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ABSTRACT
◥

Purpose: Extensive work in preclinical models has shown
that microenvironmental cells influence many aspects of
cancer cell behavior, including metastatic potential and their
sensitivity to therapeutics. In the human setting, this behavior is
mainly correlated with the presence of immune cells. Here, in
addition to T cells, B cells, macrophages, and mast cells, we
identified the relevance of nonimmune cell types for breast
cancer survival and therapy benefit, including fibroblasts, myoe-
pithelial cells, muscle cells, endothelial cells, and seven distinct
epithelial cell types.

Experimental Design: Using single-cell sequencing data, we
generated reference profiles for all these cell types. We used these
reference profiles in deconvolution algorithms to optimally detangle
the cellular composition of more than 3,500 primary breast tumors

of patients that were enrolled in the SCAN-B and MATADOR
clinical trials, and for which bulk mRNA sequencing data were
available.

Results: This large data set enables us to identify and subse-
quently validate the cellular composition of microenvironments
that distinguish differential survival and treatment benefit for
different treatment regimens in patients with primary breast cancer.
In addition to immune cells, we have identified that survival and
therapy benefit are characterized by various contributions of dis-
tinct epithelial cell types.

Conclusions: From our study, we conclude that differential
survival and therapy benefit of patients with breast cancer are
characterized by distinct microenvironments that include specific
populations of immune and epithelial cells.

Introduction
Patients with breast cancer can respond differently to therapeutics

even for tumors with the same subtype. Although multiple mechan-
isms may explain heterogeneity in therapy benefit, preclinical work
has shown that the cellular composition of a tumor can influence

metastasis and treatment efficacy (1–8). For instance, clinical out-
comes upon different interventions often correlate with immune
infiltrate (9–12). However, the role of different epithelial and nonim-
mune cell types for the survival and therapy outcome of breast cancer
remains understudied, mainly because of the difficulty to detect these
cell types in the samples that are available from clinical trials.
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Deconvolution algorithms, such as CIBERSORT (13) and
DWLS (14), which disentangle bulk mRNA sequencing data into
contributions from individual cellular components, provide a good
estimate of the cellular composition of tumors (13, 15). Thesemethods
have been used to confirm the relevance of tumor-infiltrating immune
cells for breast cancer outcomes (16–18). However, the currently
available reference profiles for deconvolution (13, 19) were mostly
obtained from cells isolated from blood. Therefore, the reference
profiles for other cell types in a tumor (e.g., cancer cells, epithelial
cells, endothelial cells, muscle cells, and fibroblasts) are largely
unknown. In addition, the expression profile of immune cells isolated
from the blood and tumors can be different (20), and this can lead to
less reliable estimations of the abundance of different cell types (15).
Recently, reference profiles obtained from tumor-derived single-cell
mRNA sequencing data have been used to deconvolve the cellular
components of melanomas and ovarian tumors (14, 15, 19). However,
good reference profiles for breast cancer cell types are not yet available.

In this study, we created references profiles of all the cellular
components of human breast tumors through single-cell sequencing.
We optimally detangle the cellular composition of tumors for which
bulkmRNA sequencing data is available, a technique that fromhere on
we refer to as tumor cell deconvolution (TCD). We applied TCD to
determine the cellular composition of patients with breast cancer in
two clinical trials for which both bulk mRNA sequencing data and
clinical outcome are available: (i) 3,000 patients in the multicenter
prospective trial Sweden Cancerome Analysis Network - Breast
(SCAN-B; ref. 21), and (ii) 528 patients in the multicenter, prospective
randomized trial Microarray Analysis in breast cancer to Tailor
Adjuvant Drugs Or Regimens (MATADOR; refs. 22, 23). We identify
and subsequently validate specificmicroenvironments that distinguish
differential survival and therapy benefits of patients with breast cancer,
which include immune and nonimmune cell types (see flow charts for
the experimental setup in Supplementary Fig. S1).

Materials and Methods
SCAN-B trial data

We obtained the SCAN-BmRNA sequencing data and anonymized
patient data through Gene Expression Omnibus (GEO) GSE81538.

MATADOR trial data
The MATADOR (ISRCTN61893718) study is an open-label, mul-

ticenter randomized, phase III trial conducted in 29 centers in the
Netherlands. Six hundred and sixty-four female patients with pT1–3,

N0–3, M0 breast cancer were recruited onto the trial. The inclusion
criteria were described in detail elsewhere (22, 23).

The study protocol and amendments were approved by the ethical
committee of the Netherlands Cancer Institute. The study was con-
ducted in agreement with Good Clinical Practice guidelines and with
the Declaration of Helsinki. All patients provided written informed
consent to participate in the trial and to use the tumor tissue removed
at surgery for translational research. TheReporting Recommendations
for TumorMarker Prognostic Studies (REMARK) criteria were used to
report this study (38).

