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Alzheimer’s disease (AD) is the most common cause of senile dementia. Although
AD research has made important breakthroughs, the pathogenesis of this disease
remains unclear, and specific AD diagnostic biomarkers and therapeutic strategies are
still lacking. Recent studies have demonstrated that neuroinflammation is involved in AD
pathogenesis and is closely related to other health effects. MicroRNAs (miRNAs) are a
class of endogenous short sequence non-coding RNAs that indirectly inhibit translation
or directly degrade messenger RNA (mRNA) by specifically binding to its 3′ untranslated
region (UTR). Several broadly expressed miRNAs including miR-21, miR-146a, and miR-
155, have now been shown to regulate microglia/astrocytes activation. Other miRNAs,
including miR-126 and miR-132, show a progressive link to the neuroinflammatory
signaling. Therefore, further studies on these inflamma-miRNAs may shed light on the
pathological mechanisms of AD. The differential expression of inflamma-miRNAs (such
as miR-29a, miR-125b, and miR-126-5p) in the peripheral circulation may respond to
AD progression, similar to inflammation, and therefore may become potential diagnostic
biomarkers for AD. Moreover, inflamma-miRNAs could also be promising therapeutic
targets for AD treatment. This review provides insights into the role of inflamma-miRNAs
in AD, as well as an overview of general inflamma-miRNA biology, their implications in
pathophysiology, and their potential roles as biomarkers and therapeutic targets.
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INTRODUCTION

Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders of the
central nervous system (CNS) (Mangialasche et al., 2010). Its pathological features include
neuroinflammatory plaques and neurofibrillary tangles, which are caused by abnormal deposits
of amyloid-beta (Aβ) and hyperphosphorylated tau (p-Tau) proteins, respectively (Sun B. L.
et al., 2018). The clinical manifestations of AD include cognitive dysfunction, psychological
abnormalities, and an inability to perform simple everyday tasks that require some degree of
cognitive acuity (Jacobs et al., 2018). The mechanisms that drive AD pathogenesis have not yet
been fully elucidated. However, several hypotheses have been proposed, including the cholinergic
neuron hypothesis, the Aβ toxicity hypothesis, and the Tau hypothesis (Ballard et al., 2011), among
which the Aβ toxicity hypothesis is the most generally accepted. Aβ aggregation, especially Aβ42,
is currently recognized as the main mediator of AD pathogenesis due to its ability to assemble into
insoluble toxic fibrils that aggregate to form a neurotoxic β-fold lamellar structure. These structures
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progressively develop into neuritic plaques, which is an
important driver of AD pathogenesis (Kim J. et al., 2009; Benilova
et al., 2012). Aβ is thus considered a neurotoxic protein that
activates complement and microglia and accelerates cell death
through inflammatory responses (Keren-Shaul et al., 2017).
Additionally, gliosis has been identified around senile plaques
and neurofibrillary tangles (Terada et al., 2001). Aβ can also
stimulate microglia to release inflammatory factors with strong
neurotoxicity and promote the occurrence of inflammatory
responses (Lueg et al., 2015). The onset and development of AD
may thus result from the activation of inflammatory responses in
the brain (Hansen et al., 2018). The potent immune response that
follows Aβ stimulation may result in an indiscriminate damage of
healthy nerve tissue, thus resulting in nerve injury and neuronal
death (Ceccom et al., 2014). Moreover, inflammatory cytokines
and lymphocytes entering the brain through the blood–brain
barrier (BBB) can also trigger an inflammatory response in AD
patients, and these pathological mechanisms are likely related
to the effects of intercellular adhesion molecule-1 (ICAM-1)
(Minogue et al., 2014; Solberg et al., 2014).

