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Abstract: In this study, NiCrBSi-30 wt.% TiN composite (NTC) coating was produced on carbon
steel via plasma spraying, with NiCrBSi-30 wt.% WC composite (NWC) coating as the comparison
object. The microstructure and phase constituents of the composite coatings were characterized using
scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS) techniques,
transmission electron microscopy (TEM) and x-ray diffraction (XRD). Atomic force microscopy (AFM)
was used to measure electronic work functions. The microhardness and wear performance of coatings
were also investigated. The average microhardness of the NTC and NWC coatings was 1000 HV and
850 HV, respectively. In addition, the NTC coating had a wear volume loss of 0.8118 mm3, less than
1.4772 mm3, the volume loss of the NWC coating. This was due to the presence of TiN in the form of
nanograins in the composite coating and tighter binding to the matrix.
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1. Introduction

Plasma spraying technology is widely used in industrial production to prepare various protective
coatings [1,2]. These coatings, attached to mechanical component surfaces, have high hardness and
good abrasion and corrosion resistance, which can prevent the components from being severely
worn and corroded and increase the machinery lifespan [3]. Typically, the materials used for plasma
spraying are metal-based composites, which consist of a metal matrix with good toughness and
reinforcing ceramic particles [4]. By integrating the toughness of the metal and the hardness of the
ceramic particles, the wear resistance of composites is significantly improved. The most representative
metal matrix composites are usually Ni-based or Co-based alloys containing SiC, TiC, WC, La2O3,
or Cr3C2 [5–8]. Relatively speaking, Ni-based alloy powders have been widely studied and applied
due to their excellent self-fluxing performance, wear resistance, and low price [9]. In addition, WC has
high hardness and good wettability compared with other carbides (SiC, TiC) [10–12]. Therefore,
most of the current research focuses on WC-strengthened Ni-based alloy coatings. Zhang et al.’s [13]
research results showed that compared with NiCrBSi coating, the microhardness of NWC coating was
significantly enhanced, and rolling contact fatigue performance was improved. Serresde’s [14] study
also proved that the addition of WC enhanced the wear resistance of NiCrBSi coating. These studies
show that adding WC to Ni-based alloys can improve the microstructure and hardness, as well as
the wear resistance and rolling contact fatigue properties. However, the failure of the NWC coating
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is related to the intergranular cracks generated by the separation of WC/W2C and Ni-based matrix
crystals. These cracks are due to the thermal stress caused by the rapid cooling and mismatch of the
thermal expansion coefficient of the WC phase with the matrix phase [15]. In addition, some WC phases
decarburize to form lower-hardness W2C due to overheating by thermal spraying jets, and further
decarburization forms a softer W phase, resulting in lower hardness of the coating [16]. Therefore,
this will restrict its potential application in the engineering field.

Except for the above-mentioned reinforcing phase particles, TiN has been widely used for the
enhancement of coatings for its high hardness, wear resistance, and good corrosion resistance [17–19].
Previous studies prepared NiCrBSi-TiN composite coating by mechanically mixing Ni-based powders
with TiN powders as raw coating materials, in which TiN was decomposed due to the high temperature.
In addition, it is difficult to deposit TiN coating using TiN powders because of its high melting
point (2950 K) [20]. In this experiment, the NTC coating was formed by spraying Ti and NiCrBSi
powders, in which TiN-reinforced particles were formed by in situ reaction of titanium powder and
nitrogen [19–21]. The TiN particles in the composite coating are in a fully molten state and bond well
with the matrix to avoid pyrolysis during the spraying process [17,18]. This work characterized the
microstructures and mechanical properties of the NTC coating, and compared it with the NWC coating.