Treatment
Patients were randomly assigned (1:1) to 6 cycles of doxorubicin

60 mg/m2 and cyclophosphamide 600 mg/m2 every 2 weeks [dose
dense (dd) AC] or docetaxel 75 mg/m2, doxorubicin 50 mg/m2, and
cyclophosphamide 500 mg/m2 every 3 weeks (docetaxel-doxorubicin-
cyclophosphamide; TAC) by means of the automated ALEA system
(FormsVision BV) using Pocock minimization technique (24). Ran-
domization was performed centrally at the Netherlands Cancer Insti-
tute. G-CSF (pegfilgrastim) was given to all patients. Radiotherapy and
endocrine therapy were given according to the contemporary Dutch
guidelines.

Patient inclusion criteria for primary endpoint analysis of
MATADOR trial

Out of 664 patients, tumor tissue was available for gene expression
analysis for 604 (90.9%) patients. Library preparation failed in 7
patients. Six of 597 sequenced samples did not meet the quality checks
showing up as extreme outliers based on read counts per gene and in a
principal component analysis (PCA). Sixty-two patients had a clin-
ically low risk of recurrence according to the modified Adjuvant!
Online (25) and would not receive adjuvant chemotherapy according
to current guidelines. In this group, no events occurred. For one
patient, survival data was missing. The remaining 528 patients were
used to develop delta treatment score (DTS). For the analysis, we
excluded the Her2þ patients.

Objectives and endpoints
The primary objective of the trial was to identify a gene expression

profile for recurrence-free survival (RFS) benefit of either dose-dense
or taxane-containing chemotherapy and to assess its predictive per-
formance. RFS is defined as the time from randomization to loco-
regional recurrence, distant metastasis, or death by any cause,
whichever occurred first. The secondary objective was to directly
compare RFS, overall survival (OS), and toxicity of the two treat-
ment arms and has been described elsewhere (22, 23).

Statistics for MATADOR trial
The original statistical plan can be found in the MATADOR study

protocol. During the course of the study, it became clear that the event
rate was lower than expected. Therefore, an amendment was made to
the protocol to use a cross-validationmethod instead of a separation in
a training and a validation cohort.

RNA isolation and sequencing
Formalin-fixed paraffin-embedded (FFPE) material was collected

between 2004 and 2012. RNA was isolated from FFPE tissue with a
tumor cell percentage of at least 40% using the AllPrep DNA/RNA
Mini Kit according to the manufacturer’s instructions (Qiagen).
Quantification and purity were measured using the NanoDrop
2,000 spectrophotometer (Thermo Fisher Scientific) and the 2,100

Translational Relevance

Precision medicine for cancer, a strategy to fine-tune treatments
based on the properties of a patient tumor, is rapidly improving the
clinical management of patients with cancer. Here, we introduce
tumor cell deconvolution (TCD), a deconvolution algorithm that
allows us to precisely map the cellular composition of patient
tumors based on bulk RNA sequencing of patients’ biopsy. We
demonstrate that TCD can be used to identify cell populations that
are predictive to response to treatment. With the rapid develop-
ment of sequencing tools and the lowering of costs that accompany
this technique, TCD can be employed in the clinic to characterize
the cellular compositions of a tumor, to guide treatment decisions
and to maximize patient’s response to therapies.
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Bioanalyzer (Agilent Technologies). Libraries of cDNA were con-
structed with the TruSeq RNA Access Library Prep Kit (Illumina)
and single-end sequenced using the HiSeq 2,500 (Illumina). Bulk
mRNA sequencing data were analyzed using the RSEM package (26)
and the reads were aligned to the hg38 reference genome using
STAR (27) with default parameters. Transcripts per million values
were used in further analyses.

Batch effects of RNA sequencing
Tominimize batch effects that could arise during sample processing

for RNA sequencing (RNA-seq), large sets of samples were processed
within a relatively short time frame. This was a multicenter, random-
ized controlled trial, and samples were isolated and sequenced by
mixing samples from different centers and samples that had been
preserved in formalin for different lengths of time to control for
possible batch effects. During the computational analyses, we also
checked for batch effects caused by the isolation and sequencing runs
by PCA, but none could be identified.

Generation of single-cell suspension and staining for flow
cytometry

Following pathologic examination, tumor material was kept on
ice in DMEM/F12 þ GlutaMAX (GIBCO, Invitrogen Life Tech-
nologies), 1% HEPES, 1% penicillin–streptomycin from that point
onwards. Tumors were mechanically dissociated using sterile scal-
pels and enzymatically digested with 25 mg/mL DNase I (Roche)
and 15 W€unsch units TH Liberase/mL (Roche) diluted in PBS at
37�C for 35 minutes, followed by mashing through a 70-mm filter
(BD Falcon) while adding DMEM/F12 þ GlutaMAX (GIBCO,
Invitrogen Life Technologies), 1% HEPES, 1% penicillin–strepto-
mycin. Tumor cells were blocked in 80% FACS buffer [5 mmol/L
EDTA in PBS supplemented with 5% FCS/20% serum mix (50/50
normal goat serum; monx10961, Monosan) and FcgII/III receptor
blocking serum 2.4G2 (kind gift from L. Boon, Bioceros, the
Netherlands)] for 10 minutes on ice before labeling with EpCAM
PE (1B7, eBioscience), CD14-FITC (M-P-9, BD Biosciences) labeled
antibodies for 40 minutes on ice. DAPI was added as a cell
death marker, and cells were sorted either on a FACS AriaII Special
Ordered Research Product (BD Biosciences), on a FACS Jazz
(BD biosciences), or on a FACS Fusion (BD biosciences). A broad
FSC SSC gate was followed by a gate excluding doublets,
after which the DAPI-negative cells were selected. These DAPI-
negative cells were sorted into 384-well plates and further processed
for single-cell sequencing. To obtain enough epithelial (tumor)
cells and macrophages, additionally EpCAM-positive and CD14-
positive cells were selected and index-sorted into 384-well
plates and further processed for single-cell sequencing. For 3 of
12 patients, only EpCAM-positive and CD14-positive cells were
isolated and sequenced.

