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There is a pressing need to further our understanding of the mechanisms underlying
the depression symptoms in patients with post-stroke depression (PSD) in order to
inform targeted therapeutic approaches. While previous research has demonstrated
a reorganization in the functional brain network of PSD, it remains uncertain whether,
or not it also occurs in the structural brain network. We therefore aim to investigate
the structural brain network of patients with PSD as compared to post-stroke non-
depression (PSND) patients. In addition, our research considers the relationship
between network metrics and functional measurements. Thirty-one PSD patients and
twenty-three PSND patients were recruited. All patients underwent MRI and functional
assessments, including the Barthel index, mini-mental state examination (MMSE),
and Hamilton depression rating scale (HAMD). Diffusion tensor imaging was used to
construct the structural brain network and to conduct the subsequent graph theoretical
analysis. Network measures were computed and compared between PSD and PSND
patients. Associations between functional assessments and network measures were
studied as well. We successfully detected increased global and local efficiency in
patients with PSD. Regions with disrupted local connections were located primarily
in the cognitive and limbic systems. More importantly, PSD patients’ global and
regional network measures were associated with depression severity, as measured
by HAMD. These findings suggest that disrupted global and local network topologies
might contribute to PSD patients’ depression symptoms. Therefore, connectome-
based network measures could be potential bio-markers for evaluating stroke patients’
depression levels.

Keywords: post-stroke depression, brain network, network analysis, small-world, diffusion tensor imaging

INTRODUCTION

After the initial insult of stroke, stroke patients not only suffer from hemiparesis and cognitive
impairments, but also may experience a broad spectrum of emotional disturbances (Mukherjee
and Patil, 2011). One of the most commonly developed emotional disorders after stroke, post-
stroke depression (PSD) affects the quality of life of one-third of stroke survivors (Lenzi et al.,
2008) while also jeopardizing their motor rehabilitation outcomes. Because PSD is so prevalent, this
condition requires more attention, and should be treated with caution. However, PSD historically
has been considered a prototypical neuropsychiatric manifestation following a major life-changing
event, leading to its neglect (Broomfield et al., 2014) in clinical practice. Also problematic, figures
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vary greatly regarding its prevalence, from 20 to 60% (Paolucci
et al., 2005); this variability results from a lack of consensus
in diagnostic criteria and depression rating scales, as well as
high inter-rater and intra-rater variability (Paolucci et al., 2005).
Improved acute management of the disease could help lower
mortality in PSD patients. Accordingly, a better understanding
of the underlying mechanisms of the disease might assist in
developing more accurate early diagnostic criteria and targeted
therapeutic methods.

The pathophysiology of PSD currently remains debatable,
but two primary views exist: the biological hypothesis and
the psychosocial hypothesis (Whyte and Mulsant, 2002). The
psychosocial hypothesis emphasizes the impact of social stressors
on post-stroke mind status, attributing the primary cause of PSD
to psychology (Gainotti et al., 1999). The biological hypothesis,
on the other hand, asserts that mood disorders developed post-
stroke mainly take root in the impaired neural circuits due
to ischemic insults (Beblo et al., 1999). Many imaging studies
lend support to this hypothesis, and this body of literature
has contributed significantly to the detection of anatomical
abnormalities in PSD. Vataja et al. (2001, 2004) repeatedly showed
that patients with lesions located in the prefronto-subcortical
circuit were more likely to have PSD symptoms. Disruption
in the limbic-cortical-striatal-pallidal-thalamic circuit also has
been associated with PSD (Terroni et al., 2011). This research
consistently suggests that the impaired microstructural integrity
of critical neural pathways might confer biological vulnerability
for PSD’s onset. Past studies (Yasuno et al., 2014; Ye C. et al., 2016)
conducted in PSD patients using diffusion tensor imaging (DTI)
align with this hypothesis, indicating an association between
microstructural abnormalities in neuroanatomical pathways, and
depression severity after stroke. These studies set the foundation
for an in-depth investigation into the disrupted neural pathways
in PSD, suggesting that looking at PSD from a network
perspective in the neuroanatomical area might facilitate our
understanding of this disease’s pathophysiology.