MicroRNAs (miRNAs) are a class of small endogenous non-
coding RNAs approximately 18–25 nt in length (Hombach and
Kretz, 2016). By interacting with the 3′ untranslated region
(UTR) of target messenger RNA (mRNA), miRNAs degrade
mRNA or inhibit protein translation and exert a negative
regulatory effect. In addition to inhibiting gene expression,
miRNA can also enhance gene expression, and its binding site in
the target mRNA is not always limited to the 3′ UTR (Baek et al.,
2008; Selbach et al., 2008). The specific expression of miRNA
in immune cells suggests its role in regulating the proliferation,
differentiation, and function of immune cells (Essandoh et al.,
2016). Innate immunity is the first line of attack against bacteria,
viruses, and other pathogens, and miRNA plays an important
role in regulating innate immunity (Kumar and Bot, 2017).
Recent studies have shown that miR-155, miR-146, and miR-223
play an important role in the regulation of acute inflammatory
responses induced by pathogens via Toll-like receptors (TLRs)
(Vegh et al., 2013). To study the regulatory role of miRNA in
innate immunity, Taganov et al. (2006) examined the expression
of 200 miRNAs in the THP-1 human monocytic leukemia cell
line in response to lipopolysaccharide (LPS) exposure, and found
that miR-146, miR-132, and miR-155 were upregulated in LPS-
treated cells as compared to untreated cell. Interleukin 1 receptor-
associated kinase 1 (IRAK1) and tumor necrosis factor receptor-
associated factor 6 (TRAF6) are important adaptive molecules
downstream of the TLR signaling pathway, which can cause the
activation of nuclear factor κB (NF-κB) and activated protein
1 (AP-1) transcription factors, leading to increased cytokine
release (Ghosh and Dass, 2016; Strickson et al., 2017). MiR-
146a has a binding site on IRAK1 and TRAF6, and exerts a
negative regulatory effect on this pathway (Williams et al., 2008).
Interferon (INF)-γ/β can induce the upregulation of miR-155
in macrophages through autocrine and paracrine pathways of
tumor necrosis factor α (TNF-α) (O’connell et al., 2007). MiR-
155 also promotes the expression of TNF-α, suggesting that it
plays a positive role in regulating the release of inflammatory
factors in the innate immune response (Pedersen et al., 2009).

miRNAs are also involved in adaptive immune responses such
as immune cell activation, clonal proliferation, and antigen
presentation. The upregulation of miR-181a can enable T cells to
recognize inhibitory antigen peptides as active antigen peptides
and enhance T cell signal transduction (Li et al., 2007). MiR-
150, which is specifically expressed in mature lymphocytes,
has been linked to the process of B cell differentiation. High
expression of miR-150 in the spleen and thymus inhibits the
differentiation of primary B cells into proprecursor B cells, thus
affecting the formation of mature B cells (Zhou et al., 2007; Hu
et al., 2018). However, miR-150 did not affect the formation
of CD4 T cells, CD8 T cells, granulocytes, or macrophages
(Lin et al., 2008). Several studies have confirmed that some
miRNAs are involved in the regulation of inflammation, among
which the most common ones include miR-21, miR-146a, and
miR-155. Therefore, the term “inflamma-miRs” was coined to
refer to these miRNAs (Quinn and O’neill, 2011). Further,
additional studies have progressively linked miRNAs to the
neuroinflammatory signaling, including NF-κB signaling (Amjad
et al., 2019), TLR signaling pathway (Paschon et al., 2016), B
cell receptor signaling (Borbet et al., 2021), and Jak/Stat signaling
(Zhang M. et al., 2013).

Inflammation has been associated with all stages of AD
pathogenesis, and the mechanisms that drive the inflammatory
response intricately interact with other processes that jointly
damage the nervous system and promote the onset and
progression of AD. Therefore, the inflammatory response is
not a passive system triggered by senile plaques and neuronal
tangles during AD progression but rather an equally important
pathogenic factor (Zhang B. et al., 2013). In this review, we
summarized the most recent evidence for the involvement of
inflamma-miRs in modulating the proinflammatory response in
AD and further discussed the potential of circulating inflamma-
miRs as biomarkers for the diagnosis and monitoring of AD
progression, as well as the possibility of treating AD by regulating
the expression of inflamma-miRs.

INFLAMMATION IN ALZHEIMER’S
DISEASE

Neuroinflammation plays an important role in the complex
pathogenesis of AD. One of the main characteristics of this
disease is the excessive activation of microglia, significant changes
in neuronal morphology and function, and the production of a
large number of inflammatory factors (Saito and Saido, 2018).
Pathological studies of AD patients have demonstrated that a
large number of microglia accumulate around and infiltrate the
senile plaques, suggesting that microglia are closely related to AD
progression (Mosher and Wyss-Coray, 2014). Aβ oligomers can
activate pattern recognition receptors and related complements
on the surface of microglia, triggering inflammatory responses
(Chiarini et al., 2020). Activated microglia transform from a
branched structure to an amoeba-like morphology and exhibit
phagocytosis, which clears damaged or dead cells and Aβ