Single-cell mRNA sequencing
Single-cell mRNA sequencing was performed using Sort-seq as

described in Muraro and colleagues (28). Single-cell libraries were
sequenced on an Illumina NextSeq500 with 75-bp paired end reads.
Read1 contains the cell barcode and UniqueMolecule Identifier; read2
wasmapped to the hg38RefSeq transcriptome usingBurrows-Wheeler
Aligner with standard parameters. Single-cell analysis was performed
using Seurat (29). For each of the sorts, the percentage of living cells
varied between 1% and 5% of the total number of cells. In total, 14,592
cells from 12 different patients were sorted. Cells were required to have
at least 2,000 unique protein coding transcripts and subsequently log-

normalized to 10,000 transcripts per cell. With these filtering criteria,
6,580 were used for further analysis. The 5,000 most variable
features were selected for clustering. Clusters were identified using
the first 21 PCs with a resolution of 0.1; the cutoff for the number of
components used in the clustering analysis was chosen based on the
elbowplot form the Seurat package. The resolution of 0.1 yielded
a relatively small number of clusters but with well-defined expres-
sion profiles. Uniform Manifold Approximation and Projections
(UMAP) were also constructed using the first 21 PCs. We did not
observe much variation in the expression profiles of the noncan-
cerous cells between patients. This indicates that the batch effects
between patients are not strong enough to cause separate clustering
of the same cell type from different patients. Therefore, there was no
need for correcting batch effects.

Bulk mRNA sequencing analysis single-cell cohort
Bulk mRNA sequencing data for both the MATADOR cohort and

the single-cell data were analyzed using the RSEM package (26); reads
were aligned to the hg38 reference genome using STAR with default
parameters (27). Transcripts per million values were used in further
analyses. The count data for the SCAN B cohort was downloaded
through GEO. The SCAN B data were mapped to the same reference
genome (hg38) using the mapping algorithm Bowtie2. No batch
correction algorithm was required nor used to match the MATADOR
and SCAN B data sets.

Reference profile construction
To construct the reference profiles, all single cells belonging to the

same Seurat cluster were averaged.

Cell-type contribution predictions using TCD
DWLS was used with default parameters using the single-cell

derived reference profiles described above as reference profiles.

Prognostic cell type score from Cox proportional hazard model
with feature selection

The cell type score (CTSp) is a score based on the deconvolution-
derived cell type abundances and is predictive for prognosis. The CTSp
is the hazard for every patient is calculated as follows.

CTSp ¼ b1 � CTp ðAÞ

where b1 is the collection of coefficients for the selected cell types,
and CTp is the abundance of the selected cell types in patient p.

To find the optimal combination of cell types, a Cox proportional
hazard model for each individual feature (ci) is fitted. From this theN
best features are selected, which are theN features that give the highest
partial likelihood for the Cox proportional hazard model. For each of
these N best features a second feature, c2, is selected by iteratively
fitting a Coxmodel including the effects of c1 and c2: Finally theN best
combinations of two features are selected based on the partial likeli-
hood of the Cox proportional hazard models. This process is repeated
until all features, c1::cn, are included in the model, resulting in many
models eachwith a different combination of input features. Finally, the
model with the optimal combination of features (x), c1::cx, is selected,
which is the model with the lowest cross validated P value. Association
of the CTS with RFS was tested in a Cox proportional hazard model
corrected for the clinicopathologic features treatment, tumor size,
lymph node status, pathologic subtype, histologic grade, age, and type
of surgery.

Kester et al.

Clin Cancer Res; 28(5) March 1, 2022 CLINICAL CANCER RESEARCH962

https://github.com/lmcinnes/umap


Cell type–based DTS
TheDTS is a score that is predictive for chemotherapy benefit and is

calculated as follows. First, the optimal combination of features (cell
types) is determined using a forward feature selection routine, where
the complete set of possible features (n) are the 15 cell types predicted
by DWLS. A Cox proportional hazard model for each individual
feature (ci), in combination with T and the interaction between the
feature and T isfitted. From this, theN best features are selected, which
are the N features that give the highest partial likelihood for the Cox
proportional hazard model. For each of theseN best features a second
feature, c2, is selected by iteratively fitting a Cox model including the
main effects of c1, c2, and T, and the pairwise interactions between c
and T: Finally the N best combinations of two features are selected
based on the partial likelihood of the Cox proportional hazardmodels.
This process is repeated until all features, c1::cn, are included in the
model, resulting in many models each with a different combination of
input features. Finally, the model with the optimal combination of
features (x), c1::cx, is selected, which is the model with the lowest cross
validated P value. The coefficients from the Cox proportional hazard
with the lowest cross validated P value as determined in the training
set can be used to calculate a cell-type hazard score for each patient in
the test set. The HSCT is calculated as follows:

HSCTp ¼ b1 � CTp þ b2 � T þ b3 � CTp � T ðBÞ

where b1 is the vector of coefficients for themain effects of the selected
cell types, CTp is the abundance of the selected cell types in patient
p, b2 if the coefficient for the main effect of treatment; and b3 is the
vector of coefficients for the interaction effects between the selected cell
types and treatment. Finally, the DTSCT is calculated as follows:

DTSCTp ¼ HSCTp; T¼ 1 � HSCTp; T¼0 ðCÞ

where HSCTp; T¼1 is theHSCT for patient p when treated with treatment

T1 (TAC) and HSCTp; T¼0 is the HSCT for patient p when treated with

treatmentT¼ 0 (dose-dense doxorubicin–cyclophosphamide; ddAC).
The DTSCT is therefore the log ratio in hazard for a patient when
treated with TAC compared with when treated with ddAC. Predictive
power of the DTSCT was tested in a Cox proportional hazard model
with themain effect of theDTSCT , themain effect of treatment, and the
interaction between treatment and the DTSCT , corrected for clinico-
pathologic features tumor size, lymph node status, pathologic subtype,
histologic grade, age, and type of surgery.

Determination of CTS andDTS cutoffs for the various risk groups
Both the CTS and the DTS are a continuum without clear cutoffs.

To construct Kaplan–Meier graphs, cutoff points were chosen on
the upper and lower quartile for CTS: 25% of patients with the
lowest risk, 25% of patients with the highest risk, and 50% of pati-
ents with intermediate risk as determined by CTS. To construct
Kaplan–Meier graphs for DTS, cutoff points were chosen on the
upper and lower half of DTS: 50% of patients with the lowest risk
and 50% of patients with the highest risk as determined by DTS.

Generation of training and validation sets
For CTS, the patient cohort of the SCAN-B trial was split in three

groups randomly with forced equal distribution of the clinical vari-
ables. Next, thefirst groupwas used for training and the last two groups
were combined for validation. For DTS, the patient cohort of the
MATADOR trial was split in two groups randomly with forced equal
distribution of the clinical variables. Next, the first group was used for
training and the last two groups were combined for validation.

Data availability statement
The single-cell mRNA sequencing data are available through GEO:

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc¼GSE168410.
The bulk mRNA sequencing data is available through GEO:
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc¼GSE167977.
The private sensitive patient data of the MATADOR study requires
controlled access. Access to this dataset will be managed locally by the
Translational Review Board of the Netherlands Cancer Institute by
contacting Mark Opdam (m.opdam@nki.nl). The code for Treatment
Interaction Predictor is made available through CodeOcean (https://
codeocean.com/capsule/6732361/tree/v2).

Results
Generation of independent reference profiles using single-cell
mRNA sequencing of breast tumors

To optimally deconvolve the cellular composition of a tumor from
bulk mRNA sequencing data through deconvolution algorithms, it is
necessary to generate reliable reference profiles from the various
cellular components of the tumor. To obtain these reference profiles,
we randomly sorted living DAPI-negative cells from freshly isolated
breast tumors of twelve patients using flow cytometry and performed
single-cell sequencing (Supplementary Table S1). These patients were
not part of the SCAN-B orMATADOR clinical trials that are used later
in the manuscript for deconvolution.We additionally isolated, respec-
tively, EpCAM-positive and CD14-positive cells to acquire enough
cancer cells and macrophages. Next, we processed the samples for
single-cell mRNA sequencing and characterized the expression pro-
files of in total 6,580 cells, including cancer and noncancer cells. In
addition to single-cell mRNA sequencing, for 7 patients we collected
enoughmaterial to also analyze the tumors by bulkmRNA sequencing
and the cellular composition by pathological examination of hema-
toxylin and eosin (H&E) sections (see below).

Identification of the various cell types present in the tumor
microenvironment

To identify all the different cell types in the 6,580 cells that were
sequenced, we performed cluster analysis using the Seurat R package
and identified 15 clusters of cells with distinct expression profiles
(Fig. 1A). The gene expression profiles showed that most of the
clusters comprising cells of multiple patients represent the various
non-transformed cell types present in the tumor microenvironment
including cancer-associated fibroblasts (CAF), myoepithelial cells,
muscle cells, endothelial cells, macrophages, T cells, B cells, and mast
cells (Fig. 1B and C; Supplementary Fig. S2). Importantly, we did not
observe coclustering of microenvironmental cells depending on treat-
ment status of the patient (Fig. 1B; Supplementary Fig. S3A). These
data suggest that if expression profiles change upon neoadjuvant
treatment, these changes were not large enough to lead to separate
clusters of neoadjuvant treated and untreated microenvironmental
cells in our analyses (Fig. 1B). Although some epithelial cell (EC)
clusters (I, II, and V) contain cells isolated from both chemotherapy-
na€�ve and neoadjuvant-treated tumors, other EC clusters (III, IV, VI,
andVII) only contain cells isolated from either na€�ve or treated tumors
(Fig. 1B; Supplementary Fig. S3A). Importantly, because these EC
clusters are derived from individual patients, differential expression
between these clusters may therefore simply indicate variations
between individuals.