2. Experimental Procedure

2.1. Sample Preparation

In this investigation, NiCrBSi and Ti powders as feed-stock materials for preparing NiCrBSi–TiN
composite (NTC) coating were commercially available from Beijing Xing Rong Yuan Technology
Corporation of China. The two kinds of powders were mixed in a ball mill for half an hour at a weight
ratio of 7:3. NiCrBSi-WC/Co powder was available on the market. Figure 1 shows the morphology
of the two kinds of composite powder. The size of NiCrBSi powder with spherical shape was about
45–100 µm. Its chemical composition is presented in Table 1. The Ti powder had irregular shapes,
and the WC particles had a spherical shape but were rough, with particle sizes in the range of 25–45 µm,
as shown in Figure 1b. AISI1045 steel (0.42–0.50% C, 0.17–0.37% Si, 0.50–0.80% Mn, ≤0.25% Cr, and the
balance Fe) with a size of 10 × 10 × 12 mm3 was used as substrate, and the surface of the substrate
was roughened by alumina sandblasting before spraying.
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Table 1. Chemical composition of NiCrBSi powder (wt.%).

Element Ni Cr B Si Fe C

wt.% Bal. 19.0–21.0 3.3–4.2 3.3–4.2 14.0–16.0 0.5–0.7

A GP-80 type plasma spraying system (Yeyuan Spraying Corp., Taixing, China) was used to
deposit coatings. Argon (purity: 99.9999%) was used as primary plasma gas, while nitrogen (purity:
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99.99%) was used as powder carrier gas. The thicknesses of the two composite coatings were controlled
between 250 and 270 µm. A NiCrBSi bonding bottom layer was also prepared with a thickness of
50–80 µm.

2.2. Coating Characterization

Scanning electron microscopy (SEM; Hitachi S-4800/TMP, Hitach Ltd., Tokyo, Japan) was used
to observe the microstructure and wear morphology, while energy dispersive spectroscopy (EDS;
EDAX-AMETEK, Hitach Ltd., Tokyo, Japan) was applied to analyze the composition and distribution of
the elements. The phase composition of the coating was identified by a D8 x-ray diffractometer (Bruker
Scientific Technology Ltd., Karlsruhe, Germany). At room temperature, the interface morphology and
electron work function (EWF) of the composite coatings were measured using a scanning Kelvin probe
(SKP 5050, KP Technology Ltd., Wick, UK). The section microhardness of the coating was measured
using an HMV-2T hardness tester (Shimadzu Ltd., Tokyo, Japan). The test parameters were as follows:
200 g load and 15 s dwell time.

2.3. Tribological Tests

At room temperature, tribological tests were performed with an SFT-2M tribometer
(Zhongke Kaihua Technology Development Corp., Lanzhou, China). To ensure the reliability of
the results, five specimens were tested for every test result, and the wear volume loss was averaged.
Prior to testing, each specimen was ground and polished. The chosen counterpart was an Si3N4 ball
with a diameter of 4 mm. Tribological experiments were performed using a load of 30 N, 400 rad/min
sliding speed, rotation radius 3 mm, and duration 30 min. Wear volume was evaluated by using a
Nano Indenter XP type mechanical performance microprobe (MTS Systems Corp., Eden Prairie, MN,
USA) connected to a computer to measure the wear trace profile. Wear morphology was observed
using scanning electron microscopy.

3. Results and Discussion

3.1. Microstructure Analysis

The x-ray diffraction patterns of starting NiCrBSi–Ti mixed powder (Figure 1a) and NiCrBSi–TiN
composite (NTC) coating are shown in Figure 2a. The NTC coating was composed of γ-Ni (PDF#
65-0380), FeNi3 (PDF# 38-0419), Cr1.12Ni2.88 (PDF# 65-5559), TiN (PDF# 38-1420), and TiN0.3 (PDF#
41-1352). Among these phases, TiN and TiN0.3 appearing in coatings should be attributed to the in
situ reaction between Ti powders and N2 in air and plasma gas [19,20]. Figure 2b shows the x-ray
diffraction patterns of plasma spraying NiCrBSi–WC composite (NWC) coating and NiCrBSi–WC/Co
mixed powder. Compared with powders, new peaks of W2C (peak 5, PDF# 65-3896) were observed
in the NWC coating and some peaks of WC (PDF# 65-4539) disappeared. The WC decomposition
temperature was about 1250 ◦C [12]. During plasma spraying, WC was decomposed into softer W2C
due to the high temperature [16,22].
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Figure 2. XRD patterns of original powders and composite coatings: (a) NiCrBSi–TiN composite (NTC);
(b) NiCrBSi–WC composite (NWC).

