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Abstract: It has previously been shown that optimum particle size distributions with a maximum
packing fraction can be achieved from a straight line plot of the accumulated sum of particle volume
fractions versus the square root of particle size. This study addresses practical limits for two dominant
fundamental approaches to designing particle size distributions to address the effect on a specific
physical property such as viscosity. The two fundamental approaches to obtain such a straight line
would include: the first design approach would be generated utilizing the same initial particle size,
Dmin, but by using different ultimate particle sizes, Dmax. The second design approach would
be generated where each distribution starts with the same initial particle size, Dmin, and ends
with the same ultimate particle size, Dmax. The first design approach is particularly useful to
identify the possible slopes available based on the smallest and largest particle sizes available. The
second design approach can be utilized to identify the preferred ratio between particles, Z, and the
number of different particle sizes, n, to be utilized in the final particle blend. The extensive empirical
experimental evaluations of particle size distributions generated by McGeary were then utilized to
confirm the limits.

Keywords: packing fraction; viscosity; modulus; impact; suspensions; interaction coefficient; relative
viscosity; generalized viscosity model

1. Introduction

Over the years, research involving the blending of different pseudo-spherical particle
sizes to maximize the packing fraction has been addressed to optimize several physical
properties including viscosity [1–25], modulus [26–34], and impact [35–42]. The importance
of the packing fraction for a property such as viscosity can easily be evaluated by addressing
one of the more general models to characterize viscosity, such as the following generalized
viscosity model [7–10]:

Ln(η/ηo) =

(
[η]ϕn

σ− 1

) {(
ϕn −ϕ
ϕn

)1−σ
− 1

}
for σ 6= 1 (1)

σ =
λPC

D1
+ σs (2)

where

η = suspension viscosity;
ηo = viscosity of suspending medium;
[η] = intrinsic viscosity;
σ = interaction coefficient;
λPC = particle–particle component of the interaction coefficient;
σs = solvent–particle component of the interaction coefficient;

Polymers 2021, 13, 3047. https://doi.org/10.3390/polym13183047 https://www.mdpi.com/journal/polymers

https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0003-4457-2759
https://doi.org/10.3390/polym13183047
https://doi.org/10.3390/polym13183047
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/polym13183047
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym13183047?type=check_update&version=2


Polymers 2021, 13, 3047 2 of 27

ϕ = particle volume fraction concentration;
ϕn = particle packing fraction;
D1 = number average particle size or the first moment average particle size.

While optimizing the packing fraction is important for large-scale pseudo-spherical
aggregates such as asphalt applications, there are also many other applications for opti-
mizing particle size distributions on a much smaller scale. Many small-scale particle size
analyzers maintain a constant ratio between successive particle sizes analyzed, Z, such as
for the LS 130 Coulter Counter where Z = 1.09532. For reference, the maximum range of
particles that can be indicated using the LS 130 Coulter Counter is only from 0.1 microns to
899.7 microns. For such a particle size analyzer, it is normally found that each ith particle
group of diameter Di in a particle distribution can then be evaluated (where, in general,
Z > 1) as:

Di = Zi−1D1 (3)

where

DMin = D1 = diameter of the smallest particle size in the particle distribution.

Several attempts have been made over the years to elucidate the best theoretical [8–10,41,43–49]
approach to characterize the blending of different pseudo-spherical particle sizes to max-
imize the packing fraction. Based on experimental considerations, Kaeuffer [49] found
that the optimum particle size distribution for a pigment in a paint would be achieved
when the accumulated volume fraction for the distribution was directly proportional to the
square root of the particle diameter. In other words, according to Kaeuffer, the accumulated
volume fraction from the smallest particle size up to the largest particle size considered,
Dβ, was assumed to be dependent on the square root of the particle diameter as:

i = β

∑
i = 1

fi= a
√

Dβ (4)

where:

fi = volume fraction of particles of the ith type

Sudduth [8–10] was able to extend the experimental observations found by Kaeuffer
by showing theoretically that the volume fraction for the ith particle size in an optimum
particle size distribution can be calculated as:

fi =
Vi

VT
=

NiD3
i

n
∑

i = 1
NiD3

i

=

√
Di

n
∑

i = 1

√
Di

(5)

where:

Vi = volume of the ith particles;
VT = total volume of all particles;
fi = volume fraction of particles of the ith type.

Sudduth [44] also found that for volume fractions calculated using Equation (5)
with a constant ratio between particle sizes, a straight line of the following form would
necessarily result:

i = β

∑
i = 1

fi= a
√

Dβ + b (6)

Note specifically that the straight line described by Equation (6) typically does not
necessarily go through the origin.

In addition, as already indicated, several attempts have been made over the years
to elucidate the best theoretical [8–10,41,43–49] approach to characterize the blending of
different pseudo-spherical particle sizes to maximize the packing fraction. The theoretical
analyses then required extensive experimental blending data [50–52] to maximize the



Polymers 2021, 13, 3047 3 of 27

packing fractions from several different particle size distributions to compare with the
theoretical models.

