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Abstract
Transcription factors (TFs) play a fundamental role in coordinating biological processes in

response to stimuli. Consequently, we often seek to determine the key TFs and their regu-

lated target genes (TGs) amidst gene expression data. This requires a knowledge-base of

TF-TG interactions, which would enable us to determine the topology of the transcriptional

network and predict novel regulatory interactions. To address this, we generated an Open-

access Repository of Transcriptional Interactions, ORTI, by integrating available TF-TG

interaction databases. These databases rely on different types of experimental evidence,

including low-throughput assays, high-throughput screens, and bioinformatics predictions.

We have subsequently categorised TF-TG interactions in ORTI according to the quality of

this evidence. To demonstrate its capabilities, we applied ORTI to gene expression data

and identified modulated TFs using an enrichment analysis. Combining this with pairwise

TF-TG interactions enabled us to visualise temporal regulation of a transcriptional network.

Additionally, ORTI enables the prediction of novel TF-TG interactions, based on how well

candidate genes co-express with known TGs of the target TF. By filtering out known TF-TG

interactions that are unlikely to occur within the experimental context, this analysis predicts

context-specific TF-TG interactions. We show that this can be applied to experimental

designs of varying complexities. In conclusion, ORTI is a rich and publicly available data-

base of experimentally validated mammalian transcriptional interactions which is accompa-

nied with tools that can identify and predict transcriptional interactions, serving as a useful

resource for unravelling the topology of transcriptional networks.
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Introduction

The ever increasing popularity in ‘omics’ technologies has led to an explosion of data on indi-
vidual molecules, from which we aim to infer their relationships. In the case of gene expression
data, we often seek to determine the transcriptional regulators driving their expression, not
only for mechanistic insight but also to better understand how biological processes are coordi-
nated in response to stimuli.

There are several approaches for interrogating expression data in silico. For instance, one
can search for motifs in gene promoters [1, 2]. This assumes that each transcription factor (TF)
recognises unique promoter motifs. Althoughmany such motifs are known, motif-searching
within DNA sequence data from higher organisms requires tailored statistical analysis for each
TF [3] and has been limited by false predictions [2]—for instance, there would be a high occur-
rence of a small 6–10 bp motif across the genome, but relatively few sites would be of functional
importance. An alternative approach involves using prior gene expression studies to derive
gene signatures, a common set of expression changes that occur in response to a perturbation
such as knock-down of a TF [4]. Detecting these in the candidate dataset implies a contribution
from that TF. Whilst this is suitable for detecting TFs represented in a dataset, this does not
enable the prediction of direct relationships betweenTFs and their target genes (TGs) because
the gene signatures do not distinguish between primary effects (e.g., TF binding to the TG pro-
moter) and secondary effects (e.g., TF modulating the expression of a direct regulator of the
TG). Overall, TFs have overlapping effects on TGs, whereby the activity of multiple TFs can
influence the expression of a single gene. To overcome this, a database of experimentally-vali-
dated, direct TF-TG interactions is required. Such a knowledge base has been used, for
instance, to predict regulatory relationships in yeast microarray data, and it has been shown
that high quality, comprehensive and validated knowledge bases can significantly improve the
discovery of TF-TG interactions from high throughput gene expression data [5].

There are numerous mammalian TF-TG databases available online [1, 2, 4, 6–10]. However,
some are not publicly available (e.g., TRANSFAC, [1]) or are not regularly updated. Other
databases do not distinguish between interactions based on the reliability of high- versus low-
throughput experimental evidence. This has motivated us to develop a new publicly-available
database, the Open-access Repository of Transcriptional Interactions (ORTI), which over-
comes these limitations. Compiling various available databases, ORTI contains interactions
derived from a range of experimental conditions, including reliable, low-throughput (LTP)
experiments as well as broader, high-throughput (HTP) experiments.We apply this database
to microarray expression data to reveal transcriptional interactions in gene expression data,
identifying key TFs driving the expression changes and combining pairwiseTF-TG interac-
tions to visualise the topology of a transcriptional network.We also used ORTI to predict
novel transcriptional interactions, using known TF-TG interactions that occur within the
experimental context. Overall, we demonstrate that it will serve as a useful tool for elucidating
the complex, nonlinear nature of transcriptional networks.

Results and Discussion

Construction of the ORTI database

The ORTI database was constructed by merging together several publicly-available databases
and literature references to generate a collection of TF-TG interactions (Fig 1A). We consid-
ered TF and TG frommammalian model systems. Since the evidence for these interactions var-
ies in quality, we have ranked the evidence according to experimental reliability: Rank 1, for
LTP techniques such as electrophoreticmobility shift assays and promoter-based reporter
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assays, which are generally considered reliable methods for demonstrating that a TF binds to
the TG’s promoter to regulate its expression; Rank 2, for HTP techniques such as chromatin
immunoprecipitation coupled with sequencing (ChIP-Seq), which are informative but more
susceptible to false positives compared to Rank 1 techniques; and Rank 3, for indirect evidence,
including motif-based predictions and differential expression. This is detailed in S2 File.

