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Amyotrophic lateral sclerosis (ALS) is a progressive and devastating neurodegenerative
disease with increasing incidence and high mortality, resulting in a considerable socio-
economic burden. Till now, plenty of studies have explored the potential relationship
between circulating levels of various micronutrients and ALS risk. However, the
observations remain equivocal and controversial. Thus, we conducted a two-sample
Mendelian randomization (MR) study to investigate the causality between circulating
concentrations of 9 micronutrients, including retinol, folate acid, vitamin B12, B6 and
C, calcium, copper, zinc as well as magnesium, and ALS susceptibility. In our analysis,
several single nucleotide polymorphisms were collected as instrumental variables from
large-scale genome-wide association studies of these 9 micronutrients. Then, inverse
variance weighted (IVW) approach as well as alternative MR-Egger regression, weighted
median and MR-pleiotropy residual sum and outlier (MR-PRESSO) analyses were
performed to evaluate causal estimates. The results from IVW analysis showed that
there was no causal relationship of 9 micronutrients with ALS risk. Meanwhile, the
three complementary approaches obtained similar results. Thus, our findings indicated
that supplementation of these 9 micronutrients may not play a clinically effective role in
preventing the occurrence of ALS.
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a fatal heterogeneous neurodegenerative disorder which
selectively damages upper and lower motor neurons (van Es et al., 2017). It is typically characterized
by progressive motor deficits such as dysphagia, dysarthria, muscle atrophy and weakness of the
trunk and extremities, and even respiratory failure (Masrori and Van Damme, 2020). Globally, the
number of individuals suffered from ALS reached 222,801 in 2015 and it is expected to constantly
increase, reaching 376,674 by 2040 (Arthur et al., 2016). Moreover, the per capita cost related to ALS
was the highest among various neurological diseases, and in the United States alone, the standardized
total expense of ALS was estimated to range from $279 to $472 million (Gladman and Zinman,
2015). Due to severe clinical symptoms and huge socio-economic burden, an increasing number of
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studies have been implemented to investigate the predisposition
factors of ALS and explore its possible pathogenesis.

In recent years, micronutrients including vitamins and
minerals were found to be related to multiple
neurodegenerative diseases such as AD and PD (Hu et al.,
2013; Boulos et al., 2019). Regarding ALS, the relationship
between various micronutrients and ALS risk has not yet been
determined. For example, a center-based survey including 202
ALS patients and 208 healthy controls showed that lower
circulating levels of vitamin C and higher levels of retinol were
significantly related to an increased risk of ALS (Wang et al.,
2020). Moreover, Peters et al. observed a significant association
between circulating zinc levels and ALS susceptibility based on a
prospective cohort study involving 520,000 European
participants (Peters et al., 2021). However, some other
evidence indicated no statistically significant association
between circulating levels of vitamin C as well as retinol and
ALS risk (Iwasaki et al., 1995; Paraskevas et al., 1997). Similarly, a
case-control study by Forte et al. failed to observe a difference in
circulating zinc levels between ALS cases and healthy controls
(Forte et al., 2017). Due to the small sample size, inevitable
potential confounding factors and reverse causation, the
results from the observational studies mentioned above are
inconsistent.

For overcoming the conventional bias of observational studies,
mendelian randomization (MR) analysis could reveal the causal
relationship between predisposition factors and ALS
susceptibility by applying single nucleotide polymorphisms
(SNPs) as instrumental variables (IVs) as well as large-scale
data from genome-wide association studies (GWASs). Indeed,
three previous MR studies have revealed no causal effect of serum
25-hydroxyvitamin D, iron and selenium on ALS risk (Larsson
and Roos, 2020; Cai et al., 2021; He and Cui, 2021). However, up
till now, apart from these three micronutrients, no systematic MR
analysis has been published for other vitamins and minerals.
Therefore, we conducted this two-sample MR analysis to more
accurately infer the causal relationship between circulating levels
of various micronutrients and ALS risk.