(Tejera and Heneka, 2019). Additionally, continuously activated
microglia can release a variety of inflammatory factors, which
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FIGURE 1 | Cumulative effect of inflamma-miRNAs on inflammatory signaling pathways. Multiple inflamma-miRNAs may play a synergistic role in different
inflammatory pathways. For instance, miR-146a targets different components of the MyD88/TLR/NF-κB pathways and microglia polarization. MiR-155 targets
SOCS1 and SHIP1, whereas miR-125b, miR-146a, miR-155, Let-7, and miR-181 regulate multiple inflammatory mediators. C/EBP transcription factors are
important for various inflammatory processes such as M1/M2 polarization and are targeted by Let-7. C/EBP, CCAAT/enhancer-binding protein; DAMPs,
damage-associated molecular patterns; IFR, interferon receptor; IRAK, interleukin 1 receptor-associated kinase; NF-κB, nuclear factor κB; TLRs, Toll-like receptors;
TNF, tumor necrosis factor; TRAF, tumor necrosis factor receptor-associated factor.

coincides with a significant decrease in the expression levels of
Aβ-binding receptors and Aβ-degrading enzymes, as well as Aβ

clearance capacity (Hickman et al., 2008). Reactive oxygen species
(ROS) released by microglia serve as the second messenger to
activate the NF-κB dependent signaling pathway, which can
induce the production of a large number of inflammatory factors,
thereby amplifying the inflammatory response and triggering
a vicious cycle (Kempuraj et al., 2016). The pathological
accumulation of tau protein is a hallmark of AD and related tau
protein diseases. Maphis et al. (2017) demonstrated that the lack
of the microglial fractalkine receptor CX3CR1 accelerated tau
pathology and memory impairment. Additionally, recent studies
in hTauCx3cr1(−/−) mice further confirmed that changes in the
morphology of microglia may alter the brain microenvironment,
which can drive tau pathology in a cell-autonomous manner
and promote the propagation of misfolded tau proteins within
anatomically connected regions of the brain (Maphis et al., 2015).

Microglia can express multiple types of recognition receptors
to identify pathology-related and injury-related molecular
patterns in the surrounding environment, thereby activating
downstream signaling pathways in a cascade that leads to the
maturation and release of neuroimmune inflammatory factors
(Heneka et al., 2015). NLRP3 inflammasomes accelerate the
progression of AD disease. Studies have shown that various
neuroinflammatory factors are highly expressed in autopsy brain
tissues of AD patients (Ozaki et al., 2015). More recent studies
established a link between NLRP3 inflammasomes and AD

pathology. Aβ can induce signal transduction associated with
the NLRP3 inflammasome in microglia in an injury-specific
molecular pattern to produce neuroinflammatory factors (Yang
et al., 2019). Over-activated microglia produce a large number of
neuroinflammatory factors, of which the extracellular superoxide
nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2)
was identified as the initiator of neuroinflammation-mediated
neuronal degeneration (Tu et al., 2019). Ansari and Scheff
(2011) found that NOX2 was upregulated in the frontal and
temporal cortex of AD patients. Therefore, the upregulation
of NOX2-related redox pathways is thought to be involved
in the early pathogenesis and progression of AD (Ansari
and Scheff, 2011). TLR2, TLR4, and Aβ are involved in
the activation of microglia and neurodegeneration during AD
(Balducci et al., 2017). Aβ activates microglia through TLR2
to produce neuroinflammatory factors, including TNF-α, IL-
6, and interleukin-1β (IL-1β) (Kim C. et al., 2016). The Aβ-
induced NF-κB signaling pathway also requires the involvement
of TLR2 and TLR4, suggesting that TLRs play an important
role in neuroinflammatory plaque deposition (O’halloran et al.,
2014). The NF-κB signaling pathway plays a key role in
the activation of microglia (Zusso et al., 2019). In patients
with AD, activated NF-κB is mainly present in neurons and
microglia surrounding neuroinflammatory plaques (Bronzuoli
et al., 2016). Additionally, activation of the NF-κB pathway
upregulates the expression of the β-site amyloid precursor
protein cleaving enzyme 1 (BACE1) gene and promotes APP
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TABLE 1 | The key inflamma-miRNAs involved in the pathogenesis of Alzheimer’s disease.

miRNAs Model/cell type Expression Pathological roles References

miR-125b Hippocampal and cortical
neurons of rat/neuroblastoma
Neuro2a APPSwe/19 cells

Up-regulated Increases the activities of TNF-α, IL-1β, IL-6, acts as a
pro-inflammatory factor to promote AD onset

Banzhaf-Strathmann
et al., 2014; Jin et al.,
2018

miR-29a PBMCs in AD patients Up-regulated Inhibits the NF-κB signaling pathway Sedighi et al., 2019

miR-126-3p Cortical or hippocampal
neurons from rat embryos

Up-regulated Interferes with the neuroprotective effects of IGF-1 by
downregulating the expression of PI3K and ERK pathway