Together, ORTI encompasses 688 TFs and 72,738 factor-gene interactions, out of which
10,370 regulations are Rank 1 (Table 1). Rank 2 data are naturally more abundant than Rank 1,
but Rank 1 data still makes a relatively significant contribution to the database.Within the
Rank 1 interactions, roughly half are unique to a single database (Fig 1B). Furthermore,
although HTRI and TRRD together represent half of the TFs, TRED and TFactS contribute the
majority of the TGs (Fig 1B). Thus, no single database dominates the ORTI. The flat-file for
the database is available online (http://orti.sydney.edu.au). This online interface enables users
to search for TF and/or TG names and aliases, providing suggestions for queries based on data-
base content. Searches can be refined based on species and information source, and are sortable

Fig 1. The construction of the ORTI database. Several publicly-available databases and literature references were merged to generate a collection of

TF-TG interactions, classified as Rank 1, 2 or 3 according the reliability of the experimental validation. A) ORTI composition and Venn diagrams of the

spread of Ranks over TFs and TF-TG interactions. B) The percentages of ORTI Rank 1 TFs, TGs, and TF-TGs which are unique to a single database

and the contribution of each database.

doi:10.1371/journal.pone.0164535.g001
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by rank. Results can be exported and multiple entries can be searched simultaneously, facilitat-
ing batch searching. Lastly, users are also able to submit new entries, which will be subject to
manual curation prior to incorporation into the database.

Overall, we have incorporated a rich variety of data sources to generate the largest publicly
available database of TF-TG interactions to date (Table 1). Despite this, it is far from complete
in terms of its coverage of the mammalian transcriptional interactome, given there are cur-
rently thousands of annotated TFs in the human genome [11, 12]. We intend to periodically
update ORTI with experimentally validated factor-gene interactions. Furthermore, we encour-
age other researchers to submit any newly-discoveredTF-TG interactions via the web interface.
In addition to providing a repository for TF-TG interactions, we envisage that ORTI could be
used to elucidate the transcriptional topology underlying gene expression data. We sought to
achieve this via two applications, as discussed in the following sections. Both applications are
developed in R and MATLAB. The fully commented source codes are available to download
from the ORTI web interface.

Identification of modulated TFs in different biological contexts

For each TF in ORTI, we considered TGs from any mammalian context, irrespective of cell
type or species. This is justified by the conservation of gene regulation between species [4]. Our
TF-TG interactions were also sourced from a range of experimental conditions—in light of this
diversity, could ORTI be used to identify TFs that changed under specific biological condi-
tions? To address this, we used our Application 1 algorithm: for each TF, we assessed whether
its TGs from the ORTI database were over-represented within the genes differentially regulated
in the expression data—e.g., |log2(fold change)|> 1.

Microarray studies were retrieved fromNCBI GEODataSets, using the keywords “expres-
sion profiling by array” [dataset] and “transcription factor”. We initially considered studies
where a single TF had beenmodulated, such as by overexpression or knockdown, in either
human or mouse cells [13–16]. Using ORTI, we could identify the modulated TF by a signifi-
cantly enriched association of the TF within the differentially expressed genes, with p-
value< 0.01 (Table 2), with the exception of PDX1 due to limited overlap betweenTGs and
differentially regulated genes. The differentially expressed genes in these cases were obtained

Table 1. Number of TFs, TGs, and TF-TG interactions across all databases with no ranking constraint

(all interactions) or when only LTP verified interactions (Rank 1) are included.

Database # of TFs # of TGs # of TF-TG pairs

ORTI LTP-only 632 3468 10,283

All 660 20,146 72,817

HTRI LTP-only 278 998 1,771

All 284 18,298 51,872

NFI-Reg LTP-only 49 54 152

All 59 59 200

PAZAR LTP-only 229 578 1,051

All 250 4,868 8,449

TFactS LTP-only 345 2,167 5,924

All 345 2,617 6,727

TRED LTP-only 144 2,078 4,724

All 154 3,624 9,323

TRRD LTP-only 321 607 1,296

All 322 609 1,305

doi:10.1371/journal.pone.0164535.t001
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from the original papers. Next, we considered a study where a global stress was applied, in this
case the induction of adipogenesis [17]. In this case, the raw data was acquired, and differen-
tially expressed genes were identified according to the workflow depicted in Fig A of S3 File. By
considering the early time-points (0-8h), we could detect knownmajor regulators of adipogen-
esis [18] (Table 2). Notably, ORTI outperformed the other TF-TG interaction databases
(Table 2)–in several instances, the other databases either did not contain the TF of interest or
did not have sufficient TGs for that TF to enable a statistically significant enrichment. This was
similarly found when just the Rank 1 data were considered (Table A of S3 File). This demon-
strates that ORTI can be used to identify key TFs in different biological settings.

Next, we used the adipogenesis time-course data [17] to elucidate temporal changes in tran-
scriptional network during early adipogenesis. This biological process is driven by transcrip-
tional cascades, whereby one TF regulates the expression of another TF, influencing other TFs
downstream [18]. To reveal these interactions, we first used Application 1 to determine when
TFs were enriched (p-value<0.05) based on whether TGs were differentially expressed (p-value
<0.05, and fold-change> 1.5) over time. These enriched TFs are putative regulators of adipo-
genesis. Next, we filtered for TFs that were themselves differentially expressed and thus likely
to participate in a transcriptional cascade. Using ORTI, we then connected TFs together and to
their TGs, visualising this using Circos [19]. This revealed a series of regulatory events over
time (Fig 2), demonstrating that transcriptional cascades can be identified in an unbiased fash-
ion using ORTI.