Next, to identify which clusters can contain noncancerous epithelial
cells, we isolated and sequenced cells from the contralateral non-
diseased breast tissue from patient 7. The noncancerous epithelial cells
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of patient 7 were present in EC-I and EC-II, suggesting that these
clusters contain a combination of transformed and nontransformed
cells (Supplementary Fig. S3B). Thiswas confirmed by the low variance
of the copy-number variation (CNV) across the genome in these
clusters (Supplementary Fig. S3C) compared with the higher variance
of the CNVs in the other clusters (Supplementary Fig. S3C). Of the
nontransformed cell cluster, EC-I had significantly increased
expression of the hormone receptors ESR1, AR, and PGR compared
with cluster EC-II (Supplementary Fig. S3D), suggesting a hormone
receptor–positive luminal origin. In addition, we performed the
PAM50 analysis on the single-cell data and we mapped the expres-
sion of KRT14, KRT5, ERBB2, and Ki67 (Supplementary Fig. S4).
This analysis shows that individual cells, assigned to different
subtypes by the PAM50 classification or specific marker genes, are

distributed throughout the different epithelial cell types that we
identified. Consequently, the various EC cell types do not represent
different known subtypes, but rather a fine-tuned classification of
intratumoral heterogeneity. Combined, these data show that single-
cell mRNA sequencing of breast tumors allowed us to identify the
expression profiles of the most prominent cell types that are present
in breast tumors.

Deconvolution of bulk mRNA data reveals robustly the cellular
composition of tumors

Based on the cluster analysis, we identified 15 different cell types in
human breast tumors. Next, we averaged the expression profile of all
cells within a cluster to generate reference profiles for each of the 15
identified cell types. We used these reference profiles to optimally

Figure 1.

Heterogeneity of breast tumors analyzed through single-cell mRNA sequencing.A,UMAPdimensional reduction of all cells using the Seurat analysis suite. Each color
andeach number represent an individual cluster.B,The sameUMAPplot as inAhighlighting thepatient of origin for each single cell.C,Expressionof cell type–specific
marker genes across all cell clusters. Size of the dot indicates the percentage of cells within a cluster that express amarker gene; the color indicates the average level
of expression in a cluster. The marker genes are examples of significantly enriched genes that can be found in each individual cell cluster.
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detangle the contribution of each cell type from bulk mRNA sequenc-
ing data using TCD. To test the robustness of this approach, in the
tumors of the 7 patients for which enough material was collected to
perform both bulk mRNA sequencing and pathological examining of
H&E sections, we estimated side-by-side the cellular composition of
the tumors by TCD and by a well-trained pathologist. Importantly, we
observed a strong correlation between H&E-based cell type scoring by
a pathologist and cell type scoring by TCD [Pearson correlation > 0.93;
95% confidence interval (CI) 0.84–0.97; Supplementary Data; Sup-
plementary Fig. S5A], showing that TCD can estimate the cellular
composition of a tumor with similar precision as a pathologist. To
further assess the strength of our approach, we compared our method
(that uses DWLS; ref. 14) with other deconvolution algorithms
[CIBERSORT (13) and MuSiC (30)]. Considering that important
cell types are missing from the default reference data of these
algorithms, we used our reference profiles and we applied them
to CIBERSORT and MuSiC. We observed a stronger correlation
between the pathologist score and TCD deconvolution score when
using DWLS (Pearson correlation ¼ 0.93) than when using CIBER-
SORT (Pearson correlation ¼ 0.83) or MuSiC (Pearson correlation
¼ 0.54), thereby illustrating the robustness of our method (Sup-
plementary Fig. S5A–S5C).

Next, we questioned whether we could further improve the robust-
ness of the TCD-estimated cellular composition by refining the cell
type reference profiles if we would increase the size of the single-cell
sequencing patient cohort. We redetermined the reference profiles of
the different cell types based on iterative sampling of data of different
numbers of patients from the cohort of 12 patients. We observed that
the correlation does not improve significantly when the cell type
reference profiles are based on single-cell sequencing data of a patient
cohort larger than 7 (Supplementary Fig. S5D).We next also calculated
the correlation per individual cell type that was scored by the pathol-
ogist, and again increasing the number of patients from 7 to 12 did not
increase the correlation between pathologist scored cell type contri-
bution and deconvolution-derived contribution (Supplementary
Fig. S5E). Finally, we found in patients of the MATRADOR trial a
strong correlation between pathology TIL scores and TCD TIL scores,
confirming the robustness of our method in an independent set of
patients (Supplementary Fig. S5F). Combined, these data indicate that
TCD can reliably estimate the cellular composition of tumors.

Distinct cellular compositions of tumors of the same pathologic
breast cancer subtype

Based on histopathologic and molecular features, breast cancer can
be classified into different subtypes with distinct outcomes and
response to therapies, including ER/PR positive and HER2 negative,
HER2 positive, and triple-negative tumors (31–34). We used TCD to
detangle the cellular composition of over 3,500 tumors of breast cancer
patients with different subtypes and treatment histories that were
enrolled in the MATADOR and SCAN-B clinical trials, and for which
bulk mRNA sequencing data were available (Figs. 2 and 3). However,
considering that the tumors used to generate our reference profiles did
not include Her2þ patients, we excluded these patients from further
analysis. From here on, the contribution of a cell type that is deter-
mined by TCD will be denoted as cell typeTCD.