Based on past evidence, we form two hypotheses. First,
PSD patients will demonstrate significantly lower global and
regional topological efficiencies in the structural brain network
when compared to PSND patients. Second, the level of network
alteration in PSD will be associated with patients’ depression
level. To test our hypotheses, we use DTI-based tractography
and graph theoretical approaches to investigate differences in the
structural brain network of post-stroke patients with and without
depression. We also test the relationships between network
configuration and functional assessments.

MATERIALS AND METHODS

Participants
This study was approved by the local Institutional Review
Board, and written informed consent was obtained from all
participants. From 2012 to 2015, 102 patients with first-time
ischemic infarct were referred from clinics, and diagnosed by
experienced neurologists. To assess the stroke severity of each
patient after acute stroke insult, we used the national institute

of health stroke scale (NIHSS) and the modified Rankin scale.
The classification of acute ischemic stroke was recorded based
on the trial of org 10172 in acute stroke treatment (TOAST).
Patients were recruited based on the following inclusion criteria:
(1) they were over 18 years old; (2) they had been diagnosed
with stroke based on the world health organization (WHO)
criteria and confirmed by CT/MRI results; (3) they were right-
handed; (4) they were within the first 2 weeks following
stroke onset; and (5) they presented with modest ischemic
insult (mRs ≤ 4), thus having the ability to complete all
assessments. Subjects were excluded if they had (1) severe
ischemic insult and significant verbal comprehension deficit;
(2) a prior history of depression and antidepressant treatment;
and/or (3) other neurological or neuropsychological diseases and
disorders. Eventually, 18 patients were excluded, leading to a
total of 84 patients meeting the criteria and participating in
the current study.

All of the subjects were classified as PSD and PSND based on
the previously described criteria (Zhang et al., 2014, 2018). The
state of depression was diagnosed based on the diagnostic and
statistical manual of mental disorders (DSM-IV, fourth edition).
The Hamilton depression rating scale (HAMD) of 17 items was
used to assess the severity of depression. Patients were categorized
as PSD (n = 31) if they were (1) diagnosed as having had an
acute ischemic stroke based on the above-mentioned criteria;
(2) evaluated by two experienced psychiatrists and diagnosed
with depression according to the DSM-IV criteria; (3) had a
total score of HAMD ≥ 7; and (4) were medication-free during
their imaging exam. The location of each PSD patient’s infarct
was evaluated and categorized into seven groups, namely basal
ganglia, cerebellum, brain stem, frontal lobe, temporal lobe,
parietal lobe, and occipital lobe. Following this categorization,
we selected the patients’ age, sex, and stroke diagnosis (based on
the location and infarct volume), matched stroke patients with
a total score of HAMD <7 from the rest of the patient pool,
and categorized them as post-stroke non-depression (PSND)
patients (n = 23). To assess post-stroke disability level, we
used the Barthel index (BI). We also administered the mini-
mental state examination (MMSE) to evaluate the general
cognitive level.

Image Acquisition
All scans were performed on a 3T MRI scanner (Siemens Verio
3-tesla system; Erlangen, Germany) with an 8-channel SENSE
head coil. For each subject, a non-diffusion-weighted image (b0)
with two averaging and DWIs were acquired using a single-shot
echo-planar-imaging sequence with b-values = 1000 s/mm2

along 59 gradient directions with the following parameters:
TR/TE = 6300/95 ms, field of view = 230 mm2

× 230 mm2,
reconstruction resolution = 1.8 mm2 x 1.8 mm2, slice
thickness = 3 mm (no gap), and SENSE factor = 2. For
anatomical reference, T1-weighted (T1w) images were acquired
using a 3D-MPRAGE sequence with the following parameters:
TR/TE/TI = 1900/2.45/900 ms, nominal/reconstruction
resolution = 1 mm3 x 1 mm3 x 1 mm3, 176 slices in the
sagittal plane, and field of view = 256 mm2 x 256 mm2.
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Image Processing and Brain Network
Construction
The image processing steps required for brain connectivity
analysis are explained in detail below.