Prediction of novel TF-TG interactions within specific biological contexts

We also tested whether ORTI can be used to identify novel TF-TG interactions from gene
expression data. This relies on the premise that a TF co-regulates multiple TGs within a biolog-
ical context. For each TF, we use ORTI to identify known TGs that are differentially-expressed
(DE) from the gene expression data (Fig 3, Step 1). This forms the ‘kernel set’. These TGs are
then clustered based on their expression profiles (Fig 3, Step 2; algorithm outlined in Fig 4)–

Table 2. ORTI outperforms other databases in identifying modulated TFs in gene expression data. TF enrichment analysis was performed on micro-

array data where a single TF was modified (AR [14], SREBF1 [16], PDX1 [13], E2F [15]), or for selected TFs in early adipogenesis [17]; p-values and Bonfer-

roni corrected p-values are shown. ‘—‘ indicates that the TF was not found in the database. The parameters of the conducted hypergeometric tests are

provided in Table B of S3 File.

Databases Single TF modulated Biological process

AR SREBF1 E2F1 PDX1 CEBPA CEBPB CEBPD PPARG

ORTI p-value 0 1.42E-20 7.51E-16 5.77E-04 1.51E-20 9.19E-17 1.13E-10 2.41E-14

Adj p-value 0 9.36E-18 4.96E-13 3.81E-01 9.94E-18 6.06E-14 7.47E-08 1.59E-11

HTRI p-value 0 1 3.62E-03 1.66E-03 0.0115 6.60E-04 8.59E-03 0.168

Adj p-value 0 1 1 0.4707 1 0.1874 1 1

NFI-Reg p-value — — — — — — 0.055 —

Adj p-value — — — — — — 1 —

PAZAR p-value 1 — 0.0351 4.52E-03 0.539 0.279 1 —

Adj p-value 1 — 1 1 1 1 1 —

TFactS p-value 4.82E-07 9.99E-13 1.78E-04 0.0177 1.10E-05 0.0012 0.0313 4.09E-05

Adj p-value 1.69E-04 3.45E-10 6.14E-02 1 3.79E-03 0.412 1 0.0141

TRED p-value 1.04E-12 — 4.19E-03 — 5.87E-11 6.29E-08 6.77E-06 9.77E-08

Adj p-value 1.60E-10 — 0.646 — 9.03E-09 9.69E-06 1.04E-03 1.51E-05

TRRD p-value 0.0483 5.08E-04 1 1 0.0382 0.0382 0.122 0.479

Adj p-value 1 0.1640 1 1 1 1 1 1

doi:10.1371/journal.pone.0164535.t002
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Fig 2. The transcriptional network during early adipogenesis. Using the adipogenesis time-course expression data [17], we identified

differentially expressed genes (fold-change > 1.5, p-value < 0.05). Next, we combined differentially expressed genes from adjacent time-points

(1h and 2h, 2h and 4h, etc), applying Application I to identify enriched TFs (p-value < 0.05). Combining two timepoints at a time provided

sufficient resolution to observe rapid changes in TF activity. Enriched TFs that were differentially-expressed at the previous timepoint (e.g. at

0.5h, if enriched at 1-2h) were considered to be part of the transcriptional cascade. ORTI was used to identify the pairwise interactions that were

subsequently used to construct the interaction network. This has been visualised using Circos [19]. The heatmap adjacent to each TF reflects

their expression pattern over the time-course.

doi:10.1371/journal.pone.0164535.g002
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Fig 3. The pipe-line for Application II, the prediction of novel TF-TG interactions. Details are provided in the Materials and Methods. Abbreviations:

TF, transcription factor; DE, differentially-expressed; TGtf, Rank 1 target genes connected to the TF of interest within the ORTI database; Gde, subset of

DE genes; KSC, kernel set concordance. Figure design partially adapted from [38].

doi:10.1371/journal.pone.0164535.g003

Fig 4. Clustering component for Application II. The proposed clustering algorithm used to identify prevalent TG expression

patterns and singletons within the kernel set.

doi:10.1371/journal.pone.0164535.g004
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although they are DE in this context, they may differ in the directionality of regulation or be
regulated by other TFs, thus putative TGs may bemore closely correlated with a sub-cluster
rather than the ‘average’ profile of the kernel set. Next, the other DE genes are compared to
these clusters to derive ‘kernel set concordance’ (KSC) scores, which are used to predict new
TGs for the TF (Fig 3, Step 3).

We tested our approach of predicting novel TF-TG interactions using gene expression data
in which the androgen receptor (AR) was manipulated both genetically (AR-overexpression)
and pharmacologically (R1881 as an agonist, bicalutimide as an antagonist) (Fig 5A) [14]. We
made 19 comparisons to obtain DE genes, namely the vehicle-treated conditions versus each
drug treatment, and the empty-vector versus AR-overexpressing cells for the vehicle, bicaluta-
mide, and maximum R1881 treatment (Fig 5A). Out of these comparisons, 4,114 DE genes
were identified—fromthese, 30 DE genes were found as AR Rank 1 TGs in the ORTI database

Fig 5. The androgen receptor (AR) as a case-study for Application II. A) Schematic view of the microarray experimental design in AR

case study [14] and possible comparisons which can be used to obtain DE genes. B) The number of DE genes achieved by each

comparison.

doi:10.1371/journal.pone.0164535.g005
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forming the kernel set (S1 File). The kernel set was then clustered using our proposed algo-
rithm (Fig 4). Modulating the clustering threshold had a noticeable effect on the kernel set clus-
ters, whereby lowering the threshold collapsed clusters with a similar behaviour into a single
cluster and identified additional clusters (Fig 6A). Our clustering method requires the correla-
tion threshold to be determined in advance. We selected a clustering threshold of λc = 0.6, with
the correlation p-value� 0.01. At this threshold, prevalent clusters were unambiguously distin-
guished from the outliers (singletons) (Fig 6A), which were removed prior to further analysis.