The cross-sectional structures of the NTC coating produced by plasma spraying are shown in
Figure 3a,b. The NTC coating had the typical lamellar structure due to sprayed particles fully melting
and flattening during plasma spraying [23]. The NTC coating displayed good bonding state, and no
large cracks were observed. However, some small pores and irregular pits were observed. In addition,
the deep-gray region (marked B) scattered throughout the light-gray region (marked A). Based on
XRD (Figure 2a) and EDS (Table 2) analysis, the light-gray region was NiCrBSi alloy and the deep-gray
region was composed of TiN and TiN0.3. The interface bonding state between the TiN and Ni-rich
phase was very good and no cracks were observed. This is due to the fact that TiN is in a fully molten
state during spraying and freezes together with NiCrBSi alloy powders, which is in molten state, too,
promoting bonding with NiCrBSi alloy substrates [24]. This will also increase the strength of the
coating while increasing the wear resistance.

Figure 3c,d shows the structure of NWC coating. Based on XRD (Figure 2b) and EDS (Table 2)
analysis, the light-gray region (marked C in Figure 3d) shows the γ-Ni, FeNi3, and Cr1.12Ni2.88,
while the white region (marked D in Figure 3d) shows the WC and W2C phases. The WC and W2C
phases were evenly distributed in the NiCrBSi alloy matrix. There were lots of small pores and some
cracks in the NWC coating. Transverse cracks were mainly distributed in the interface between the
WC/W2C and Ni-rich phase; some cracks existed in the matrix areas. Figure 3d is an enlarged view
of Figure 3c, in which the cracks between the WC/W2C phase and the Ni-rich phase can clearly be
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observed. The causes of crack formation are as follows: On the one hand, residual stress appeared
due to rapid solidification and a thermal expansion mismatch between WC/W2C and Ni-rich phases.
The thermal stress generated transverse interlaminar cracks [25]. On the other hand, WC has a high
melting point and exhibits an unmelted or semimelted state in the coating, such that the bond between
the WC/W2C and Ni-rich phase is reduced, resulting in crack formation. [26]. When the coating was
stressed, WC was easily detached from the matrix, which influenced the mechanical properties of
the coating.
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Table 2. EDS analysis results of different marked areas in Figure 3 (wt.%).

Coating Point Ni Cr Si Fe Ti N W C

NTC A 69.45 ± 0.73 17.7 ± 1.35 0.83 ± 0.05 11.2 ± 1.39
NTC B 63.75 ± 2.79 37.35 ± 1.98
NWC C 66.07 ± 1.75 18.2 ± 1.56 3.47 ± 0.09 12.22 ± 1.4
NWC D 61.62 ± 3.87 38.38 ± 3.87

