crucial components, referred to as the tissue engineering triad
(Fig. 1): a relevant selection of cells, a biomaterial scaffold for 3D culture,
and the presence of appropriate signals such as biophysical cues and
chemical mediators that coordinate to ultimately recreate tissue [11].
Scaffolds produced should be biocompatible to preclude an immune re-
sponse in the host following implantation, maintain a biodegradability
rate that facilitates the replacement of scaffold with physiological tissue
without collapse of the construct, have mechanical properties that
mimic that of its surrounding in vivo environment, an architecture
that facilitates cellular processes like diffusion, vascularisation and
waste removal, and finally, be feasible in efficient and economic manu-
facture [12]. Signals to encourage extracellular matrix (ECM) produc-
tion by cells can be provided by biophysical cues such as those applied
by a bioreactor in which the construct is cultured [13], by delivery of
bioactive molecules or genes [14,15], or even by the cell substrate's bio-
physical properties [16]. Cell sources include stem cells and host-
derived cells that are typically cultured ex vivo on the biomaterial before
implantation [17].

As the field of TE has evolved, an increased convergence with com-
putational and structural biotechnology researchhas occurred as a func-
tion of the former's inherent biomimicry. Conventionally, structural
biotechnology is primarily concerned with nanoscale molecules and
how they interact within a biological system, such as inside a cell or tis-
sue [18]. The ability to investigate the interaction between complex
macromolecules like proteins and nucleic acids has been enabled on
an unprecedented scale by advances in imaging, informatics, and big
data omics, permitting analytical outputs of biological function and dis-
ease that were hitherto impossible or unfeasible [19,20]. On the other
Fig. 1. The tissue engineering triad. A combination of cells cultured on a biomaterial scaffoldwith
Image adapted from [11].
hand, thediscipline of TE conventionally explores the “macro” level, cre-
ating constructs on the scale of the tissue or organ with anatomical ar-
chitecture and robust bulk physical properties. However, as more
knowledge has been accrued from the life sciences and as manufacture
technologies have advanced to the high-resolution fabrication tech-
niques of electrospinning and 3D printing additive manufacture
[21–23], TE constructs can now accurately recapitulate elements of an
in vivomicroenvironment such as extracellular macrostructure, molec-
ular adhesive moieties, and biomechanical properties [24]. Taken to-
gether, structural biotechnology and TE thus converge in a reciprocal
fashion, whereby TE model and construct design provide the inputs to
elicit certain cell and tissue functions, while the outputs that are stimu-
lated can be identified, quantified, and interpreted by structural bio-
technology approaches. Indeed, techniques such as high resolution
microscopy and next generation sequencing, coupledwith bioinformat-
ics, can provide a deeper analysis of TE platforms and are being increas-
ingly recognised within the field as powerful methods for extensive
analysis of in vitro 3D models [25].However, the respective core con-
cepts, strengths, and opportunity for synergy are not yet widely
recognised or understood across both fields, prompting the need to cre-
ate some context that can act as a springboard for further interest and
collaboration among disciplines.

Accordingly, this mini-review serves to contextualise TE for the
computational and structural biotechnology reader and provides an
outlook on how the disciplines overlap with respect to relevant ad-
vanced analytical applications.While cell sources are a critical consider-
ation within TE platforms, this review considers the structural biologist
to have extensive experience in cellular biology. Therefore, we focus on
the role of extracellular polymeric structures and the fundamentals of
how their properties can transduce intracellular signals as integral
facets to the biomaterial and signal pillars of the TE triad.

2. TheUse of Natural Polymers in Tissue Engineering as Biomaterials

In fundamental terms, biomaterials are natural, synthetic, or com-
posite polymer constructs that have been manufactured to a defined
set of parameters in order to interact with a biological system (Fig. 2).
The critical role of the biomaterial is to mimic the extracellular matrix
appropriate biophysical and chemical signals coordinate to recapitulate the desired tissue.