Although the distinct pathologic subtypes have distinct outcome
and response to therapies (31–34), hierarchical clustering of the cell
type contribution matrix of patients in the MATADOR and SCAN-B
trials lead to clustering of patients with the same pathological subtypes
(Figs. 2 and 3). Importantly, each pathologic subtype was divided in
two or more subclusters with specific cellular compositions. For

example, in the MATADOR trial, we observe two clusters of triple-
negative patients, one of which was enriched for recurrence events and
showed high contribution from EC-VTCD and low contributions from
immune cells including macrophagesTCD, B cellsTCD, and T cellsTCD

(Fig. 2A, indicated in the left orange dotted box). The other cluster of
triple-negative patients was depleted of recurrence events and had low
contribution of EC-VTCD and high contribution of immune cells
(Fig. 2A, indicated in the right blue dotted box). Kaplan–Meier
analysis confirmed the differential RFS probability of triple-negative
patients with high and low total immune infiltratesTCD (sum of T cells,
B cells, macrophages, and mast cells; Fig. 2B). The same two clusters
can be found in the SCAN-B data (Fig. 3, blue and orange dotted
boxes). Although luminal and triple-negative patients do not
completely fall into separate clusters, we did identify an enrichment
for triple-negative patients in two clusters with cellular compositions
with high contribution of EC-VTCD and low contribution of immune
cells, and cellular compositions with low contribution of EC-VTCD and
high contribution of immune cells (Fig. 3A, indicated in the dotted
boxes). Moreover, in line with the MATADOR data, patients in the
SCAN-B trial with triple-negative breast tumors with high levels of
immune cells have better survival than patients with triple-negative
tumor that contain low levels of immune cells (Fig. 3B). These data are
in line with previous notions that high immune infiltrate is correlated
with better clinical outcomes (9, 11, 12, 35–37) illustrating the power of
TCD to find relevant microenvironments. Our data also illustrate that
in addition to immune cells, specific epithelial cell types are part of
specific microenvironments conferring differential clinical outcomes
(e.g., the abundance of EC-V).

Differential RFS is characterized by different tumor
compositions

Considering the increasing amount of evidence that the cellular
composition of a tumor is important both in the development of
metastases and in any benefit from treatment (1–6), we aimed to
investigate whether differential RFS is characterized by different tumor
compositions (i.e., cell type contributions as determined by TCD). For
each patient in the SCAN-B trial, we calculated the cell type contribu-
tions byTCD.Next, we split the trial in a training set (first 892 patients)
and a validation set (last 1,779 patients) with equal distribution of
clinical variables (Supplementary Table S2). On the training set, we
calculated a cell type score (CTS), a Cox regression score based on cell
type contribution that is prognostic for the RFS. In our training set, we
calculated the CTS in a 10-fold cross validation setting, where within
each of the 10 folds, the optimal combination of cell types is selected
using forward feature selection. The model with the lowest cross
validation P value was selected (see Methods) and subsequently fixed
and used in the independent SCAN-B validation set.We observed that
the CTS of this fixed model was significantly prognostic in a Cox
regressionmodel for survival in the validation set (Likelihood ratio test
P < 1–12 and P ¼ 0.003 corrected for clinicopathologic variables;
Supplementary Table S3). We assigned three subgroups: 25% of
patients with the lowest risk, 25% of patients with the highest risk,
and 50% of the patients with intermediate risk. These subgroups
indeed had clear distinct RFS both in the training and validation
cohorts as shown in the Kaplan–Meier analyses (Fig. 4A and B;
Supplementary Table S4). To validate these findings in a completely
independent patient cohort, we calculated the CTS score for the same
fixed model on the MATADOR patients and again observed that the
CTSwas significantly prognostic for survival in aCox regressionmodel
(Likelihood ratio test P < 1–6 and P < 0.001 corrected for clinicopath-
ologic variables; Supplementary Table S5). By analyzing the same three
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subgroups in the independent MATADOR cohort, we could validate
the differential RFS for the different subgroups (Fig. 4C; Supplemen-
tary Table S6). Next, we compared the risk scores determined by CTS
with the PAM50 subtypes. In the SCAN-B (Supplementary Table S4),
but not in theMATADOR cohort (Supplementary Table S6), we found
an over-representation of the basal subtype in the high-risk group as
well as an over-representation of the luminal A subtype in the low- and
intermediate-risk groups. To test the prognostic ability of CTS within
individual subtypes, we next split the patient cohorts in the SCAN-B
andMATADOR trials into triple-negative and luminal groups. Impor-
tantly, in the cohorts with either triple-negative or luminal patients, we
observed that CTS also successfully assigned the different risk groups
(Supplementary Fig. S6).