Figure 4 shows SEM images of indentation morphology on cross-sections of two kinds of
composite coatings. The indentation profile was clear and no big cracks that extended around were
present in either coating. However, two fine cracks in the TiN phase were observed in the NTC coating
and the WC/W2C phase also broke. This is because the TiN and WC/W2C were hard phases with
poor toughness. Compared with the complete bonding of the TiN phase and the Ni-rich phase in the
NTC coating, there was a significant crack between the WC/W2C and Ni-rich phases in the NWC
coating. It was easily found that the bonding state of the Ti-rich phase and the Ni-rich phase was
stronger than that of the WC/W2C and Ni-rich phases. The dimensions of indentation in Figure 4b are
bigger than those in Figure 4a, showing that NTC coating had higher hardness than NWC coating.
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The EWF test was also used to survey the NTC and NWC coatings. A higher work function usually
corresponds to a stronger atomic bond, stronger interfacial bond, higher hardness, and resistance to
wear [27,28]. The EWF and morphology maps are shown in Figure 5. The height difference of the
TiN/TiN0.3 and Ni-rich phase was 340 nm in the NTC coating, and of the WC/W2C and Ni-rich phase
was 240 nm in the NWC coating (Figure 5a,b). The height difference was due to the difference in
grind resistance between the hard particles and the matrix phase. The matrix was the Ni-rich phase,
and height differences can fully illustrate that the grind resistance of TiN in the NTC coating and WC
in the NWC coating was different. According to experimental measurements, the TiN phase in this
kind of composite coating has higher grind resistance than the WC/W2C phase. This is in excellent
agreement with the wear test results. In addition, the NTC coating domain possesses higher EWF
than the NWC coating (Figure 5e). This suggests that the NTC coating possesses higher hardness,
stronger resistance to wear, and stronger atomic bond than the NWC coating [27,28]. This is likely
due to TiN/TiN0.3 being formed by in situ reaction with high hardness and good combination with
the matrix.
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profiles of coatings corresponding to the dashed lines in Figure 5c,d.

Figure 6 shows the TEM (Hitach Ltd., Tokyo, Japan) morphologies of the NTC coating. Figure 6a
shows the interface between the Ti-rich phase and Ni-rich phase, and Figure 6b,c, respectively, show the
EDS spectrum of the Ti-rich and Ni-rich areas in Figure 6a. The Ti-rich area and Ni-rich area were
the TiN phase and Ni solid solution phase, respectively. The TiN phase and nickel-based solid
solutions were tightly bonded together, and the Ti-rich phase was composed of elongated columnar
grains with a diameter of about 100 nm. The completely melted Ti powder reacted in situ with
nitrogen, and the resulting TiN/TiN0.3 nucleated and grew in the rich-Ni matrix during the spraying
process. Therefore, the TiN/TiN0.3 was composed of nanosized crystal grains, which was explained
in detail in our previous work [24,29]. However, WC particles exhibited a semimelted or unmelted
state in the composite coating due to their high melting point, so that the WC retained its original
micron-scale morphology.
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3.2. Microhardness

Figure 7 shows the microhardness of the NTC and NWC coating cross-sections. The NTC coating
had microhardness exceeding 1000 HV, while the NWC coating had microhardness of around 850 HV.
Because the hardness of WC is higher than that of TiN, the hardness of the NWC coating should,
theoretically, be higher than that of the NTC coating. As a matter of fact, the microhardness of the
NTC coating was approximately 100 HV higher than that of the NWC coating. This is because WC
decomposed to lower-hardness W2C during the spraying process, and the WC phase did not bond
tightly with the matrix. The in situ reaction of TiN tightly binding with the matrix resulted in an
enhanced strengthening effect in the coating. Another reason the hardness of TiN in composite coating
was higher was that the TiN phase had a nanograin structure.
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Simply evaluating the hardness of the composite coating by average hardness does not yield
reliable results. The Weibull distribution is widely used with reliability analysis and discrete data
processing. In this paper, the hardness of the composite coating was analyzed with a two-parameter
Weibull distribution model. Figure 8 shows the confidence limit and the Weibull distribution plots of
the Vickers microhardness of two composite coatings, where R represents the correlation coefficient
between the measuring point and the regression line of the NTC and NWC coatings, and m is the
slope of Weibull curve and represents the dispersion degree of microhardness [30]. The confidence
limits of the NTC and NWC coatings are shown by black and red dashed lines, respectively. In general,
the larger the slope of the Weibull curve, the higher the correlation coefficient and the better the
correlation of the microhardness data.
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Under a confidence level of 0.99, the values of R for the NTC and NWC coatings were 0.93 and
0.97, respectively. The values of b were 15.46 and 12.49, respectively. The microhardness of the NTC
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coating had a lower degree of dispersion than the NWC coating. Since all data points are in the
confidence limits, the evaluation of the microhardness is reliable. Therefore, the microhardness of the
NTC coating was superior to that of the NWC coating under an indentation load of 200 g.