Kim W. et al., 2016

miR-146a Temporal cortex of AD
patients/human THP-1 cells

Up-regulated Involves in the negative feedback regulation of NF-κB
activation; attenuates astrocytic inflammation; induces TLR
tolerance in macrophages

Sethi and Lukiw, 2009;
Nahid et al., 2011;
Alexandrov et al., 2014

miR-155 3xTg AD mice Up-regulated Promotes microglia and astrocyte activation, increases
production of inflammatory mediators such as IL-6 and IFN-β

Liu D. et al., 2019; Teter
et al., 2019

Let-7 C57Bl/6J mice Up-regulated Acts both as extracellular signaling molecules and as ligands for
TLR7 in microglia and neurons

Lehmann et al., 2012

miR-181 3xTg-AD mice Up-regulated Regulates the expression of Fos and SIRT-1 Rodriguez-Ortiz et al.,
2014

AD, Alzheimer’s disease; PBMC, peripheral blood mononuclear cell.

splicing to generate large amounts of Aβ (Jha et al., 2019).
P38MAPK is involved in the signal cascade that controls
cytokines and cellular stress response. Aβ activates p38MAPK
and leads to an increase in the amount of calcium influx and
ROS, which leads to increased mitochondrial oxidative stress
and promotes AD onset and progression (Kheiri et al., 2018).
Moreover, p38MAPK is also involved in the pathogenesis of
AD by promoting Tau phosphorylation (Sun Y. et al., 2017),
thus reducing synaptic plasticity (Beamer and Corrêa, 2021)
and activating microglia to release pro-inflammatory factors
(Liu Q. et al., 2019).

Astrocytes also play an important role in the pathogenesis
of AD. In addition to being activated by Aβ, astrocytes
are also activated by IL-1β released by microglia (Johnson
et al., 2020). Activated astrocytes release a large number
of inflammatory factors such as TNF-α, IL-1β, IFN-γ, and
nitric oxide. The neurotoxic effects of these inflammatory
factors damage neurons and are involved in a series of
inflammatory responses, thus inducing Aβ accumulation (Zhao
et al., 2011). In the brain tissues of AD patients, reactive
astrocytes overexpress the mRNA of BACE1, which may
contribute to Aβ plaque formation (Rossner et al., 2005).
Additionally, activated astrocytes can overexpress the serine
protease inhibitor α1-antichymotrypsin, which inhibits Aβ

cleavage and acts as a neurotoxin that induces abnormal
hyperphosphorylation of tau. Thus, α1-antichymotrypsin
released by reactive astrocytes may play an important role in
both the development of Aβ plaques and the generation of
neuronal tangles (Padmanabhan et al., 2006).

In summary, neuroinflammation is an important mechanism
of progressive neurodegeneration in AD. Therefore, regulating
neuroinflammation may become a promising therapeutic
strategy for AD treatment. Recent studies have shown that
inflamma-miRs are dysregulated in neurons and have an
important impact on cognitive function. These dysfunctional
inflamma-miRs are related to the etiology and pathogenesis
of AD (O’brien et al., 2013) and can directly or indirectly

regulate Aβ and Tau expression. Due to the small molecular
weight of miRNAs, they can pass through the BBB and
are stably expressed in peripheral blood (Tominaga et al.,
2015). Further, they can be isolated and tested with standard
laboratory equipment, which greatly facilitates the analysis
of miRNAs for clinical applications. Moreover, regulating
the expression of inflamma-miRs may become a potential
therapeutic strategy for AD treatment by affecting the
inflammatory response during AD progression. Therefore,
inflamma-miRs have broad prospects in the field of pathogenesis
research, as well as in the diagnosis and treatment of AD.
In the following sections, we will summarize and discuss
recent studies on inflamma-miRs and their implications in AD
detection and treatment.

ROLE OF INFLAMMA-MICRORNAs IN
ALZHEIMER’S DISEASE PATHOGENESIS

Given that the systemic pro-inflammatory state is associated
with an increased risk of AD development and progression,
our review focused on a subset of miRNAs that regulate
the inflammatory processes (Figure 1 and Table 1). MiR-
125b is widely expressed in a variety of human tissues and
plays a key regulatory role in several biological processes
(Ma et al., 2017). A previous study suggested that miR-
125b overexpression could induce tau phosphorylation
in primary hippocampal and cortical neurons of rat
(Banzhaf-Strathmann et al., 2014). Further, miR-125b
was significantly upregulated in cerebrospinal fluid (CSF)
samples from patients with AD. Additionally, miR-125b
also significantly increased the activities of TNF-α, IL-1β,
and IL-6 in mouse neuroblastoma Neuro2a APPSwe/19
cells. Conversely, IL-10 activity was markedly decreased
in an AD in vitro model (Jin et al., 2018). Moreover,
inhibition of miR-125b suppresses proinflammatory cytokines
(TNF-α, IL-1β, and IL-6) (Zhuang et al., 2020). Therefore,
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miR-125b may also act as a pro-inflammatory factor to
promote AD onset.