MATERIALS AND METHODS

Study Design, Instruments Selection and
Data Sources
We designed a two-sample MR analysis to investigate the causal
relationship of plasma micronutrients on ALS (Pierce and
Burgess, 2013). The complete two-sample design of our MR
framework is displayed in Figure 1. For determining
interesting exposures, a search for the published GWASs on
the circulating levels of various micronutrients was conducted
using PubMed databases. A total of 7 GWASs involving 9
micronutrients were identified, including 5 vitamins (retinol,
folate acid, vitamin B12, B6 and C) and 4 minerals (calcium,
copper, zinc and magnesium) (Hazra et al., 2009; Meyer et al.,
2010; Mondul et al., 2011; Evans et al., 2013; Grarup et al., 2013;
O’Seaghdha et al., 2013; Zheng et al., 2021). The detailed
information of GWASs related to 9 exposures are listed in
Table 1. Next, the candidate SNPs representing the circulating
levels of 9 micronutrients were selected by a genome-wide
significance threshold (p < 5.00E-08). Lastly, we used a r2

threshold <0.01 to prune all selected SNPs, which retaining 43
SNPs with the lowest p-value for detecting relationship between
circulating levels of 9 micronutrients and ALS risk. Regarding
GWAS dataset for ALS susceptibility, summary association
statistics was collected from the most recent and
comprehensive GWAS, which totally included 80,610
individuals of European descent (20,806 ALS cases and 59,804
controls) (Nicolas et al., 2018). For these 43 selected SNPs, β
coefficients and standard errors for effect of SNPs on 9
micronutrients and ALS risk were extracted from
abovementioned GWAS datasets for subsequent analysis
(Supplementary Table S1). Since we only retrieved GWAS
summary-level data rather than individual-level data, no
additional ethical permit was required.

Statistical Analyses
In order to investigate the potential causal relationship between
circulating levels of 9 micronutrients and ALS risk, two-sample

FIGURE 1 | The overall design of Mendelian randomization analysis in the present study.
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MR analysis was performed by employing five statistical methods
including Wald method, inverse-variance weighted (IVW), MR-
Egger, weighted median and MR-Pleiotropy Residual Sum and
Outlier (MR-PRESSO). In detail, we applied Wald method to
evaluate the causal relationship for the micronutrient with only
one related SNP as IV. If more than one SNP involved, IVW
method was implemented as the primary analysis to explore the
causal effect on ALS risk. Moreover, the Cochran’s Q and funnel
plot test was used to evaluate the heterogeneity of the causal
estimates among multiple SNPs. Subsequent leave-one-out
sensitivity analysis was performed to investigate whether a
single SNP was driving the IVW point estimate.

Additionally, in the IVW MR analysis, the ratios of SNP-
micronutrients to SNP-ALS were combined in a meta-analysis to
explore the causal relationship between circulating levels of
micronutrients and ALS risk (Burgess et al., 2013). The
premise of IVW analysis is that all SNPs are valid IVs, and it
could lead to an increased statistical power and accurate estimate
when the core assumption of MR is satisfied. However, if the
genetic variants affect ALS susceptibility through other pathways
than micronutrients (horizontal pleiotropy), the causal estimate
may be biased (Hemani et al., 2018). Therefore, we conducted a
complementary analysis by using the weighted median and MR-
Egger and MR-PRESSO methods. Specifically, weighted median
method could maintain reliable estimates even if up to half of IVs
are invalid (Bowden et al., 2016). Regarding MR-Egger regression
method, it does not limit the slope to pass zero in the
micronutrients–ALS causal estimate and identifies the presence
of potential pleiotropy by calculating the intercept value (Bowden
et al., 2015). Besides, the MR-PRESSO global and outlier test was

also implemented as an approach for detecting pleiotropic
outliers (Verbanck et al., 2018).

Given 9 exposures involved in our MR analysis, we set the
statistically significant threshold of p-value to 5.56E-03 (0.05/9)
according to Bonferroni correction. Meanwhile, a p-value, which
implied the suggestive evidence for a possible causal role, was set
to range from 5.56E-03 to 0.05. All above analyses were
performed using R version 4.0.3 software with R-packages
(MendelianRandomization, TwoSampleMR and MR-PRESSO).