We initially verified the predictive power of this clustering method, and consequently the
proposed concordance score, using leave-one-out cross validation (CV) over known AR TGs

Fig 6. The kernel set clustering of androgen receptor (AR) target genes. A) Clusters identified within AR kernel

set at different correlation thresholds. Different clusters are identified by different colours. Singletons are greyed out. B)

Error rates of the recovery of AR known TGs (kernel set) at different p-value cut-offs using leave-one-out cross

validation test. The proposed clustering algorithm was also replaced with commonly used clustering methods (i.e., K-

means, hierarchical and self-organizing map) to illustrate the importance of the clustering component on the recovery

of AR target genes.

doi:10.1371/journal.pone.0164535.g006
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(i.e., kernel set genes). Each kernel gene was excluded from the kernel set, the remaining kernel
genes clustered, and the KSC and p-value of the excluded kernel gene was computed. Kernel
genes with KSC p-values less than a predetermined significance level were considered to be cor-
rectly classified as AR targets (true positives). In contrast, those with non-significant p-values
were considered false-negatives, indicating the error rate. The error rate was 0.38 at p-
value = 0.01 significance level, and decreased to only 0.15 at p-value = 0.05 (Fig 6B). To illus-
trate the advantage of using the proposed clustering algorithms as compared to commonly
used clustering algorithms, we replaced the proposed clustering components with K-means,
hierarchical and self-organizingmap (SOM) clustering algorithms and compared the corre-
sponding error rates using a similar CV analysis. In K-means and hierarchical clustering algo-
rithms, we used the Calinski-Harabasz index [20] to identify the optimal number of clusters.
SOM also requires the map dimensions to be defined by the user a priori [21]; we tried different
dimensions and observed an insignificant variation in CV performance. Overall, the proposed
clustering method outperformed these clustering algorithms in recovering the kernel genes at
lower p-value cut-offs (Fig 6B).

The predictive performance of the KSC scores was also assessed using the receiver operating
characteristic (ROC) curve analysis which plots the true positive rate (i.e., sensitivity) against
the false-positive rate (i.e., 1-specificity) for different cut-off values of the KSC p-values. Here,
the positive class comprised the AR kernel genes after removing the outliers (i.e., singletons),
and the negative class included an equally-sized set of genes randomly selected out of the corre-
sponding DE genes. The negative random set was resampled 100 times and the area under the
curve (AUC) was computed. An AUC of 0.5 is produced by random selection, and thus any
interesting classifier should have an AUC more than 0.5. We achieved an averaged AUC with
95% confidence interval of 0.9414�0.0055 which demonstrates the predictive power of the
proposed scoringmechanism.

Before searching for potential AR target genes, we narrowed down the list of candidate
genes by focusing only on comparisons yielding the greatest biological effect sizes: Vehicle
treatment versus largest R1881 dose, for both empty-vector and AR-overexpressed cells. These
two comparisons yielded amongst the highest number of DE genes (Fig 5B), whilst reducing
the diversity of comparisons and consequently the false positive rate. This generated 1,512 DE
genes as candidates. Using our clustering algorithm and TG predictionmethod (Fig 3), we
identified 146 genes whose expression profile bore a statistically significant correlation (KSC p-
value< 0.05) to kernel set prevalent clusters (S1 File). An advantage of using gene expression
data instead of motif-searching is that this immediately provides functional validation that a
TF influences a putative TG’s expression in this particular biological context. However, there is
a caveat, in that the predicted TGs may respond to AR modulation due to secondary effects.
For instance, LDLR appears as a predicted TG, when the AR modulates LDLR expression by
upregulating SCAP (a kernel set gene), the activator of LDLR’s TF, SREBF2 [22, 23]. We conse-
quently sought to overcome this limitation by employing the ranking system in ORTI: whilst
Rank 1 TGs were used to provide the kernel set, we can provide preliminary validation of pre-
dicted TGs using the Rank 2 information, which consists primarily of HTP ChIP data. Within
our 146 predicted AR TGs, 43.85% were found in the Rank 2 data.

We hypothesised that amongst the DE genes, those that are Rank 2 TGs of AR are more
likely to have lower KSC p-values (better concordance with the kernel set). However, instead of
a power-law like distribution, we observed a binomial distribution, with the peaks at the lower
and the higher ends of the p-value spectrum (Fig 7A). The accumulation of Rank 2 TGs at
high-p-values was unexpected. Indeed, the expression pattern of this group of TGs is extremely
negatively correlated to those with low KSC p-values (Fig 7B). This raises the hypothesis that in
this context, the AR regulates a novel set of genes in an opposite manner to the Rank 1 TGs

ORTI Database
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(and prevalent kernel set clusters). For instance, the prostate consists of a minor population of
neuroendocrine cells. It is well-established that AR represses differentiation to the neuroendo-
crine phenotype, with androgen deprivation leading to the adoption of neuronal markers [24].
This transdifferentiation has been shown to be driven by protein tyrosine phosphatases, which
play a key role in neuronal development [25], including PTPRA [26] and PTPB1 [27]. Here,
we found PTPRB (KSC p-value 0.937) and PTPRR (KSC p-value 0.939)—both are involved in
neuronal differentiation [28, 29] and thus may play a role in neuroendocrinedifferentiation. In
addition, it is known that E-cadherin is downregulated by AR [30], and here we find its binding
partner, CDH3 [31], may also be repressed directly by AR (KSC p-value = 0.957). Another
interesting target is dopa decarboxylase (KSC p-value = 0.893), a risk factor for recurrence fol-
lowing androgen ablation therapy [32]. Thus, considering high KSC p-value genes, particularly
when enriched amongst the Rank 2 data, may also reveal novel genes.