The miR-29 family, which consists of miR-29a, miR-29b, and
miR-29c, has been shown to be downregulated in AD (Hébert
et al., 2008). There is an inverse relationship between miR-
29a and the expression of the TNF-α receptor in AD (Zhao
et al., 2017; Sedighi et al., 2019). Additionally, recent studies
have shown that miR-29a mainly inhibits the NF-κB signaling
pathway at the transcriptional level and targets key members
of TNF-mediated pathways (Srivastava et al., 2016). Therefore,
miR-29a may be involved in the occurrence and progression of
AD by regulating the inflammatory response, however, the exact
mechanisms of this process remain unclear.

MiR-126-3p modulates inflammation and innate immune
responses by targeting NF-κB pathway components and
endothelial adhesion molecules (e.g., VCAM-1) (Harris et al.,
2008). MiR-126-3p has been reported to affect the expression
of EGFL7, a secreted protein that regulates angiogenesis as a
repair mechanism for neurodegenerative diseases and is also
involved in adult neurogenesis. In the CNS, miR-126-3p is
involved in regulating the insulin/IGF pathway and also regulates
the vulnerability of neurons to toxic damage (Nikolic et al.,
2010; Bicker et al., 2017). Other studies have demonstrated
that elevated miR-126 levels increase Aβ42 toxicity in cell
models and interfere with the neuroprotective effects of IGF-1
by downregulating the expression of PI3K and ERK pathway
members (Kim W. et al., 2016).

MiR-146a is widely involved in the regulation of immune
cells and its expression is localized in astrocytes and microglia.
This miRNA is also involved in microglial polarization and is
significantly upregulated in inflammatory activated microglia
(M1 type) (Rom et al., 2010; Cunha et al., 2016; Liang
et al., 2021). Further, miR-146a is also upregulated in the
temporal cortex of AD patients and is involved in the negative
feedback regulation of NF-κB activation (Alexandrov et al., 2014).
Nakano et al. (2020) suggested that miR-146a upregulation in
the hippocampus could attenuate astrocytic inflammation and
may be a promising therapeutic agent for treating cognitive
impairment in AD. Additionally, the targets of miR-146a include
IRAK1, complement factor HCFH, and TRAF6, which are
associated with the innate immunity of AD (Sethi and Lukiw,
2009). Moreover, miR-146a plays a major role in inducing TLR
tolerance in macrophages. Upregulation of miR-146a induces
TLR tolerance and alters the expression of inflammatory AD risk
genes in response to LPS treatment in BV2 microglia (Nahid et al.,
2011). Yang et al. (2021) demonstrated that an increase in miR-
146a induced Aβ/LPS tolerance in microglia, leading to a decrease
in Aβ clearance. Further, upregulation of miR-146a could inhibit
the expression of the TLR4 signaling pathway and its related
inflammatory genes NF-κB, IRAK1, and TRAF6, and reduce the
release of inflammatory factors IL-1β, IL-6, and TNF-α, thus
alleviating AD-associated neuroinflammation (Mai et al., 2019).

MiR-155 is considered a pro-inflammatory miRNA and has
been shown to play a major role in the regulation of the innate
immune response by regulating the production of cytokines and
chemokines (Thai et al., 2007; Guedes et al., 2013). Previous
studies have suggested that miR-155 is one of the key molecules in

the inflammatory response of macrophages after TLR activation,
and its upregulation depends on the JNK pathway (O’connell
et al., 2007). The expression of miR-155 increased in LPS-
stimulated microglia, which regulated the level of SOCS-1 and
the production of cytokines and NO, indicating that miR-155
plays a pro-inflammatory role in both the peripheral immune
system and the brain (Cardoso et al., 2012). Furthermore, miR-
155 also participates in the gene regulatory network of astrocytes.
The expression of miR-155 increases when astrocytes become
activated and this miRNA is involved in the upregulation of
pro-inflammatory cytokines in astrocytes by targeting SOCS-1
mRNA (Mor et al., 2011; Tarassishin et al., 2013). In the brains
of 3xTg AD mice, miR-155 levels were strongly upregulated and
coincided with an increase in microglia and astrocyte activation.
Guedes et al. (2013, 2014) suggested that miR-155 and c-Jun
were upregulated early in 3xTg AD mice and Aβ-activated
microglia and astrocytes, thereby promoting the production of
inflammatory mediators such as IL-6 and IFN-β (Teter et al.,
2019). This effect is related to the miR-155-dependent decrease
of SOCS-1. Furthermore, given that c-Jun silencing reduces
the levels of miR-155 in Aβ-activated microglia and astrocytes,
targeted regulation of miR-155 expression may be a promising
strategy to regulate AD neuroinflammation (Guedes et al., 2014;
Aloi et al., 2021). In addition to regulating glial cell function, miR-
155 may be directly involved in the expression of inflammatory
factors. Inhibition of miR-155 expression can attenuate the
upregulation of TNF-α, IL-1β, IL-6, and their receptors, and
substantially restore the impaired learning ability of AD rats
(Liu D. et al., 2019).