Brain Parcellation
To parcellate the brain into different anatomical regions, we used
the automated anatomical labeling (AAL) atlas with 90 cortical
and subcortical regions (cerebellum excluded). The mask for
each of the brain regions of interest (ROIs) from the atlas was
transformed into the individual subject’s native structural MRI
space using the following steps. First, the subject’s T1w images
were registered to the corresponding DTI images using affine
transform with FLIRT. Then, using non-linear transformation
with FNIRT, we registered the native space structural images to
the ICBM 152 template in the Montreal Neurological Institute’s
space (i.e., the same space as the AAL atlas). The inverse of the
resulting transformation matrix subsequently was applied to the
atlas, thereby bringing all brain ROIs from the AAL atlas into
each subject’s native structural MRI space.

Diffusion MRI Tractography
For DTI preprocessing, all DWIs were first registered to b0
images to correct for eddy current distortion, and head motion
with FMRIB’s Diffusion Toolbox. The diffusion tensor and its
associated eigenvectors and eigenvalues were obtained on a
voxel-by-voxel basis with the Diffusion Toolkit. To construct
the structural connections between the 90 brain regions, DTI-
based tractography was performed to track WM fiber tracts using
TrackVis1 with a fractional anisotropy threshold of 0.2 and a fiber
turning angle threshold of 45◦.

Brain Network
In order to construct the structural brain network, a connectivity
matrix has to be estimated to describe the structural connections
(i.e., network edges) amongst all brain regions. The connections
amongst the 90 brain regions were computed from the WM
tractogram using the UCLA multimodal connectivity package.
Briefly, the structural connection was estimated by counting the
number of WM fiber tracts originating from one region and
terminating in another. The fiber count was considered to be
the weight of each edge. After repeating this step for all 90
brain regions, an inter-regional undirected weighted network
with weighted connections was constructed. To remove the
spurious connections and define the network edges, we selected a
threshold value for the fiber bundles (Gong et al., 2009; Shu et al.,
2011, 2018; Zalesky et al., 2011) and used a minimum threshold
of fiber number (wij = 10, where wij is defined as the weight of
the edge) between two regions. This threshold selection reduced
the risk of false positive connections due to noise or limitations
in the deterministic tractography; simultaneously, it ensured that
the size of the largest connected component in the networks was
observed across all controls. We also tested the effects of different
thresholds on the network analysis by setting threshold values of

1http://trackvis.org

wij ranging from 5 to 15, and this thresholding procedure did not
significantly influence our results.

Brian Connectivity Analysis
We used graph theory to quantify the topology, efficiency, and
nodal characteristics of the structural brain network for all
cohorts. The individual’s weighted connectivity matrix first was
normalized to its largest entry in order to minimize the overall
differences in connectivity strength within each subject. Then,
for each normalized connectivity matrix, we used the brain
connectivity toolbox (Rubinov and Sporns, 2010) to measure
small-world properties (clustering coefficient and characteristic
shortest path length) and network efficiency (global efficiency
and local efficiency), together with the characteristics of each
node, including the degree, clustering coefficient, betweenness
centrality, and nodal efficiency.

To determine how a network differs from a small-world
network, the clustering coefficient and characteristic shortest
path length of the current network are often normalized to those
of a random network. For each individual brain network, we
generated a set of 100 randomized networks with a preserved
edge number and degree distribution before calculating
the corresponding clustering coefficient and characteristic
path length. We considered a network small-world if the
normalized clustering coefficient (γ = clustering coefficient
of current network/clustering coefficient of random network)
was much larger than one, the normalized characteristic
shortest path length (λ = characteristic path length of current
network/characteristic path length of random network) was close
to one, and the small-worldness (σ=γ /λ ) was larger than one
(Watts and Strogatz, 1998).