Fig 7. Rank 2 and functional validation of predicted androgen receptor (AR) TGs. The candidate differentially-expressed genes were sourced from

two comparator groups: Vehicle treatment versus largest R1881 dose, for both AR-overexpressed (top panels) and empty-vector (bottom panels) cells.

A) Binomial distributions of the spread of Rank 2 DE genes at different KSC p-values indicating that Rank 2 genes are more likely to appear at lower and

higher ends of p-value spectrum. B) The average expression profiles of TGs at lower and higher ends of the p-value range (p-value < 0.05 or > 0.95).

These two groups show a highly negative correlation—i.e., corr = -0.94 and -0.75 for top and bottom diagrams, respectively. C) Functional analysis of

predicted TGs where density of occurrence of DE genes significantly representing AR function (as given in Table C of S3 File) is plotted at different KSC

p-values; nearly similar binomial patterns as of Rank 2 analysis.

doi:10.1371/journal.pone.0164535.g007
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We performed a similar analysis looking at functionality, examining whether the functions
of the DE genes with lower p-values are enriched for those of the AR Rank1 TGs (i.e., kernel
set). Using MSigDB [33] pathways (KEGG, Biocarta, and Reactome) and Gene Ontology sets
(molecular functions and biological processes), we identified 15 functional terms significantly
enriched (FDR q-value< 0.05) by AR kernel genes (Table C in S3 File). Then, for each DE
gene, we calculated a hypergeometric p-value indicating whether the functions of AR kernel
genes are overrepresented by the gene’s functions.We then plotted the histogram of the relative
occurrences of AR target functions within the list of DE genes ranked by the KSC p-value (ker-
nel genes were excluded to avoid circular argument). We observeda similar pattern as obtained
using Rank 2 analysis: binomial distributions (Fig 7C) indicating that AR functions are more
likely to be enriched by DE genes at the lower and higher ends of the KSC p-value spectrum.
This supports our hypothesis that AR regulates a novel set of genes in an opposite manner to
the Rank 1 TGs (i.e. down-regulated by R1881 and up-regulated by bicalutamide, Fig 7B).

This study contained genetic, pharmacological and dose-curve elements, providing many
points of comparison for our clustering analysis. To determine if such an intricate, multi-
dimensional experimental design is required, we applied our pipeline to a simpler dataset. We
analysed a microarray study in which sterol regulatory element binding transcription factor 1
(SREBF1) was over-expressed in three separate populations of muscle cells [16] (Fig 8A). From
256 DE genes, 11 TGs of SREBF1 were included in the kernel set (S1 File). Using a clustering
threshold of λc = 0.9 corresponding to the correlation p-value� 0.01, we identified one preva-
lent cluster where 1 TG is excluded as a singleton (Fig 8B). Subsequently, 51 other DE genes
showed a statistically significant correlation with these kernel set genes (KSC p-value< 0.05)
(S1 File). To evaluate the predictive power of the concordance scores, we applied leave-one-out
cross validation on SREBF1 kernel genes: 66.67% of kernel genes were correctly recovered at p-
value = 0.05. The recovery rate sharply improved to 100% when the significance cut-off shifts
to 0.2 (Fig 8C). Additionally, we estimated the sensitivity and specificity of the prediction at dif-
ferent KSC p-value cut-offs using the SREBF1 kernel set as positives and an equally-sized set of
random DE genes as negatives. We resampled the negative set 100 times and computed the
area under the ROC curve; an average AUC (with 95% confidence interval) of 0.8248�0.0160
was achieved which confirms the performance of the proposed KSC-based prediction.

Applying the Rank 2 data, we found that the spread of KSC p-values of the DE Rank 2 TGs
appeared similar to a power-law distribution (Fig 8D), suggesting that a majority of putative
SREBF1 TGs correlate with the prevalent kernel set clusters. Furthermore, DE genes that pos-
sessed the enriched functions of the kernel set genes (Table D in S3 File) were likely to have
lower KSC p-values (Fig 8E). Overall, this supports the notion that a simpler experimental
design (with a single dimension) can also be used to predict TGs.