Let-7 is an evolutionarily conserved miRNA family and nine
Let-7 miRNAs are known to act as tumor suppressors and
developmental regulators in humans (Lee et al., 2016). Let-7
miRNAs are also important regulators of the neuroinflammatory
process and can also promote the anti-inflammatory M2
phenotype of microglia via targeted regulation of C/EBP-
transcription factors (Cho et al., 2015). Let-7 miRNAs also
promote astrocyte differentiation by targeting its negative
regulators in glial progenitor cells and can also activate microglia
by acting as damage-associated molecular patterns (DAMPs)
against TLR7 (Lehmann et al., 2012). Additionally, Let-7 miRNAs
regulate inflammation by targeting the cytokines IL-6 and IL-
10 (Schulte et al., 2011; Teng et al., 2013). The proteins of the
Let-7 family are released from neurons and are overexpressed
in patients with AD (Slota and Booth, 2019). Another study
reported that Let-7b miRNAs act both as extracellular signaling
molecules and as ligands for TLR7 in microglia and neurons.
Further, intrathecal Let-7b mediates neurodegeneration of the
CNS (Lehmann et al., 2012).

The miR-181 family is highly expressed during the maturation
of astrocytes and participates in the development of astrocytes.
Overexpression of miR-181c in cultured astrocytes resulted in
increased cell death upon LPS exposure. In TNFR1/TNFR2
double knockout mice, low miR-181 expression can enhance the
production of pro-inflammatory cytokines (TNF-α, IL-1β, IL-
6, and IL-8) induced by LPS, whereas miR-181 overexpression
can significantly increase the expression of the anti-inflammatory
cytokine IL-10 (Hutchison et al., 2013). Another study reported

Frontiers in Cellular Neuroscience | www.frontiersin.org 5 October 2021 | Volume 15 | Article 785433

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-15-785433 October 22, 2021 Time: 14:41 # 6

Liang and Wang Inflamma-MicroRNAs in Alzheimer’s Disease

that miR-181 was upregulated in 3xTg-AD mice and directly
regulated the expression of Fos and SIRT-1 (Rodriguez-Ortiz
et al., 2014). However, its role in the inflammatory pathogenesis
of AD has not been further investigated.

INFLAMMA-MICRORNAs AS
DIAGNOSTIC BIOMARKERS FOR
ALZHEIMER’S DISEASE

The diagnostic applicability of inflamma-miRNAs in AD has
been investigated in previous studies (Table 2). For instance,
AD patients were accurately distinguished from healthy controls
based on the downregulation of miR-9-5p in whole-blood
samples (Souza et al., 2020). Giuliani et al. (2021) evaluated
the plasma levels of miR-17-5p, miR-21-5p, and miR-126-
3p in a cohort of AD patients and found that they were
significantly upregulated compared to those of healthy controls.
Additionally, cases of mild and severe cognitive impairment
could also be discriminated based on the level of miR-126-
3p expression (Giuliani et al., 2021). Moreover, analyses of
the expression profile of inflamma-miRNAs demonstrated that
plasma miR-34a and miR-146a levels, as well as CSF miR-
34a, miR-125b, and miR-146a levels in AD patients were
significantly lower than those in control subjects. In contrast,
the levels of CSF miR-29a and miR-29b were significantly
higher in AD patients than those in control subjects (Kiko
et al., 2014). The serum of AD patients also contained
lower levels of miR-125b, with a specificity of 68.3% and
a sensitivity of 80.8%. Interestingly, the levels of miR-125b
were positively correlated to the outcomes of the Mini Mental
State Examination (MMSE) in AD patients (Tan et al., 2014).
Next-generation sequencing has also been used to quantify
serum inflamma-miRNA levels for AD diagnosis. Guo et al.
(2017) demonstrated that the serum miR-126-5p levels of
AD patients were upregulated, whereas miR-181c-3p was
downregulated, and both were positively correlated with the
MMSE score. The expression profile of inflamma-miRNA in
CSF could thus be used as an indicator for AD diagnosis.
The levels of miR-29a were increased in the CSF of AD
patients, with a sensitivity of 89% and a specificity of 70%
[area under the curve (AUC) = 0.87] (Müller et al., 2016).
Only one study has evaluated the prognostic role of inflamma-
miRNAs in AD patients. Ansari et al. (2019) assessed the
baseline blood levels of miR-146a and miR-181a in a cohort
of patients with mild amnestic cognitive impairment and
conducted new measurements after a 2-year follow-up. The
authors demonstrated that miR-146a and -181a were upregulated
in AD patients both at the baseline and after the 2-year
follow-up. Moreover, higher levels of miR-146a were associated
with the presence of the apolipoprotein E ε4 allele, coupled
with a decrease in hippocampus volumes and CA1 neurons
(Ansari et al., 2019).