Statistical Analysis
Binary variables included sex, history of diabetes mellitus,
hypertension, ischemic heart disease, smoking, and presence of
infarct in seven brain areas (basal ganglia, brain stem, cerebellum,
frontal lobe, parietal lobe, temporal lobe, and occipital lobe).
Age, infarct size, and serum total cholesterol were recorded as
continuous variables. Demographics were compared between
patients with and without PSD using independent samples t-test
for continuous variables and Fisher’s exact test for proportions.
We performed independent-samples t-tests to evaluate the group
difference in all global and local network measures between
patients with and without PSD. To further ensure the robustness
of statistical analysis, permutation tests were conducted to assess
group differences in global network, and regional measures.
For each permutation, individual participants were randomly
assigned to one of the two groups with the same size as the
original PSD and PSND groups. We then recomputed the
mean differences between the two randomized groups. This
randomization procedure was repeated 5,000 times, and the
95th percentile points of each distribution were used as the
critical values for a one-tailed test of the null hypothesis with
a probability of type I error of 0.05. We employed an R
statistical software package (version 3.5, R Core Team2) and

2http://www.R-project.org/
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Exact Rank Tests Package for two sample permutation tests.
The association between all network measures and all functional
assessments were performed using Spearman rank correlation.
All analyses were adjusted for age, sex, infarct size, and vascular
risk factors (hypertension, diabetes, and serum total cholesterol).
For all the statistical analyses described above, we performed a
Bonferroni correction for the problem of multiple comparisons,
including group comparisons and correlation analysis. All the
p-values reported were corrected. SPSS 22.0 (SPSS, Chicago,
IL, United States) was used for all statistical analyses, and a
significance level of p< 0.05 was set for all statistical tests.

RESULTS

Demographics
Table 1 summarizes patient demographics and the statistical
significance of group comparisons. Based on the infarct location,
we also classified the stroke patients into three groups: (1) pure
cortical infarct (PCI), (2) pure subcortical infarct (PSI), and (3)
both cortical and subcortical (BCS) infarct. For PSD patients,
there were 5 PCI, 22 PSI, and 4 BCS patients. For PSND patients,
there were 1 PCI, 14 PSI, and 8 BCS patients. Patients with PCI
seemed more likely to develop PSD; however, this difference was
not statistically significant (p = 0.096).

There was no significant difference in age, gender, stroke
classification, infarct size and location, or baseline vascular risk
factors between PSD and PSND patients. Stroke classification,
infarct size, and location were not associated with any of the
vascular risks. Patients with PSD showed significantly higher
NIHSS (p = 0.01) and mRs (p = 0.02), HAMD (p < 0.001), but
lower BI (p = 0.02). There was no significant difference in MMSE
between PSD and PSND patients.

Global and Regional Network Changes
Figure 1 shows the structural brain network of the two
patient cohorts. They resemble the properties of the small-
world network with a larger clustering coefficient (patients with
PSND: 2.81 ± 0.35; with PSD: 2.93 ± 0.46) and the equivalent
characteristic shortest path length (with PSND: 1.23 ± 0.03;
with PSD: 1.2 ± 0.04) as compared to the random network.
Figure 1A shows the global network measures that significantly
differ between the two groups. The global efficiency (p < 0.001)
and local efficiency (p = 0.001) of PSD patients’ brain network are
lower and higher, respectively, than PSND patients (Figure 1A).

The PSD patients’ nodal degree of ipsilesional superior
frontal gyrus (p < 0.001), post-cingulate gyrus (p < 0.001),
and contralesional middle temporal gyrus (p < 0.001) were
significantly lower than PSND patients (Figure 1B). We also
found PSD patients’ nodal efficiency in the ipsilesional middle
frontal gyrus (p < 0.001), post-cingulate gyrus (p < 0.001), and
amygdala (p = 0.001) to be lower (Figure 1B).

Relationship Between Network
Measures and Functional Assessments
As shown in Figure 2, the local efficiency (r = 0.776, p < 0.001)
was correlated with HAMD in patients with PSD. In PSD

TABLE 1 | Patient demographics.