Fig. 2. (a) Collagen structure, composed of repeating Gly-X-Y units that assemble into a heterotrimeric structure. Adapted from [31,32]. (b) Formation of tropoelastin coacervates in elastin
synthesis. Adapted from [33]. (c) Poly-Ɛ-caprolactone (PCL). (d) Poly(lactic-co-glycolic) acid (PLGA) structure.
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(ECM) to which cells anchor and orientate themselves to form tissue,
which itself is primarily composed of elastic fibres, collagens, and inte-
grated glycosaminoglycans [26]. Thus, in addition to being non-toxic
for the cells, biomaterials need to be structurally designed to reflect
the elastic and tensile properties of these ECM components, in addition
to exhibiting the capability for further crosslinking reactions that can
occur in vivo [27]. Also, biomaterials must display cell-binding moieties
for attachment, either by resembling the interactions of native ligands
or by direct incorporation of peptide sequences, such as the triple helical
GFOGER sequence of fibrillar collagens [28], the RGD epitope within fi-
bronectin [29], or the GRKRKmotif of tropoelastin [30]. Finally, and par-
ticularly in the case of synthetic materials, biodegradability and
bioresorption are important issues to consider in order to ensure that
cells have the capability to break down polymeric units and replace
them with their own secreted ECM, if desired.

Of course, one of the simplestmethods tomimic the ECM is to isolate
and use the natural polymers that constitute it. As the most abundant
structural protein in vivo, collagen is one of the most popular biomate-
rial choices in the TE field [34]. Collagens form a large protein family
containing more than 40 genes encoding various alpha chains which
can form at least 29 members, within which type I collagen forms the
bedrock of the ECM of many tissues [35]. Collagen I is fibrillar in struc-
ture, composed of a distinctive heterotrimeric left-handed helix
(Fig. 2a). The repeating Gly-X-Y amino acid sequence in its primary
structure is critical to the formation of the polypeptide and resultant fi-
brils, reducing steric hindrance to permit helical formation and outward
projection of other amino acid side chains to maximise adhesion and
crosslinking. For almost every TE application, type I collagen has been
explored as a biomaterial substrate, in many forms: as polymerised
hydrogels [36–39], porous polymeric scaffolds [40–42] and within
decellularised tissue [43–45].

Other natural polymers can offer different mechanical or functional
properties to those of collagen in biomaterials, which can be useful for
particular regenerative medicine applications or TE in vitro disease
models. For instance, while collagen confers stability and tensile
strength to the ECM, other components such as elastin endow tissue
with improved elastic properties [33]. Composed of monomeric units
of tropoelastin that form amature coacervate for subsequent deposition
on a fibrillar network and crosslinking (Fig. 2b), the presence of hydro-
phobic regionswithin elastin's protein structure is integral for recoil fol-
lowing distension, whereby the exposure of non-polar residues in
stretched form provoke a thermodynamically-favourable structural re-
traction to shield them from aqueous surroundings [46]. Accordingly,
this natural polymer has been predominantly explored in TE for
vascular and dermal applications, where such mechanical properties
are inherently critical [47–52]. As highlighted in these studies, elastin
biomaterials have generally been fabricated as co-polymers with colla-
gen, aswell as silkfibroin, a versatile natural polymer [53]. Other natural
polymers of notable interest in TE are hyaluronic acid and alginate. Neu-
ral ECM in the body contains higher concentrations of the glycosamino-
glycan hyaluronic acid and its inclusion in biomaterials has been found
to enhance tissue regeneration in intervertebral disc injury and reduce
degeneration in retinal nervous tissue [54,55]. Other tissue where
hyaluronic acid is concentrated, such as hyaline cartilage, has also
benefited from its presence in TE constructs [56]. Interestingly,
hyaluronic acid is also an intriguing polymer for TE in vitro disease
models, where an upregulation of its presence can exacerbate metasta-
sis and mortality in cancer [57]; indeed, different structural features of
hyaluronic acid appear to mediate different inflammatory and healing
responses in vivo [58], and in effect, different cell behaviours in healthy
and diseased states.

Alginate, on the other hand, is derived from sea weed and is not
present in the human body [59]. However, it is an interesting polymer
for biomimetic TE in vitromodels due to the ability to modulate its ten-
sile and viscoelastic properties without resorting to crosslinking
methods that can adversely affect cell-binding epitopes. Moreover, epi-
topes can be attached to alginate, providing further control of cell ligand
density. In this way, alginate biomaterials have great utility in platforms
where examination of the effects of mechanical properties on cell be-
haviour is sought that is independent of cell-ligand effects [60,61].
This is in stark contrast to collagen, where commonly used crosslinkers
can hinder cell recognition of peptide sequences that are altered in the
formation of ester and amide covalent bonds (discussed in [34]). Albeit
a strength of alginate, this ligand-material decoupling highlights a
major limitation of the use of other natural polymers: reduced capacity
for customisation of physical and chemical structural properties, which
translates into reduced capability for finely tuned control of TE systems
for different applications. To address this issue, the TE field has investi-
gated the use of synthetic biomaterials to provide a more controllable
means of ECM biomimicry.