The development of cyclic inflamma-miRNAs as diagnostic
biomarkers has an important theoretical and practical
significance; however, several limitations must still be addressed.
(1) miRNAs occur in very low concentrations in body fluids

and the methods required for their separation and extraction
are complicated. Additionally, mRNA is extremely prone
to degradation, making it difficult to ensure the quality of
the obtained miRNA. (2) There is a lack of unified and
accurate detection methods for circulating miRNA. Each
of the current methods for miRNA detection has its own
limitations. For example, it is difficult to construct cDNA
libraries for miRNA molecules with low abundance and
tissue/temporal specificity. Further, qRT-PCR results are
largely dependent on the design of primers and probes. The
accuracy and repeatability of gene chip technology are poor,
and this approach requires a relatively large initial sample
size. In addition, high-throughput sequencing technology is
expensive and time-consuming. (3) Studies on circulating
miRNAs as diagnostic biomarkers are still in an exploratory
stage, and multi-center and case-control studies are scarce.
Moreover, the sensitivity and specificity of selected circulating
miRNAs as possible diagnostic biomarkers require further
verification. (4) Most importantly, the formation and action
mechanisms of circulating miRNA are still unclear, and
the reference value range of circulating miRNA under
different physiological and pathological conditions has
not been determined. However, as a diagnostic biomarker,
circulating miRNA may soon substitute or supplement the
current molecular indicators used to evaluate the occurrence
and development of AD. Still, a substantial effort must
be made to integrate our current knowledge of genomics,
transcriptomics, proteomics, metabolomics, and systems biology
to comprehensively clarify the molecular mechanisms that lead
to AD emergence and development, as this would facilitate
the development of more effective diagnosis, prognosis, and
treatment methods.

THERAPEUTIC POTENTIAL OF
INFLAMMA-MICRORNAs IN
ALZHEIMER’S DISEASE

MicroRNAs play a key role in the pathogenesis of
AD by regulating the expression of various genes
and pathways, especially through neuroinflammatory
mechanisms (Brites and Fernandes, 2015). The role
of these inflamma-miRNAs in the pathogenesis and
molecular processes of AD is generally quite complex.
Given the central role of inflamma-miRNAs in regulating
the molecular cascade in disease-associated and AD
processes, they may become important therapeutic
targets (Pogue and Lukiw, 2018). In fact, miRNA-
based therapies have been recommended for a variety
of neurological diseases such as cerebrovascular disease,
amyotrophic lateral sclerosis, and Parkinson’s disease
(Sun P. et al., 2018).

Regulation of miRNA expression in vivo is the basis of
several therapeutic strategies, and various methods have
been evaluated to explore and regulate their expression.
For example, miRNA mimics are small synthetic double-
stranded miRNA molecules that are processed into functional
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TABLE 2 | Diagnostic role of miRNAs in AD patients.