PSD patients PSND patients P-value

Sample size 31 23

Age 64 ± 10 67 ± 12 0.424

Male gender (%) 55 65 0.443

Hamilton depression rating scale 8.5 ± 1.8 3.7 ± 0.8 < 0.001

Prevalence (%)

Diabetes mellitus 16 17 0.866

Hypertension 52 48 0.643

Ischemic heart disease 6 9 0.597

Hyperlipidemia 32 29 0.801

Stroke classification (%) 0.617

Large artery antherosclerosis 35 35

Small vessel disease 16 9

Cardioembolism 16 26

Undetermined 33 30

Infarct location (%)

Basal ganglia 54 68 0.375

Brain stem 29 11 0.274

Cerebellum 0 11 0.410

Frontal lobe 10 16 1

Parietal lobe 6 11 1

Temporal lobe 6 5 1

Occipital lobe 6 5 1

Infarct size (cm3) 5.6 ± 10.1 4.8 ± 9.8 0.793

Infarct sides (L/R) 17/14 12/11 0.650

Smoking 26 39 0.215

Antiplatelets 19 30 0.186

Lipid-lowering drugs 30 26 0.427

Serum total cholesterol (mmol/L) 4.8 ± 1.3 4.4 ± 1.5 0.376

Hemoglobin (g/dL) 13.9 ± 1.4 13.3 ± 1.6 0.176

Serum glucose level (mmol/L) 6.9 ± 3.2 5.8 ± 1.5 0.153

PSD, post-stroke depression; PSND, post-stroke non-depression.

patients, the local clustering coefficient of the ipsilesional superior
temporal gyrus (r = 0.575, p = 0.001), precuneus (r = 0.615,
p < 0.001), hippocampus (r = 0.551, p = 0.001), amygdala
(r = 0.657, p = 0.001), and insular (r = 0.583, p = 0.001)
was significantly associated with the HAMD (Figure 3). The
nodal efficiency of contralesional hippocampus (r = 0.527,
p = 0.002), thalamus (r = 0.644, p < 0.001), and precuneus
(r = 0.550, p = 0.001) also was related to the HAMD in patients
with PSD (Figure 4). There were no significant correlations
between other network measures and HAMD, and there were no
significant relationships between all the network measures and
NIHSS, mRs, and MMSE.

DISCUSSION

Shifted Balance Between Functional
Integration and Segregation
Brain connectivity analyses have developed rapidly in recent
years, repeatedly demonstrating that the human brain is a small-
world network. Compared to other forms of networks, including
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FIGURE 1 | (A) The boxplot (mean ± standard deviation) of global and local efficiency of PSD and PSND patients, ∗∗p < 0.01. (B) Illustration of the structural brain
network of PSD patients showing brain regions with significant decreases in nodal degree (blue spheres) and nodal efficiency (green spheres) as compared to PSND
patients. The width of network edge is weighted by the number of connections. PSD, post-stroke depression; PSND, post-stroke non-depression.

random and lattice networks, small-world networks are superior
due to their capacity to support both segregated, and integrated
information processing. Functional segregation is responsible
for mediating information processes between local communities,
while functional integration takes care of global communications.
A balance between network segregation and integration is
essential to guaranteeing optimal operation for the distributed
networks underlying cognitive and behavioral performance. This
optimal network configuration can be observed in healthy
human brains across different stages of development and across
different conditions during task performance (Sporns, 2013).
When the balance between network segregation and integration
shifts due to disease or disorder, cognitive, and behavioral
dysfunction may result.

Compared to PSND patients, patients with PSD showed
significantly decreased global efficiency and increased local
efficiency in the global structural network organization. While

global efficiency quantifies the communication efficiency between
long-range connections and promotes functional integration,
local efficiency is an indicator of the regional network’s fault
tolerance, and reflecting functional segregation (Sporns, 2013).
These global network changes in PSD patients suggest that
the network configuration became highly clustered (increased
local efficiency) and more redundant (decreased global efficiency
and increased path length between regions); in other words,
it became more like a regular lattice rather than an optimal
small-world network (Watts and Strogatz, 1998). Regions that
previously were directly connected became indirectly connected,
meaning that information being transferred between two regions
had to travel through additional intermediaries. In such lattice-
like networks, cognitive function becomes compromised because
it relies heavily on efficient integrative processing abilities
(Bullmore and Sporns, 2012), thus leading to lower performance.
This finding aligns with past studies showing that patients with
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FIGURE 2 | Association between network local efficiency and Hamilton
depression rating scale (biomarker of depression severity) for patients with
PSD. Error bars represent standard deviations. ∗∗p < 0.01.