3. Structural Biomimicry With Synthetic and Composite Polymer
Biomaterials

In general, the principal advantage of synthetic polymers in TE appli-
cations is their versatility. The control afforded over factors such as the
structure of the monomeric units, the ratio of co-polymer structures,
polymer sequence, chain length, and inter-chain facilitates a finer
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degree of control of biomaterial characteristics like biodegradability and
mechanical properties [62] than that which can be achieved with natu-
ral polymers that have in effect, been pre-synthesised by nature, and ex-
hibit a greater degree of structural heterogeneity [24]. Moreover,
synthetic polymers can be designed to be more stable than protein-
based polymers, permitting the use of manufacturing methods that
use extremes of some conditions like charge and temperature; typical
examples are electrospinning and melt electrospinning, respectively,
for which the use of collagen solutions to prepare nanofibrous struc-
tures is doubtful [23,63]. Finally, synthetic materials can be
manufactured more easily in bulk and are not a cost prohibitive as the
time-consuming and onerous isolation and purification of natural poly-
mers. However, a synthetic polymer's biocompatibility and facility for
cell attachment is not necessarily as guaranteed as it can be for natural
polymers. While the latter issue can be resolved through the incorpora-
tion of functional groups to conjugate cell ligands to in stoichiometric
amounts [64], more extensive testing of novel synthetic polymers and
their breakdown by-products could be required before their routine
use becomes widespread in TE applications. Although many different
types have been explored in the TE field (recently outlined in [62]),
two archetypical biomaterials that illustrate these strengths and limita-
tions of synthetic polymers are the polyesters poly-Ɛ-caprolactone
(PCL; Fig. 2c) and poly(lactic-co-glycolic) acid (PLGA, Fig. 2d) [65,66].

PCL, a hydrophobic and semi-crystallinematerial, is renowned for its
long in vivo residence timewithout chemical breakdown and for its vis-
coelastic behaviour that is similar to native tissue [67–70]. Unlike natu-
ral polymers such as collagen or proteoglycans, the human body lacks
enzymes that can cleave PCL chains, with the net result that its break-
down proceeds slowly via hydrolytic polymeric surface erosion over
an average of three years [71,72]. When this information is taken to-
gether with its biomimetic material properties, PCL can be a very useful
choice of biomaterial where prolonged scaffold support is warranted
before robust tissue regeneration has occurred in situ that can bear sig-
nificant mechanical loading. In this regard, PCL holds great promise for
bone TE [73–75], tracheal TE [76–78], and intervertebral disc regenera-
tion [79,80]. However, although PCL's structure confers resistance to
rapid degradation, the polymer backbone also lacks an abundance of
functional groups that can be modified for ligand attachment; as such,
PCL has a reduced capacity for cell attachment. Thus, PCL is often
employed in a composite biomaterial that compensates for cell binding,
discussed below.