Conclusions

In this study, we constructed a new online, publicly-available TF-TG database, ORTI. Combin-
ing existing databases and additional studies from the literature, data has been incorporated
from a range of mammalian species (primarily human, rat, and mouse), and cell-types, in an
attempt to overcome bias from any individual context (e.g. inflammation fromNFI-Regulome,
[9]). A significant portion of TFs are represented in ORTI, but additional TFs can be incorpo-
rated in the future through online user submissions and additional literature searches.While
ORTI alone serves as a repository for experimentally-validatedTF-TG interactions, we devel-
oped two tools for interrogating gene expression data as examples of ORTI applications: 1) the
identification of TFs modulated in response to a stimulus, and 2) the prediction of novel TF-TG
interactions. These tools are available to download (http://orti.sydney.edu.au/download.html)
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which allows users to customise their own settings, to adopt the algorithms for other contexts
(e.g., kinase-substrate interactions in phosphoproteomics data), or to incorporate the algorithms
into their own workflows. In addition, ORTI can be used in other applications, such as quantita-
tive analysis of TF dynamics [34], genomic analysis of regulatory network dynamics [35] or
analysis of network motifs in transcriptional regulatory networks [36]. ORTI can also serve as a
rich ‘gold standard’ for computational modelling of regulatory networks [37].
For Application 1, we used ORTI to identify TFs regulated in the expression data, using the

commonly used hypergeometric enrichment analysis [4, 33]. ORTI outperformed the existing
databases, regardless of using either all of the TF-TG data (Table 2) or just the Rank 1 data
(Table A of S3 File). This can be attributed to its greater coverage of TFs and TF-TG interac-
tions (Table 1). An interesting potential improvement could be the incorporation of sign-sensi-
tivity. For instance, the TFactS database records whether a TF upregulates or downregulates a
TG, although this has been shown not to be required for identifying TFs [4]. Our results also
indicate that the success of this application depends on the information available about the TF
within ORTI, with the possibility of more obscure TFs not being detected in GE data (e.g.,
PDX1, Table 2). Thus, we intend to periodically update ORTI with novel, experimentally-vali-
dated TF-TG interactions from the literature.

Fig 8. The sterol-regulatory element binding factor (SREBF1) as a case-study for Application II. A) Microarray experimental setup in SREBF1

case study. B) One singleton and one prevalent cluster were identified within SREBF1 kernel set using a clustering threshold of λc = 0.9 corresponding to

the correlation p-value� 0.01. C) Error rates of the recovery of SREBF1 kernel genes at different p-value cut-offs using leave-one-out cross validation

test. D) Rank 2 analysis: a power-law like distribution indicates that a majority of putative SREBF1 TGs correlate with the prevalent kernel set clusters. E)

Functional analysis: power-law like distribution suggests that DE genes that possessed the enriched functions of the kernel set genes (Table D in S3 File)

were likely to have lower KSC p-values.

doi:10.1371/journal.pone.0164535.g008
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Furthermore, we demonstrated that these pairwise TF-TG interactions can reveal the
topology of the transcriptional network. We applied this to adipogenesis: by utilising a data-
set that measured gene expression changes over time, we showed that this biological process
consists of a cascade of transcriptional interactions (Fig 2). This is highly nonlinear in nature,
highlighting the need to distinguish between primary and secondary effects when construct-
ing such networks.
For Application 2, we aimed to identify novel TF-TG interactions, key to constructing

cellular regulatory processes and understanding how these become dysregulated in disease
settings. Indeed, TF-TG interactions are in some cases context-dependent, in that the TF
may regulate a specific TG in one experimental context but not others. This is influenced by
a range of cell-specific factors such as the expression of coregulators, ligands and receptors
that may influence particular TFs in unique ways, or the co-regulation of alternate TFs that
may cross talk with other TFs in the network. Unique to our database, we can predict con-
text-specific interactions on different experimental complexities. Our approach involved
comparing the expression patterns of DE genes to that of the kernel set, known targets of
the TF that are DE in the context of interest. This is similar to the method developed by
Mrowka et al. [38] to discover novel TGs of NF-kβ. However, their kernel set was only a sin-
gle cluster overlooking the possibility of heterogeneity in TG expression profiles. Further-
more, they followed a context-generic approach by sourcing over 1,200 microarray
experiments with the aim of exploring the vast amount of expression information available
in public databases, whilst our goal is to uncover novel interactions within a specific experi-
ment/context.

Amongst the diverse statistical or computational models for predicting TF-TG interactions,
there is a growing trend to combine other sources of information with the gene expression data
to enhance the prediction accuracy—e.g., gene expression data and prior knowledge for con-
text-specific TG prediction in a Bayesian statistical model [39], motifs with expression data
using a binary classificationmodel [40] or conservedmotifs’ patterns and positions as features
for support vector machine (SVM) classifier [41], and gene expression with ChIP data to pre-
dict Pou5f1 targets [42]. Xu et al. [43] generated a TF-TG similarity matrix by integrating gene
expression data with gene ontology similarity analysis, promoter motif searching, protein inter-
action and literature mining.

Here, we usedORTI Rank 1 and 2 data to predict and validate context-TF-TG interactions.
This includes two complementary approaches: (1) comparing DE genes to the kernel set and
using Rank 2 data as a filter, to obtain a high-quality set of predicted genes that behave like the
kernel set, and (2) comparing DE to Rank 2 data, then to the kernel set, which may yield novel
TGs that are regulated differently from the kernel set (Fig 6A). Indeed, the novel subset of AR
genes will be investigated in future experiments. In both prediction approaches, the predicted
TGs may be paired with a motif searching program (e.g., JASPAR [2], which is publicly avail-
able) to provide another level of validation filter.