remitted geriatric depression (Bai et al., 2012) have impaired
network integration abilities and abnormal regional network
properties compared to healthy subjects, primarily in the frontal
brain regions. In addition, significantly increased local efficiency
was observed in the resting-state functional network of patients
with major depressive disorder (Ye M. et al., 2016). Interestingly,
while some studies confirm our findings, other structural
and/or functional connectivity analyses only partially align with
our research. For instance, while treatment-naïve depression
patients (Long et al., 2015) had increased local efficiency, they
also demonstrated increased global efficiency in the structural
network. We thus speculate that the variability in network
topological expression found in different studies might result
from differing subtypes of depression.

Impaired Local Network Communication
in Multiple Brain Regions
In addition to shedding light on the brain network’s overall
architecture, network analysis also could help decipher the
interconnected relationships in a specific brain region or between
local communities; these clusters formed by regions are either
geographically close or serve similar functions (Leergaard et al.,
2012). Bearing this in mind, we found that the regions with
disrupted regional networks in PSD patients are primarily located
in the cognitive and limbic systems, including the superior
and middle frontal gyrus, post-cingulate gyrus, middle temporal
gyrus, and amygdala.

The superior frontal gyrus and middle frontal gyrus are
both involved in emotional disorders and higher cognitive
functions (Tucker et al., 1981; Mayberg, 1994). Using modern
neuroscience technologies like proton magnetic resonance
spectroscopy (Kumar et al., 2002), DTI (Yang et al., 2015b),
resting-state electroencephalogram (EEG) (Zhang et al., 2015),
and resting-state functional MRI (rs-fMRI) (Vicentini et al.,
2017), researchers have found that the frontal lobe of depressive
or PSD patients also has white matter biochemical abnormalities,
loss of white matter integrity, decreased EEG complexity,
and increased functional connectivity. The anatomical basis
behind these findings might include the extensive connections

FIGURE 3 | Association between local clustering coefficient and Hamilton
depression rating scale (biomarker of depression severity) for patients with
PSD. Error bars represent standard deviations. ∗∗p < 0.01.
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FIGURE 4 | Association between nodal efficiency and Hamilton depression
rating scale (biomarker of depression severity) for patients with PSD. Error
bars represent standard deviations. ∗∗p < 0.01.

between frontal cortex and structures related to emotional
behavior, such as the amygdala, basal ganglia, and thalamus
(Soares and Mann, 1997). Similarly, the cingulate has been
identified as a key area within fronto-limbic networks due to
its strong interconnectedness in pathways that are essential for
mood and emotional regulation (Drevets et al., 2008). While
most mood disorder studies focus on the anterior cingulate
cortex, dysfunctions in the posterior cingulate cortex also are
related to impaired emotion evaluation, attention, and other
cognitive functions (Maddock et al., 2003; Ries et al., 2009).
Our findings further support this idea and may encourage the
development of effective interventions by identifying potential
target regions for deep brain stimulation seeking to normalize
network activity (Kringelbach et al., 2011). One of the earliest
brain regions discovered to be closely related to emotional
disorders, the amygdala has been studied exhaustively; in this
regards, both functional and structural connectivity analyses have
revealed abnormal regional connections in the fronto-limbic,

and cortico-striatal-pallidal-thalamic circuits (Callaghan et al.,
2017; Connolly et al., 2017; Delaparte et al., 2017; Jalbrzikowski
et al., 2017; Yang et al., 2017). This body of research forms
the foundation for novel neuroscience-informed treatment
strategies, like amygdala-focused fMRI neurofeedback, while
predicting antidepressant treatment outcomes. It thus could
contribute to treatment adherence. Meanwhile, our results have
demonstrated that network analysis is capable of identifying
disconnected regions that might relate to the depression
symptoms of PSD patients.