Of course, depending on the application, more flexible or rapid deg-
radation rates might be desired for a biomaterial. In this regard, PLGA is
another versatile, biocompatible, aliphatic polymer that has been
widely used for drug delivery and TE applications with such properties
[81]. PLGA also degrades by hydrolysis on hydrated surfaces, but unlike
PCL, it degrades more rapidly because the glycolic acid monomers are
more hydrophilic in nature and therefore interact more readily with
water in the degradation process. Conversely, lactic acid does not de-
grade as rapidly as a result of its hydrophobic character. Thus, through
fabricating polymers with different ratios of monomeric units present,
a faster or slower degradation rate can be built into the polymer, purely
as a result of its primary structure. Additionally, different molecular
weights can also be utilised to control biodegradation, with slower deg-
radation as molecular weight increases. Following hydrolysis, however,
the build-up of acidic breakdown products can be damaging for sur-
rounding local tissue, with is particularly undesired in cases of tissue re-
generation [82]. For TE applicationswhere these products can be readily
removed, such as in 3D in vitromodels that have regularmedia changes,
cellular damage and toxicity might not be as significant. In summary,
taking the advantages and disadvantages of both synthetic polymers to-
gether, synthetic polymers are indeed useful biomaterials with
customisable and versatile features for TE technologies, but their ab-
sence of the inherent biomimicry that is a feature of natural polymers
can oppose their universal application.
In order to address the respective shortcomings of both natural and
synthetic polymers in TE, composite biomaterials entailing combina-
tions of bothhavebeen the subject ofmany studies, particularly in tissue
regeneration applications. Typically, natural and synthetic composites
have been designed with the aim of bolstering the stability and robust
mechanical properties of synthetic materials with the cell adhesive
and cell instructive cues of natural polymers. For example, PCL has
been combinedwith a wide range of natural biomaterials including col-
lagen [77], gelatin [83,84], hyaluronic acid [85], and cellulose [86]. The
myriadof all combinationsof synthetic-natural composite combinations
in the TE field are vast; a comprehensive list is beyond the scope of this
mini-review. However, from a structural perspective, the common
theme of improvedmechanical properties prevailswithin the literature.
As recently illustrated by Jakus and colleagues [87], however, improving
structural strength can also yield resultant effects on cell behaviour and
the improved development of organotypic tissue. Thismaterial, a mix of
PCL or PLGAwith hydroxyapatite, exhibitedhighmaterial stiffness, oste-
ogenic differentiation of seeded stem cells, and formed vascularised
bone tissue in vivo. It well-known in TE that a stiffer material substrate
can stimulate stem cell differentiation into bone cells [4], and the pres-
ence of the bonemineral hydroxyapatite also contributed to osteogene-
sis, as with other studies of doping PCL constructs withmineral [83,88].
Once again, the core structural features of the polymers provide a resul-
tant effect on tissue formation as a function of biomaterial composition,
mechanical properties, and biodegradation.

4. Biophysical Signalling in Tissue Engineering: Cell-Substrate
Mechanotransduction

Regardless of whether the biomaterial substrate is natural or
synthetic, once cells can attach to a polymer, a combination of
receptor-mediated and mechanical-mediated signals will regulate
their phenotype and function. This process is defined asmechanotrans-
duction, in which cells sense and respond to mechanical stimuli by
converting them to biochemical signals, commencingwith cell recogni-
tion of specific extracellular motifs to bind, subsequent probing of the
physical nature of its surrounding environment, and resultant effector
responses [26]. Effector responses to cell ligand density and matrix
elasticity include differentiation of stem cells [4,5,89], migration
[90,91], and disease progression [92–95].

Mechanotransduction initiates with cell recognition of ligands at the
cell-substrate interface, followed by tension generation in the cell and
kinase activity, before culminating in downstream signalling responses
(Fig. 3a). A fully comprehensive review of all protein-material interac-
tions, including nanotopographical characteristics of the biomaterial
and ligand spacing (reviewed in [96]), is beyond the scope of this
mini-review but the critical concept of cell responses to adjacent poly-
meric structures is illustrated through canonical integrin receptor sig-
nalling, a family of transmembrane proteins that are the major cell
adhesion receptor for the ECM [97,98]. As heterodimeric proteins, dis-
tinct α- and β-subunits of integrins can propagate different down-
stream effects, even upon recognition of the same extracellular ligand.
Thus, while integrins are typically classified by their recognition of col-
lagen, fibronectin or laminin motifs, resultant cell responses can range
from homeostatic to pathogenic [99].

In either case, extracellular integrin-ligand binding induces confor-
mational changes in the receptor's intracellular domain, stimulating
the association of linker proteins including talin [100], vinculin [101],
and paxillin [102] to form a focal adhesion complex. The linker proteins
in turn facilitate the association of the cytoskeletal actin framework
with the focal adhesion complex, generating a tensional force across
the cell in proportion to the substrate stiffness sensed in resistance to
the net inward flow of actin towards the nucleus. As the stiffness in-
creases, more focal adhesions cluster and actin filaments align to gener-
ate a greater tensional force (Fig. 3b). Consequently, the polymerisation



Fig. 3. (a) Overview ofmechanotransduction. Integrin receptors recognise and bind to cell-adhesive ligands in the extracellularmatrix (ECM), initiating the formation of intracellular focal
adhesion complexes (left panel). Signallingmolecules directly stimulate downstream transcription and linker proteins in the complex bind to actin filaments, which can generate a tensile
force in conjunction with myosin II activity. Adapted from [26]. (b) Increased substrate stiffness induces the formation of focal adhesion complexes (green) and actin polymerisation and
alignment (red) in human mesenchymal stem cells. Adapted from [4].
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of actin filaments and tensional force is felt along the entire cytoskele-
ton, regulating differential gene expression in response.