Next, we investigated the differences in the cellular composition of
the different subgroups with distinct risks (Fig. 4D and E). The CTS,
and therefore the different subgroups, are mainly based on different
contributions of EC-IITCD cells, EC-VTCD cells, EC-VITCD cells, macro-
phagesTCD, T cellsTCD, B cellsTCD, and myoepithelial cellsTCD (Fig. 4D
and E). The low-risk group is enriched for EC-VITCD cells, T cellsTCD,
and B cellsTCD (Fig. 4D and E). Our findings that some immune cells
are enriched in the tumors of the low-risk group is in line with previous
findings that high immune infiltrate is correlated with better clinical
outcomes (23, 35, 36), again showing that our method robustly
identifies relevant microenvironments. Moreover, in line with the
preclinical findings that macrophages can have both tumor-
supporting and tumor-suppressing phenotypes, we find

Figure 2.

Deconvolution of the MATADOR bulk mRNA
sequencing data. A, Results of the deconvolu-
tion of the bulk mRNA sequencing data from
the MATADOR trial using TCD. The top bars
indicate the pathologic subtype, PAM50 clas-
sification, total immune content, and 5-year
recurrence status of each patient. The middle
bars show the contribution of all the ECs.
The bottom set of bars shows the contribution
from the microenvironmental cell types
as defined by TCD. B, Overall survival prob-
abilities for triple-negative patients with
low (<median) or high (>median) immune
infiltrate as determined by TCD.
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macrophagesTCD to be present both in a high- and low-risk group. In
addition to identifying immune cells, we also find differential abun-
dance for epithelial cell types (EC-II, EC-V, and EC-VI). For example,
the high-risk grouphas high contribution fromEC-IITCD and EC-VTCD

cells. Combined, we conclude that TCD of the SCAN-B trial enabled us
to identify and subsequently validate specific microenvironments
that distinguish differential survival of patients with breast cancer, and
show the relevance of various types of immune cells for these environ-
ments, but also the relevance of various epithelial cell types.

Differential treatment benefit is characterized by different
tumor compositions

Because preclinical and clinical data suggest that the microenvi-
ronment of a tumor is important for therapy benefit (1–6), we sought

to investigate whether differential outcome after treatment is charac-
terized by distinct cellular compositions as determined by TCD. To do
this, we further analyzed the TCD results of the MATADOR trial. In
this randomized controlled trial, patients received adjuvant treatment
with either ddAC or TAC with a median follow-up of 7 years. We
hypothesized that for every cellular composition, there is a certain ratio
between the hazard if that patient would be treated with TAC and the
hazard if that patient would be treated with ddAC. By subtracting the
linear predictors from a Cox model, we obtain aDTS that is the log of
this HR and directly shows which treatment provides the better
outcome: DTS < 0 indicates better outcome when treated with ddAC
andDTS> 0 indicates better outcomewhen treatedwithTAC.We split
the patient cohort of the MATADOR trial in a training set of 254
patients and a validation set of 256 patients with equal distribution of

Figure 3.

Deconvolution of the SCAN-B bulk mRNA
sequencing data. A, Results of the decon-
volution of the bulk mRNA sequencing
data from the SCAN-B trial using TCD. The
top bars indicate the pathologic subtype,
PAM50 classification, total immune con-
tent, and 5-year recurrence status of each
patient. The middle bars show the contri-
bution of all the ECs. The bottom set of
bars shows the contribution from the
microenvironmental cell types as defined
by TCD. B, OS probabilities for triple-
negative patients with low (<median)
or high (>median) immune infiltrate as
determined by TCD.
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clinical variables (Supplementary Table S7). To determine the DTS for
all cellular compositions (DTSCT), we constructed a Cox proportional
hazardmodel based on the cell type contributions and their interaction
with treatment on the training set (see Methods). The optimal
combination of cell types is determined through a 10-fold cross
validation of the training set of patients (see Methods). We then tested
the resulting model in the validation set of patients. There was a
significant interaction between the DTSCT and treatment in a Cox
proportional hazard model (Pinteraction < 0.001 and Pinteraction ¼ 0.017
corrected for clinicopathologic variables; Fig. 5A; Supplementary
Table S8). Next, we assigned two subgroups: 50% of the patients with
the lowest DTSCT and 50% of the patients with the highest DTSCT

(Supplementary Table S9). For all patients from the MATADOR trial
that had an event, we plotted the DTSCT in a forest plot (Fig. 5B). This
plot demonstrates that within the patient that had an event in the
group with high DTSCT, there is an overrepresentation of patients that
were treated with ddAC (Fig. 5B). This is in line with the Kaplan–
Meier analysis that shows that patients with a highDTSCT have a better
survival probability if treated with TAC than with ddAC. This data

shows that DTS can distinguish differential treatment benefits
(Fig. 5C). The interaction between patients with high DTSCT and
patients with lowDTSCT and treatment was statistically significant in a
Cox proportional hazard model corrected for clinicopathologic vari-
ables (P ¼ 0.047; Supplementary Table S10).