Overall, we have constructed a new TF-TG database, and applied it to gene expression data
to identify and predict transcriptional interactions, demonstrating its potential value in unrav-
elling the topology of transcriptional networks. Given that many TFs are ligand-inducible,
understanding this biology can inform therapeutic options for related diseases. For instance,
identifying novel TGs of the AR can provide further insight into how the AR drives prostate
physiology and prostate cancers become resistant to androgen ablation therapy. These applica-
tions, along with a query form to the database, are incorporated into an online user interface
(http://orti.sydney.edu.au).
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Materials and Methods

Database construction

To build the ORTI database, we retrievedmammalian TFs and their associated TGs from pub-
licly available databases of TF-TG interactions, namely HTRI [10], TFactS [4, 44], TRED [6, 8],
TRRD [45], PAZAR [7, 46], and NFI-Regulome [9], as well as from the literature using
PubMed searches for TFs of interest (Fig 1A). Gene names were disambiguated by consulting
with NCBI to include the official symbol of the gene for the specified species as provided by the
HGNC (HUGOGene Nomenclature Committee).We clarified any ambiguous cases by man-
ual curation, consulting the original articles to determine the relevant TFs and TGs under
examination, after which any remaining ambiguous cases were discarded. For transcriptional
heterodimers (e.g. AP1), the TG was assigned to the individual TF components where possible
(e.g. Fos, Jun). However, when the information source did not specify these TFs, the original
heterodimer name was retained. Gene symbol synonyms and gene IDs were compiled from
NCBI by matching the symbol and species pairs.

For each TF-TG interaction, ORTI provides: 1) the symbols of the TF and the TG; 2) the
synonyms of TF and TG symbols; 3) TF and TG Entrez IDs; 4) TF and TG accession identifiers
in multiple reference databases; 5) the corresponding species; 6) the reference information,
including the database containing the interaction information; 7) the accession ID/PubMed
ID; 8) the experimental technique used to detect the TF-TG interaction; and 9) the reliability-
rank of this technique.We incorporated this rank since many existing databases do not clearly
separate out TF-TG interactions validated by LTP experimentalmethods from those derived
by HTP screening techniques. This feature categorizes TF-TG interactions into three ranks: ‘1’
for interactions validated by LTP techniques, ‘2’ for those characterised from HTP screenings,
and ‘3’ for those predicted by promoter-sequence conservation or differential expression of
genes in response to manipulating a TF (without further LTP validation to confirm this is not a
secondary effect). If the supporting evidence for a TF-TG interaction was not provided by a
database or was ambiguous (for instance, chromatin immunoprecipitation can be used as both
as HTP and LTP technique), manual curation of the literature was performed to clarify the
ambiguity. The experimental evidence sufficient for each level of our ranking system is detailed
in S2 File. The composition of the ORTI database is depicted in Fig 1. We find that overall, no
single database dominates ORTI.

The online version of ORTI database is implemented in JavaScript, a high-level program-
ming language supported by most web browsers and widely used to add interactive features
and dynamic content to the web sites. The database arrays and interface functions are embed-
ded together in a single web page that processes search requests locally on the client computer.
This approach is more sensitive to the client's hardware and software configuration than the
more common client-servermodel, but it offers many advantages such as immediate access to
the entire database required for real-time interface features, autonomous offline operation,
simplicity of the code, stable performance and secure server configuration.

The database is represented in JavaScript as a two-dimensionalmatrix where textual values
are replaced with their indices in the list of unique values associated with each parameter. The
database search routine is executed every time the user changes the content of the input fields
or alters state of the filters. If the previous search is not finished the new call cancels it. In the
first phase of the search, the codemarks unique TF and TG names/aliases that match search
keywords. In the second phase all records in the database are enumerated and those matching
the search criteria are gathered together. Lastly, the records are presented to the user as a for-
matted table. This algorithm is fast enough to enable the incremental search feature without
any optimizations which are usually timely inefficient.
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Additionally, the interface provides batch search of multiple keywords, suggests for partially
matching names, identifiesmissing names, and allows user to filter records by species, contrib-
utor and rank. The interface also offers options in searching by either gene ID or gene name for
both TFs and TGs. The user can select search results by clicking a button, copy data to the clip-
board and paste into any spreadsheet software. The current implementation of the interface is
best suited for finding the intersection of a set of TFs with a set of TGs. Large lookups of either
TF or TG names with thousands of matching records can slow down browser's rendering pipe-
line and might be more convenient to performwithin the master database which can be down-
loaded in Excel format from the web site (http://orti.sydney.edu.au/download.html).

Application I: Prediction of context-specific transcription factors

To identify TFs modulated in a particular context, we performed a TF enrichment analysis on a
list of differentially expressed (DE) genes within that context. Accordingly, for each TF, the num-
ber of TGs in ORTI and input gene list were compared using the right-sided Fisher’s exact test
where the p-value for the null hypothesis is computed based the hypergeometric distribution:

p ¼
1

N

n

 !

Xi¼ n

i¼k

n

i

 !
N � K

n � i

 !

;

whereN is the total number of TF-TG interactions in ORTI, n is the number of input genes,K is
the total number of TGs annotated as being regulated by a TF in ORTI, and k is the number of
input genes annotated as the TF’s targets in ORTI. Since multiple TFs are tested, the nominal p-
value was adjusted for multiple hypothesis tests using Bonferroni correction.