In addition to acting as key transducers of mechanical signalling at
the cell-substrate interface, focal adhesion subunits, including focal ad-
hesion kinase (FAK), can phosphorylate and activate a range of other
pathwayswith amultitude of effects [103]. In one of its roles, FAKmedi-
ates linker protein recruitment as filament tension increases [104], but
its kinase activity affects MAPK signalling and Rho kinase activity,
among others [105–109]. Herein, the variety of pathways that FAK is
linked to reveal its potential for both normal and aberrant signalling in
different cells and tissue. For example, FAK knockout in keratinocytes
abrogates adequate cell coverage and tissue formation inwoundhealing
[110], while in breast cancer, FAK can operate as a central regulator of
invadopodia formation and consequently, matrix proteolysis, cell mi-
gration, and metastasis [111]. Thus, via FAK activity, integrin coupling
to different biomaterial structures can instigate a complex but coordi-
nated overlap of cellular processes, with a net influence on both essen-
tial and unwanted outcomes in our bodies [112]. From a TE
perspective, careful biomaterial design can ultimately harness biophys-
ical signalling pathways to elicit the required cell responses in different
applications.

Interestingly, biomaterials can also trigger biophysical cell responses
in a dynamic fashion through stimuli-responsive polymers. Piezoelec-
tric polymers, for example, develop a voltage in response to a mechan-
ical stress with resultant changes in electroconductive properties and
surface charge [113]. Many native tissues are piezoelectric in nature
and accordingly, it is little surprise that stem cells respond by differenti-
ating towards myogenic [114], osteogenic [115,116], or chondrogenic
[117] lineages. Moreover, electroactive biomaterials have the potential
to be combined with external magnetic fields to induce differential
cell responses as a function of applied electrical fields [118], potentially
enabling “real-time” control of signal transduction. Aswell electroactive
biomaterials, other stimuli-responsive polymers have been explored
using pH, temperature, and photo-catalysed reactions [119]. Indeed,
in the case of the latter, Ondeck and colleagues have recently shown
in an elegant study how stimuli-responsive biomaterials can be used
to explore in situ cell transformation. Using a methacrylated hyaluronic
acid substrate that stiffens under UV light, a mechanosensitive
epithelial-mesenchymal transition in precancerous breast epithelial
cells was dynamically stimulated, observing an increase in cell invasion
as the substrate adopted the mechanical properties of tumour tissue
[120]. Ultimately, from a TE perspective, such careful biomaterial
design can ultimately harness biophysical signalling pathways, whether
regenerative, aberrant, or otherwise to elicit the required cell responses
in different applications.
5. Summary & Outlook: Convergence of Tissue Engineering With
Computational and Structural Biotechnology Applications

The central objective of all TE research is to emulate the anatomical
and physiological or pathophysiological traits of a tissue or organ: mul-
ticellular systems with accurate spatial distribution of cells and ECM
with the appropriate architecture, and resultant coordinated biological
responses within this system. Through our knowledge of the structural
influence of the 3D scaffold structures on cellular function, our capacity
to engineer platforms that repair injury, model disease, and test novel
therapeutics has increased significantly. Thus, as the complexity of
these platforms increase, so too does the need for advanced methods
of analysis that can be found within the realm of computational and
structural biotechnology. This outlook serves to highlight recent exam-
ples of TE engaging with several methods in this domain to elevate the
field to a deeper level of understanding of cellular function in a 3D envi-
ronment (Table 1).