3.3. Wear Resistance

Figure 9 presents the wear profiles of the composite coating, and Table 3 lists the corresponding
results. The NWC coating had a larger profile and the corresponding wear scar width and depth were
larger than those of the NTC coating (Table 3). Wear volume of the NTC coating was reduced by 45%
compared to the NWC coating. This suggests that the NTC coating had excellent wear resistance.
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Table 3. Sliding wear results for the coatings.

Samples Wear Width (mm) Wear Depth (µm) Wear Volume (mm3)

NTC 1.0985 66.88 0.8118
NWC 1.2871 99.115 1.4772

Figure 10 presents the worn morphology of the NTC coating. Some fracture chipping pits and
plastic deformation traces were observed on the worn surface of the NTC coating, as shown in
Figure 10a. This indicates that the main surface damage patterns of the NTC coating were microplastic
deformation, material subsidence in the loosened region, microcracks, and spalling pits. The reason
for these phenomena is that the softer γ-Ni phase supports the harder TiN. When the surface is locally
subjected to high loading, the softer γ-Ni phase begins to plastically deform, while the harder TiN is
difficult to plastically deform. Cracks start to sprout and expand. With the continuing effect of loading,
the broken pieces peel off the composite coating and leave a peeling pit. There were cracks in some
areas of the sample surface where γ-Ni broke from these positions and peeled off the surface. The wear
mechanism of the NTC coating was mainly plastic deformation and lamellar peeling.
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Figure 10. Wear morphology of NTC coating.

Figure 11 shows the worn surfaces of the NWC coating. Plastic deformation traces, loosened
region, and microcutting were very obvious. The high microhardness of the WC material resulted in an
increased ability of the coating to resist microcutting [31]. Therefore, microcutting trace was relatively
shallow. Spalling pits can clearly be observed. Compared with the NTC coating, spalling pits of the
NWC coating were bigger and deeper. If the shear force was less than the bonding force between the
hard phase and the matrix metal during wear, the hard particles could protect the matrix phase from
the friction of the friction pair [32]. If the shear force was greater than the bonding force between the
hard phase and the matrix metal, the hard particles would peel off the matrix and participate in the
wear, resulting in a greater amount of wear on the coating [33].

According to the above description, the WC/W2C phase is more likely to peel off the matrix
metal than the Ti-rich phase, because the bonding strength of the TiN and Ni alloy phases is stronger
than that of the WC/W2C and alloy phases. The detached WC hard particles participated in the wear
process as an abrasive, which in turn exacerbated wear [34]. This also explains why the wear volume
of the NTC coating will be less than that of the NWC coating.
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4. Conclusions

(1) The nano-TiN phase in NiCrBSi–TiN composite (NTC) coating was obtained through in situ
reaction between Ti powder and nitrogen in the process of plasma spraying. The NTC coating had
typical lamellar structure due to sprayed particles fully melting and flattening during plasma spraying,
and displayed good integrated condition, in close contact with the Ni-based alloy matrix. Therefore,
the NTC coating had a denser structure than the NiCrBSi–WC composite (NWC) coating.

(2) The average microhardness of the NTC coating exceeded 1000 HV, while the microhardness
of the NWC coating was around 850 HV. The reason is that the TiN phase in the NTC coating had
nanostructure and close interface with the Ni-based alloy matrix. WC decomposed to lower hardness
W2C during the spraying process, and the WC phase had micron structure.

(3) The sliding wear resistance of the NTC coating was significantly better than that of the NWC
coating. The average wear loss volume was 0.8118 mm3 and 1.4772 mm3, respectively. The wear
mechanism of both composite coatings included plastic deformation and lamellar peeling. The good
bonding between the TiN hard phase and the NiCrBSi alloy matrix helped to increase the mechanical
properties of the composite coating.
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