Application II: Prediction of novel context-specific TF target genes

To predict novel TF-TG relationships, we examined differentially expressed genes, assessing
how well their expression patterns correlated with known TGs of our TFs of interest. The pipe-
line for this analysis (Fig 3) requires the user’s gene expression data—i.e., the expression pro-
files of DE genes—and TFs of interest, the latter identified either by the user or Application I.
The pipeline involves three steps:
1. Acquire the kernel set. The set of Rank 1 TGs of the queried TF is first retrieved using

ORTI. We define a kernel set to be the set of the TF targets which are significantly deregulated
under the given condition. So, if Gde = {g1, � � �, gm} is the set of differentially expressed genes,
and TGtf = {tg1, � � �, tgn} is the set of the TF target genes retrieved out of ORTI, then the kernel
set is the intersection of these two sets, i.e.,Gk = TGtf \ Gde.
2. Cluster genes within the kernel-set. For the remaining genes, gi 2 Gde − Gk, we aim to

calculate their concordance with the set of kernel genesGk. However, Gk may be heterogeneous
in expression patterns—factors such as directionality, regulation by other TFs, and time-
dependence can generate diversity of gene expression patterns within the kernel set. Thus,
genes that correlate poorly with the entire kernel set may at most be highly correlated with
only a subset of Gk. Accordingly, these subsets of co-regulated kernel genes are identified using
a clustering algorithm.

Commonly-used clustering algorithms (e.g., K-means, hierarchical, and self-organizing
map (SOM)) hold some assumptions or constraints which make them unsuitable for this appli-
cation. For instance, they often assume a user-defined number of clusters (or map grids in case
of SOM) while the number of co-regulated kernel genes is not a priori known and should be
determined on the fly. These algorithms also classify all data-points including outliers into at
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least one cluster which may adversely affect the clusters’ dominant patterns. We, however, are
interested in distinguishing the prevalent expression patterns of kernel genes from those of the
outliers. Furthermore, the clustering algorithms are usually designed to group data points into
two or more clusters, overlooking the situation when all the kernel genes follow relatively simi-
lar expression pattern forming a single cluster.

Consequently, we developed a customised clustering algorithm (Fig 4). This algorithm
groups genes whose reciprocal correlation value is above a given stringent cut-off threshold,
iteratively relaxes the cut-off threshold, and merges the clusters accordingly until reaching a
critical correlation cut-off threshold. The initial correlation cut-off λ0� 1.0, should be large
enough to avoid missing clusters of highly correlated genes. In our experiments, we set it to be
0.9 as it is an upper-bound of kernel genes’ mutual absolute correlation values. On the other
hand, the reduction step size ε> 0 should be small enough to ensure the placement of each
kernel gene into the best co-regulated cluster. We chose it to be 0.05. Smaller values for step
size or larger values for the initial correlation do not significantly affect the prediction perfor-
mance, although it may slightly de-accelerate the algorithmic rate. The key parameter, how-
ever, is the critical correlation λc< 1 which can either produce unnecessarily-high singletons
or place heterogeneous genes in the same cluster if it is chosen to be very large or small, respec-
tively. We observed that the performance should be reasonably stable if λc is set to a value such
that the corresponding correlation p-value� 0.01. Once the clustering is completed, singleton
clusters (i.e., outliers) can either be retained or removed from the subsequent analysis. In our
experiments, we considered outliers as noise in kernel set expression values, and removed them
prior to further analysis.
3. Calculate the concordance of DE genes. Using the proposed clustering algorithm, the

kernel genes are grouped into K clusters C1, C2. . ., CK, where cl denotes the centroid of cluster
Cl. We then define the cluster-based concordance of a DE gene gi with cluster Cl as the Pearson
correlation of the expression vectors of gi and the cluster’s centroid cl—i.e., δl(gi, Cl) = corr(gi,
cl). The kernel-set concordance (KSC) is then defined to be the maximum value of the cluster-
based concordance measures—i.e., δ(gi, Gk) = max(δ1(gi, C1), � � �, δl(gi, Cl)) —implying that a
gene is considered to be in concordance with the kernel set if it shows high correlation with at
least one cluster of co-regulated target genes. The schematic view of the calculation of kernel-
set concordance is illustrated by Fig 3.

In order to assess the significance of the kernel-set concordance scores, for each KSC, a
nominal p-value of the null hypothesis is estimated using the distribution of KSC scores under
the null hypothesis that gene labels does not matter. The null distribution is derived by 10,000
iterations of a permutation test procedure: randomly permuting the gene labels across the
entire microarray dataset, re-computing the KSC scores, and then drawing a random gene’s
score. The one-sided p-value of the observedKSC score is then calculated as the proportion of
sampled permutations where the KSC score was greater than or equal to the observed score.
The set of differentially expressed genes are sorted by p-value, with top-ranked genes passing a
chosen significance level being considered putative targets of the input TF.

Supporting Information

S1 File. List of kernel set TGs and DE genes with KSC p-value< 0.05 (i.e., potential novel
TGs) in AR and SREBF1 case studies.
(XLSX)

S2 File. Rankings of the biochemistry techniques used to detect TF-TG interactions
included in ORTI.
(PDF)
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S3 File. Performance of ORTI as compared to other TF-TG interaction databases in identi-
fyingmodulatedTFs when just the Rank 1 data were considered (Table A); the parameters
of Table 2 enrichment tests (Table B); functional terms enriched by TGs included in kernel
sets of AR (Table C) and SREBF1 (Table D) using MSigDB; details of preprocessing and
differential expression analyses for the adipogenesis time-coursedata used as a test case for
Application 1 (Fig A).
(PDF)
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