RESULTS

Circulating Levels of Vitamins and ALS Risk
As shown in Figure 2 and Supplementary Figure S1, the MR
estimates obtained by the IVW method suggested that predicted
circulating concentrations of four vitamins including vitamin C
(OR � 0.89, 95% CI: 0.75 to 1.05, p � 0.163), vitamin B12 (OR �
0.99, 95% CI: 0.90 to 1.08, p � 0.756), folate acid (OR � 0.88, 95%
CI: 0.63 to 1.24, p � 0.281) and retinol (OR � 1.25, 95% CI: 0.66 to
2.39, p � 0.493) were causally unrelated to ALS susceptibility. In
addition, for each vitamin, we did not observe any obvious
heterogeneity through the Cochran’s Q test (p > 0.05).
However, regarding vitamin C, the visual inspection of the
funnel plot showed slight asymmetry and potential
heterogeneity (Supplementary Figure S2). When leave-one-out
sensitivity analysis was performed, the change of IVW point
estimate was detected for vitamin C when omitting rs2559850,
but not for vitamin B12 (Supplementary Figure S3). Moreover, 3
additional alternative approaches were also applied containing

TABLE 1 | Summary of details on GWASs and related datasets involving nine micronutrients in our study.

Exposures Cohorts or datasets Participants Publicly available websites PMID

Vitamin C Fenland study, EPIC InterAct study, EPIC Norfolk study, EPIC-CVD
study

52,018 individuals of European
ancestry

https://doi.org/10.6084/m9.
figshare.13227443.v1

33203707

Vitamin B12 Icelanders, Danish-Inter99, Danish-Health2006 45,576 individuals of European
ancestry

NA 23754956

Folate acid Icelanders, Danish-Inter99, Danish-Health2006 37,341 individuals of European
ancestry

NA 23754956

Retinol ATBC study, PLCO study, NHS studies, InCHIANTI 8,902 individuals (mostly
European ancestry)

NA 21878437

Vitamin B6 CGEMS study, SHARe study 4,763 individuals of European
ancestry

NA 19744961

Calcium AGES, ARIC study, BLSA, CoLAUS, CROATIA-Vis, CROATIA-Korcula,
CROATIA-Split, FHS, HABC, InCHIANTI, LBC 1936, LOLIPOP EW A,
LOLIPOP EW P, LOLIPOP EW610, OGP Talana, ORCADES, SHIP,
RS, CHS

39,400 individuals of European
ancestry

NA 24068962

Magnesium ARIC study, FHS, RS 15,366 individuals of European
ancestry

NA 20700443

Copper QIMR studies 2,603 individuals of European
ancestry

https://genepi.qimr.edu.au/
general/downloadable.cgi

23720494

Zinc QIMR studies 2,603 individuals of European
ancestry

https://genepi.qimr.edu.au/
general/downloadable.cgi

23720494

EPIC, European Prospective Investigation into Cancer and Nutrition; CVD, cardiovascular disease; ATBC, the alpha-tocopherol, beta-carotene cancer prevention study; PLCO, Prostate,
lung, colorectal, and ovarian cancer screening trial; NHS, the nurses’ health study; InCHIANTI, the invecchiare in chianti Study; CGEMS, the cancer genetic markers of susceptibility
project; SHARe, the SNP Health Association Resource; AGES, age gene/environment susceptibility reykjavik study; ARIC study, the atherosclerosis risk in communities study; BLSA,
Baltimore Longitudinal Study of Aging; CoLAUS, Cohorte Lausannoise; FHS, Framingham Heart Study; HABC, The Health, aging and body composition; LBC1936, lothian birth cohort
1936; LOLIPOP, London Life Sciences Population study; EW, European whites; OGP, Ogliastra Genetic Park; ORCADES, Orkney Complex Disease Study; SHIP, Study of Health in
Pomerania; RS, The Rotterdam Study; CHS, The Cardiovascular Health Study; QIMR, the queensland institute of medical research; NA, not available.
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MR-Egger, weighted median andMR-PRESSO. The results further
supported that there was no causal relationship between vitamin C
as well as vitamin B12 and ALS risk (Figure 2). Based on the MR-
Egger regression analysis, we did not observe evidence of potential
pleiotropy between circulating levels of vitamin C and ALS risk
(intercept � -0.012, p � 0.173). However, a mild pleiotropy could be
detected for vitamin B12 (intercept � 0.024, p � 0.036). In addition,
no potential SNP outliers were identified by MR-PRESSO test
(vitamin C: p � 0.249; vitamin B12: p � 0.538). Lastly, regarding
vitamin B6 with only one related SNP as IV, by using the Wald
ratio method, we did not find any causal effect on ALS risk (OR �
1.10; 95% CI: 0.87–1.39; p � 0.426).