Associations Between Network
Measures and Depression Level
Most importantly, although we were not able to observe
any significant relationship between network measures and
disability rating scales (e.g., BI, NIHSS, and mRs), we still
successfully established the associations between depression level
and network metrics using both global and local scales.

The strengths of the current study include the availability of
various disability scales and psychological assessments for all
subjects. By examining the relationship between global network
metrics and depression level measured by HAMD, we found that
higher local efficiency was significantly associated with higher
HAMD in patients with PSD. As described in the above sections,
local efficiency indicates the number of local clusters, and
reflects functional segregation. Our results suggest that increased
network segregation is associated with more sever depressive
symptoms. Although most studies indicate that higher network
segregation guarantees a high network fault-tolerance (Sporns,
2013), our findings could indirectly prove that increased network
segregation is not always positive. From an economic perspective,
brain connections are expensive to build and run, so excessively
high network segregation might increase the brain’s overall
wiring cost. Other studies also report increased local efficiency in
patients with depression symptoms (Long et al., 2015; Ye M. et al.,
2016); however, we are the first to demonstrate the significant
association between increased local efficiency and HAMD scores.

In patients with PSD, we also observed significant positive
associations between depression level and regional network
measures in regions like the superior temporal gyrus, precuneus,
hippocampus, amygdala, insular, and thalamus. Given that
high regional network measures reflect optimal organization in
local communication, our findings suggest that PSD induces
more efficient regional communications in these regions due
to increased regional connections serving as compensatory
mechanisms. As shown by previous studies (Ries et al., 2009; Liao
et al., 2013; Long et al., 2015; Yang et al., 2017), these regions form
the core parts of an effective processing network, which might
be impaired in patients with depressive symptoms. Specifically,
the amygdala, hippocampus, insular, and thalamus constitute
the limbic-cortical-striatal-pallidal-thalamic circuit (Price and
Drevets, 2010), and this particular circuit plays an important role
in the pathogenesis of depression. Consequently, microstructural
changes in the circuit may lead to continually enhanced regional
interactions in patients with PSD. As a previous study (Yang
et al., 2015a) demonstrated, dysfunctions in the insular, putamen,
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and superior longitudinal fasciculus are associated with major
depression in patients with PSD. Our results align with other
network analyses that have demonstrated hyperconnections in
certain networks due to a compensatory mechanism in the
ventromedial prefrontal network and the salience network of
depression (Guo et al., 2013; Wei et al., 2015; Shi et al., 2017).
Thus, we speculate that, similar to other diseases with disrupted
structural networks as a common manifestation, the symptoms,
and severity of PSD both relate to the level of disruption in the
underlying white matter substrate.

Limitations
Despite the novelty of the current study, this prospective
research has several limitations. One important limitation is the
fact that the research relied on deterministic tractography to
reconstruct the whole brain structural network. This method
has been shown to have limited capacity for resolving the
crossing fiber issue. Future studies using a probabilistic tracking
algorithm could complement our research. Secondly, at the
current stage, we have not been able to determine the causal
relationship between network alterations and neuropsychological
symptoms. Thirdly, past studies have identified several risk
factors for PSD, such as elevated 5-HTTLPR (Guo et al.,
2016), serum levels of homocysteine (Li et al., 2017), and
ferritin (Zhu et al., 2016). Unfortunately, we were unable to
obtain any of these blood chemistry profiles to investigate the
relationship between PSD and laboratory biomarkers. Future
studies might consider including these blood test results to
draw more comprehensive conclusions. A causal model might
be beneficial to our understanding of the causal mechanisms
behind depression. Finally, our study followed a cross-sectional
design and was explorative in nature. Future longitudinal studies
with additional post-treatment datasets might further improve
our understanding of the potential role of network measures as
biomarkers for treatment responses.

CONCLUSION

In conclusion, we have successfully demonstrated global and
local network reorganization in regions located in the limbic and
cognitive systems of PSD patients compared to PSND patients.
More importantly, our results suggest that both global and
regional structural brain network topologies could potentially
serve as indicators of the overall severity of PSD. These results
contribute structural evidence for future research efforts seeking
to understand the underlying neuroanatomical substrate behind
the pathophysiology of PSD.
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