Next, we analyzed the differential cellular composition between
the patient groups with high and low DTSCT. DTSCT is mainly
based on the contribution of EC-V, myoepithelial cells, and T
cells. This analysis showed that high contributions of T cellsTCD

and myoepithelial cellsTCD and a low contribution of EC-VTCD

result in higher DTSCT and therefore represents the specific
microenvironment for better outcome on TAC, while high con-
tributions from EC-VTCD, and a low contribution of myoepithelial
cellsTCD and T cellsTCD result in lower DTSCT and therefore
represents a microenvironment for better outcome on ddAC
(Fig. 5D and E). From this data, we conclude that differential
treatment benefits for ddAC and TAC is characterized by specific
microenvironments containing various abundances of immune and
epithelial cell types.

Figure 4.

Considering the complete cellular heterogeneity has prognostic value. A, Survival probabilities for the three different patient groups in the SCAN-B training set as
ranked by CTS. Determination of the three patient groups is based on quartiles: 25% of patients with the lowest risk, 25% of patients with the highest risk, and 50% of
the patients in the intermediate-risk group.B, Survival probabilities for the three different patient groups in the SCAN-B validation set.C, Survival probabilities for the
three different patient groups in theMATADOR cohort.D and E,EC-II, V, VI andmyoepithelial-, B-, T cells, andmacrophages are themain contributors for determining
CTS. The contribution of these cell types in the three different patient groups for the SCAN-B validation set (D) and MATADOR set (E).
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Discussion
Breast cancer is a heterogeneous disease both in terms of

cellular composition and therapy benefit. We used deconvolution
of bulk RNA sequencing data to unravel the cellular compositions
of tumors of patients with differential survival and therapy
benefit. Although tumor cellular composition can directly be
determined with single-cell mRNA sequencing, this technique
cannot be routinely performed for individual patients. Deconvo-
lution methods are an alternative to obtain similar information on
the cellular heterogeneity of a tumor from bulk mRNA sequencing
data (13, 15). Importantly, if bulk mRNA sequencing is available
from clinical trials, it can be used to determine the cellular
composition without the need of extensive pathology examination.
Moreover, deconvolution can estimate the contribution of cell types

that cannot be distinguished by standard pathology (e.g., contri-
bution of different ECs).

To obtain accurate deconvolution results, we constructed 15 ref-
erence profiles from single cells isolated directly from breast tumors.
Our reference profiles also have some limitations. First, the reference
profiles were constructed using samples from relatively young patients
(<57 years) and did not include Her2þ patients. We have therefore
excluded the Her2þ patient group in our analyses. Future single-cell
mRNA sequencing studies may further improve our reference profiles.

By deconvolution of the bulk mRNA data from patients in the
MATADOR and SCAN-B trials, we identified cellular compositions
that characterize subgroups of patients with differential survival and
treatment benefit. Although breast tumors can be classified to specific
IHC subtypes, our approach allows for further refinement of these

Figure 5.

Considering the complete cellular heterogene-
ity for chemotherapy selection. A, Cox propor-
tional hazard model for patients treated with
TAC (orange) or ddAC (blue) based on their
DTSCT as determined by the Cox model with
feature selection (see Methods). x-axis depicts
the DTSCT, y-axis depicts the logarithm of the
HR, gray areas indicate the 95% confidence
interval of the HR. P value depicted in the
panel is for the entire Cox proportional
hazard model. P value for the interaction
between DTSCT and the chemotherapy treat-
ment is <0.001 and <0.001 for uncorrected
and models corrected for clinicopathologic
factors, respectively. B, Two subgroups were
assigned: 50% of the patients with the
lowest DTSCT and 50% of the patients with
the highest DTSCT. Shown is the forest plot for
all patients that had an event in the
MATADOR trial. The dotted line indicates the
separation between the high-risk (high
DTSCT) and low-risk (high DTSCT) patients.
C, Survival probabilities for the high-risk and
low-risk patient groups treated with either
TAC or ddAC. D, Results of the deconvolution
of the bulk mRNA sequencing data from the
MATADOR trial using TCD. The bars show the
contribution from the cell types as defined by
TCD. E, EC-V, myoepithelial cells, and T cells
are the main contributors for determining
DTSCT. The plot illustrates the contribution of
these cell types in the two patient groups.
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subtypes based on specific cellular compositions. We observed that
within subtypes, patients’ tumors have different cellular compositions
which are associated with different survival and therapy benefit. For
example, TNBC patients’ tumors with a high abundance of immune
cells, such as T cellsTCD, B cellsTCD, and macrophagesTCD, have a
much better prognosis than their counterpart with tumors with low
abundance of immune cells. This is in line with previous work
showing that high immune infiltrate in breast and other types of
cancer is correlated with better clinical outcomes upon treat-
ments (9, 11, 12, 35). More precisely, we found that high infiltration
of immune cells correlates with better response to taxane-
containing chemotherapy. It is therefore possible that T cells, B
cells, and macrophages, which are abundant in good responders to
TAC, may drive the efficacy of taxane in vivo. In addition to
immune cells, we have identified that survival and therapy benefit
are characterized by various contributions of distinct epithelial cell
types. Future work should establish the biological differences and
functions of these different epithelial cell types.

In conclusion, our study shows that TCD is a powerful tool to
determine the cellular compositions of tumors enabling the char-
acterization of specific microenvironments that are associated with
differential survival and treatment benefit. This promising method
may allow further tailoring of treatment in the future, ultimately
leading to higher survival rates and/or better quality of life.
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