As a science that develops complex 3D biomimetic structures,
advanced imaging capabilities that can combine spatial orientation
with functional analysis showgreat promise for TEplatforms.Moreover,
the possibility of non-destructive imaging of cells in TE constructs
would be clearly of benefit to monitor their in situ behaviour in real
time. Fluorescence-lifetime imaging microscopy (FLIM) is one such
technique [129]. FLIM utilises contrast in live images by spatial varia-
tions in fluorescence lifetime of a probe that is largely concentration-
and intensity-independent but is sensitive to the environmental
surroundings of the fluorophore. In this manner, cell responses includ-
ing intracellular protein-protein interactions [130] and metabolism
[131,132] can be evaluated, with the potential to identify spatially-
dependent or other microenvironmental responses. For the TE field,
FLIM has only recently began to be recognised as a powerful technique
[121–124,133]; it remains as an exciting technique for further exploita-
tion, with notable possibilities for detailed analysis of integrin agonism
[134]. Moreover, interferometric photoactivated localisation micros-
copy (iPALM) has the capability to examine integrin structures on a
nanoscale, offering new insights into differential receptor conforma-
tions and related interactions with other biomolecules and signals
[135–137]. Finally, as next generation sequencing becomes more
commonplace in TE [60], recent work from the Church lab has devel-
oped a protocol to combine single cell transcriptomics with spatial
orientation [138]; although there are still several technical and logistical
hurdles to overcome for widespread use of this technology, it empha-
sises yet again the potential advanced imaging technologies available
to embrace for enhanced analysis of structural interactions in TE
systems.



Table 1
Advanced analytical methods from computational and structural biotechnology and their use in analysis of biomaterials. FLIM = Fluorescence-lifetime imaging microscopy;
PEG = Polyethylene glycol; PVA = polyvinyl alcohol; RNA-seq = RNA sequencing.

Method Biomaterial system Comments Ref

FLIM Cellulose-based
scaffold

FLIM permitted the real-time acidification of 3D environments by colon cancer cells and stem cell organoids [121]

Bovine pericardium
tissue

Collagenase-mediated degradation was observable using FLIM [122]
Live imaging of recellularisation and vascularisation detectable using FLIM [123]

Collagen-based
hydrogel

Longitudinal monitoring of collagen crosslinking in real time detectable using LFIM [124]

RNA-seq PVA hydrogel RNA-seq identified enrichment of differentially expressed genes in metabolic activity and cytoskeletal proteins in response to different
PVA substrate stiffness

[125]

Collagen-Matrigel
hydrogel

RNA-seq validated the ability of a customised miniature ventricular heart chamber to induce expression of cardiac-specific cellular
markers derived from human pluripotent stem cells

[126]

Silk film RNA-seq revealed that alignment of silk fibres in films induced differential gene expression in cell adhesion and cytoskeletal dynamics [127]
Alginate hydrogel RNA-seq identified enrichment of differentially expressed genes in cell differentiation and immunomodulatory function as a response

to different alginate substrate stiffness
[60]

PEG hydrogel RNA-seq validated the ability of the hydrogel biomaterial to induce expression of vascularisation genes in endothelial cells derived
from induced pluripotent stem cells

[128]
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Coupled with advanced imaging techniques for merging structural
biotechnology investigations with TE, detailed quantification of the
composition of TE platforms can be performed through large-scale anal-
ysis with bioinformatics. This is of particular interest as 3D in vitro
models evolve in conjunction with a deeper understanding of ECM
and cell-substrate interactions in disease. Quantitative proteomic analy-
sis of ECM changes in disease, for example, can reveal matrix signatures
that could be recapitulated for biomimetic disease models; such studies
of the matrisome in cancer and fibrosis are of great interest in this re-
gard [139–141]. RNA sequencing has also begun to featuremore in anal-
yses of the biophysical effects of different microenvironments
[60,125–128]. Naturally, bioinformatics will have a role to play in the
processing of large data related to spatially-relevant transcriptomics
[138], and additionally, computational technology will enable intelli-
gent combinatorial analyses of spectroscopic and microscopic data, as
has been recently reported in studies that blended histology with
Raman spectra and atomic forcemicroscopy to evaluate themechanical,
compositional, and structural characteristics of diseased tissue
[142,143].

In summary, the design and development of TE constructs, whether
for therapeutic or scientific applications, hinges upon its biomimetic
structural features that affect mechanical properties, stability, degrada-
tion, cell adhesion, and cell functionality. As TE studies integrate tech-
niques that have been traditionally restricted to computational and
structural biologists, greater opportunities for complementary investi-
gations within both disciplines will present themselves. Ultimately, fu-
ture collaboration provides greater success for both fields; and in
order for further advances in a discipline that continues to evolve and
address new challenges in the treatment of injury and disease, we pro-
pose increased engagement between the interrelated disciplines of
structural biotechnology and tissue engineering.
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