Circulating Levels of Minerals and ALS Risk
Figure 3 displays the causal estimates of four minerals on ALS
risk. In the primary analysis using IVW method, we did not
observe any causal relationship between circulating levels of
calcium (OR � 1.24, 95% CI: 0.82 to 1.87, p � 0.317),
magnesium (OR � 0.94, 95% CI: 0.75 to 1.18, p � 0.582),
copper (OR � 0.99, 95% CI: 0.91 to 1.09, p � 0.895), zinc (OR
� 1.04, 95% CI: 0.95 to 1.14, p � 0.361) and ALS occurrence
(Supplementary Figure S4). Meanwhile, there was no significant
heterogeneity measured by Cochran’sQ test (p > 0.05) and funnel
plot (Supplementary Figure S2). Subsequent sensitivity analysis
involving calcium and magnesium showed that no single SNP

FIGURE 2 | MR analysis of genetically predicted levels of circulating vitamins and ALS risk.

FIGURE 3 | MR analysis of genetically predicted levels of circulating minerals and ALS risk.
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dominated the IVW point estimate (Supplementary Figure S3).
Regarding calcium and magnesium, the results in IVW analysis
were further verified by using MR- Egger, weighted median and
MR-PRESSO methods (Figure 3). Additionally, no significant
pleiotropic effects for included SNPs were detected by MR-Egger
regression test (calcium: intercept � 0.003, p � 0.789; magnesium:
intercept � 0.011, p � 0.659). In the subsequent analysis using
MR-PRESSO method, we did not find any outliers for these two
minerals (calcium: p � 0.829; magnesium: p � 0.183).

DISCUSSION

In spite of the short survival time and the increased incidence of
ALS, unfortunately, no effective preventions have been found so
far (Traxinger et al., 2013; Xu et al., 2020). Thus, for further
exploring possible preventive measures, MR analysis was
introduced to investigate whether 9 micronutrients were
causally related to ALS risk or not. Here, we did not find any
causal relationship between 9 micronutrients and ALS
susceptibility, including 5 vitamins (retinol, folate acid, vitamin
B12, B6 and C) and 4 minerals (calcium, copper, zinc and
magnesium).