MicroRNA Expression pattern Samples ROC curve analysis Clinical significance References

Sensitivity Specificity AUC

miR-17-5p
miR-21-5p
miR-126-3p

Upregulated Plasma samples from 116 AD
patients and 41 control
individuals

–
55.0%
38.3%

–
70.7%
87.5%

–
0.68
0.62

AD diagnosis and
assessment for
development and
progression of cognitive
impairment in AD

Giuliani et al.,
2021

miR-9-5p Downregulated Whole-blood samples from 36
AD patients and 38 control
individuals

– – – Diagnosis for late-onset
AD

Souza et al.,
2020

miR-29a Upregulated CSF samples from 18 AD
patients and 20 control
individuals

89.0% 70.0% 0.87 AD diagnosis Müller et al.,
2016

miR-34a
miR-146a

Downregulated Plasma samples from 10 AD
patients and 10 control
individuals

–
–

–
–

–
–

AD diagnosis Kiko et al.,
2014

miR-34a
miR-125b
miR-146a

Downregulated CSF samples from 10 AD
patients and 10 control
individuals

–
–
–

–
–
–

–
–
–

miR-29a
miR-29b

Upregulated –
–

–
–

–
–

miR-125b Downregulated Serum samples from 105 AD
patients and 115 control
individuals

80.8% 68.3% 0.85 AD diagnosis and
assessment the degree
of cognitive impairment

Tan et al., 2014

miR-126-5p Upregulated Serum samples from 105 AD
patients and 115 control
individuals

72.7% 60.5% 0.72 Early diagnosis of AD Guo et al.,
2017

miR-181c-3p Downregulated 71.9% 73.3% 0.78

miR-146a
miR-181a

Upregulated Blood samples from 45 mild
cognitive impairment patients

–
–

–
–

–
–

Predicting the
development of AD

Ansari et al.,
2019

AD, Alzheimer’s disease; AUC, area under curve; ROC, receiver operating characteristic.

miRNAs, allowing for the high expression of functional
intracellular miRNAs and inhibiting target mRNA expression
(Rupaimoole and Slack, 2017; Sierksma et al., 2018).
miRNA activity can also be inhibited, usually by delivering
synthetic sequences that are complementary to the miRNA
to block its binding to endogenous mRNA targets, such as
antagonists (Jaber et al., 2019), targeted nucleic acid anti-
miRNAs (Lukiw and Alexandrov, 2012), and miRNA sponges
(Lu et al., 2019).

One of the major challenges of applying miRNA-based
therapeutics to AD is the delivery across the BBB (Ha
et al., 2016). Some miRNA delivery strategies with practical
application prospects are being actively explored, and some
progress has been made. These promising avenues include
viral vectors, such as adenovirus and adeno-associated virus
(AAV) vectors that can be used to induce miRNA expression
in the CNS (Xie et al., 2015; Hordeaux et al., 2020).
Non-viral delivery methods have also garnered increasing
attention recently, including lipid- or polymer nanoparticle-
based delivery systems that promote miRNA cellular uptake
for therapeutic purposes (Yin et al., 2014; Bai et al., 2019).
Therefore, the identification of optimal inflamma-miRNA
therapeutic targets and the development of effective central
neurotransmission systems for miRNAs will be key determinants

of whether miRNA-based therapeutic strategies can enter clinical
trials in the future.

CONCLUSION

Pathological neuroinflammation is among the most important
mechanisms of AD pathogenesis. Therefore, understanding
the specific molecular processes that drive AD-associated
neuroinflammation will undoubtedly facilitate the development
of new diagnostic and therapeutic strategies to ameliorate the
social burden of AD. Previous studies have reported that miRNAs
can regulate neuroinflammatory signals. Some inflamma-
miRNAs (e.g., miR-146a and miR-155) may be involved in
several pathologic processes of AD and have been shown to
play a central role in the control of inflammation. Additionally,
inflamma-miRNAs reportedly exhibit significant differential
expression in the peripheral circulation (plasma/serum and
CSF) of AD patients. Therefore, miRNAs are promising
biomarkers for AD diagnosis and prognosis, as well as potential
targets for therapeutic purposes. Moreover, the induction or
inhibition of inflamma-miRNAs may improve CNS tissue
damage following AD-related neuroinflammation. Nevertheless,
although some progress has been made in understanding the

Frontiers in Cellular Neuroscience | www.frontiersin.org 7 October 2021 | Volume 15 | Article 785433

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-15-785433 October 22, 2021 Time: 14:41 # 8

Liang and Wang Inflamma-MicroRNAs in Alzheimer’s Disease

role of inflamma-miRNAs in neuroinflammation, multiple
areas warrant future investigation. First, the mechanisms
controlling miRNA levels and stability in neuroinflammatory
signaling must be determined, including the processes by
which mature miRNAs are degraded or cleared. Second,
the ability of multiple miRNAs to target combinatorially a
common pathway should be assessed. For instance, miR-
126-3p, miR-146a, and miR-29 may synergistically modulate
inflammation and innate immune responses by targeting
NF-κB pathway. Third, miRNAs are being considered as a
novel type of biomarkers and potential therapeutic targets

for AD. The improvement in sensitivity and specificity could
definitely promote the practical application of miRNAs as
important biomarkers.
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