Recently, an increasing number of studies showed that high
homocysteine levels were closely associated with a variety of
pathological processes, including apoptosis and autophagy,
mitochondrial dysfunction and oxidative stress, thereby
damaging motor neurons and leading to ALS occurrence
(Zoccolella et al., 2010). Moreover, vitamin B6, B12 and
folate acid would change homocysteine status by mediating
one-carbon metabolism (Hao et al., 2007; Clare et al., 2019).
Thus, a series of experimental studies have explored whether
these three B vitamins can participate in ALS occurrence. For
example, a cellular study by Hemendinger et al. (2011)
reported vitamin B12 could block the apoptosis of motor
neuron-like cells by reducing homocysteine levels while
methylfolate could not. Meanwhile, in the SOD1G93A
transgenic mouse model of ALS, folate acid alone or a
combination of folate acid and vitamin B12 exhibited
neuroprotective effects on motor neurons and retarded the
onset of ALS (Zhang et al., 2008). More importantly, several
observational studies have also been performed to investigate
the association between B vitamins and ALS susceptibility. In
2007, Izumi et al. observed that the mean survival time of 18
patients in the vitamin B12 treatment group was significantly
longer than that of 16 patients without any treatment (Izumi
and Kaji, 2007). Conversely, a randomized controlled study
including 373 Japanese ALS patients showed that
intramuscular injection of high-dose vitamin B12 had no
significant effect on the development of ALS (Kaji et al.,
2019). Regarding vitamin C and retinol, as two of the most
common antioxidants, they may have the potential to delay
the initiation and progression of ALS by reducing oxidative
stress (Esposito et al., 2002). In previous experiments on
familial ALS model mice, no significant difference in the
age of ALS onset was detected between the vitamin C
treatment group and control group, while long-term

supplementation of retinoic acid would shorten the lifespan
of ALS mice (Nagano et al., 2003; Crochemore et al., 2009).
However, a case-control study involving 40 ALS patients and
87 healthy controls did not support the association between
circulating retinol levels and ALS risk (Molina et al., 1999).
Additionally, in a meta-analysis of five large cohorts including
1,053,575 participants, Fitzgerald et al. reported that high
dietary intake of vitamin C was not related to ALS
susceptibility (Fitzgerald et al., 2013). Overall, the
discrepant results of these studies on 5 vitamins
aforementioned may be due to the small sample size,
limited follow-up time, confounding and reverse causality.
Thus, we introduced the more reliable MR analysis and finally
inferred that there was no causal relationship between
genetically predicted circulating levels of folate acid,
vitamin B12, B6, and C, retinol and the risk of ALS.

Regarding the four minerals analyzed in this study, many
observational studies focusing on their relationship with ALS
susceptibility have been performed. However, until now, the
results of these studies were inconsistent and inconclusive. For
instance, in a case-control study involving 392 participants,
Peters et al. (2016) observed the statistically significant
association between copper and zinc and ALS susceptibility.
Nevertheless, in other case-control studies, these association
cannot be replicated (Roos et al., 2013; Forte et al., 2017).
Thus, we have introduced the MR analysis, hoping to provide
a broader and more reliable perspective on the causal relationship
between 4 minerals and ALS risk. Here, our results did not
support that genetically predicted circulating levels of calcium,
copper, zinc and magnesium were causally related to the
occurrence of ALS.

Several advantages of our study were as follows. First, this
is the first MR analysis for determining the causal
relationship between various micronutrients including 5
vitamins as well as 4 minerals and ALS risk. Second, we
adopted large-scale GWAS datasets involving thousands of
participants to ensure the robustness and authenticity of our
MR analysis. Third, for all micronutrients, no heterogeneity
was measured between SNPs by Cochran’s Q test. Moreover,
we chose three complementary methods, including MR-
Egger, weighted median and MR-PRESSO, which further
confirmed most of the results from IVW analysis. Some
limitations should be noted in the present MR analysis.
First, a mild pleiotropy for vitamin B12 can be detected
using MR-Egger method. Meanwhile, in the leave-one-out
analysis for vitamin C, we found that omission of rs2559850
had slight influence on the causal relationship. Moreover, the
funnel plot of vitamin C indicated potential heterogeneity.
Thus, the note should be taken when interpreting the
relationship of vitamin B12 and C with ALS risk. Second,
almost all participants of GWAS datasets in our analysis were
Europeans, which limited the general application in other
populations. Third, since the data involving the clinical
characteristics of ALS patients were not available, such as
age, gender, age at onset and disease progression, etc., we can
only analyze the potential association between
micronutrients and ALS susceptibility.
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CONCLUSION

In conclusion, this MR study provided no evidence for causal
association between genetically predicted circulating levels of 9
micronutrients and ALS risk. These findings indicate that
supplementation of these 9 micronutrients might not be
clinically helpful in preventing the occurrence of ALS.
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