Probably the most extensive empirical study for blending different particle sizes was
generated by McGeary [52] to maximize the packing fraction in fuel rods for use in nuclear
generated power plants.

The experimental results from McGeary have then be utilized in this study to identify
how Equations (5) and (6) can be generated theoretically. The theoretical background
used to generate Equations (5) and (6) also resulted in the identification of a ratio of
two specific particle size averages that has been particularly successful in indicating the
packing effectiveness of any given particle size distribution.

At this point, it is useful to identify how to best develop an optimum distribution
described by the straight line requirement, as indicated by Equation (6). This study will
address the practical limits for the two dominant fundamental approaches to designing
particle size distributions to address a specific physical property such as viscosity. Two fun-
damental approaches to obtain such a straight line would include:

(1) The first design approach would be generated utilizing the same initial particle size,
Dmin, but by using different ultimate particle sizes, Dmax.

(2) The second design approach would be generated where each distribution starts
with the same initial particle size, Dmin, and ends with the same ultimate particle
size, Dmax.

The first design approach is particularly useful to identify the possible slopes available
based on the smallest available particle size and the largest available particle size that can
be used in the particle blend for a specific application. Once the slope has been identified,
the second design approach can be utilized to identify the preferred ratio between particles,
Z, and the number of different particle sizes, n, to be utilized in the final particle blend.

2. Particle Size Distribution Concepts from an Analysis of McGeary’s Particle
Size Distributions

Probably the most extensive particle size blending study for spherical particles was
generated by McGeary [52] as a result of his effort to maximize the packing fraction for fuel
rods utilized in nuclear generated power plants. The packing fraction for five binary sets of
McGeary’s blending data for spherical particles have been plotted in Figure 1 as a function
of the volume fraction of the smallest particle. The volume fraction for each particle, fi, in
Figure 1 can be described as:

fi =
Vi

VT
=

NiD3
i

n
∑

i = 1
NiD3

i

(7)

Taking the ratio of two volume fractions yields:

fi

fk
=

Vi

Vk
=

NiD3
i

NkD3
k

(8)

Rearranging gives:

Ni = Nk

(
D3

k

D3
i

)(
fi

fk

)
(9)

Assuming that Nk = 1 for largest particle diameter, then the first moment, D1, and the
fifth moment, D5, average particle sizes can be calculated as:

D1=

n
∑

i = 1
NiDi

n
∑

i = 1
Ni

(10)
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D5=

n
∑

i = 1
NiD5

i

n
∑

i = 1
NiD4

i

(11)

where:

Vi = volume of the ith particles;
Vk = volume of the kth particles;
VT = total volume of all particles;
fi = volume fraction of particles of the ith type;
fk = volume fraction of particles of the kth type;
D1 = number average particle size or the first moment average particle size;
D5 = fifth moment average particle size;
Ni = number of particles of the ith particle size;
Di = diameter of the ith particle size;
n = number of different particle sizes in mixture.

Figure 1. McGeary’s binary particle packing fraction vs. volume fraction small particle.

Using Equations (7)–(11), the ratio D5/D1 particle size averages for McGeary’s five binary
particle size distributions have been plotted in Figure 2 as a function of the volume fraction
of the smallest particle. The theoretical maximum value of D5/D1 included in each of the
binary plots Figures 1 and 2 has previously been shown [8,10] to easily be calculated as:

fimax =

√
Di

n
∑

i = 1

√
Di

(12)

Note that the maximum volume fraction, fimax, for component i can be calculated as
the square root of diameter i divided by the sum of the square roots of all particle diameters
in the distribution.

Of all possible ratios, it has been shown in a previous extensive study [8] that only the
D5/D1 ratio of average particle sizes can accurately predict both the location and relative
magnitude of the maximums for McGeary’s [52] five binary particle size distributions as
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indicated in both Figures 1 and 2. In a later study [10], it was further established that
Equation (12) also applies to the calculation of the volume fraction for any particle size at
the maximum packing fraction independent of how many different particles have been
included in the particle size distribution.

Figure 2. Average particle size ratio, D5/D1, for McGeary’s binary particle size ratios vs. volume
fraction small particle (where R = DLarge/DSmall).

The maximum packing fraction found by McGeary [52] for several particle size distri-
butions from binary blends to distributions with up to four particles has been summarized
in Table 1. Note that, using Equation (12), the calculated volume fractions yielding the
maximum packing fractions for McGeary’s distributions in Table 1 were found [8] to be in
good agreement with the volume fractions that McGeary found experimentally.

Table 1. McGeary’s experimental data with calculations from Sudduth [8].

i
Ratio between

Particle
Diameters

Paticle
Diameter

Measured
Volume
Fraction

Sq Root
Calculated

Volume Fraction

ϕn
(Measured)

ϕn
(Calculated)

ϕult
(Theory) D5/D1

1 8.2787 0.505 0.607 0.6446
2 5.5455 0.061 0.230 0.2240
3 6.875 0.011 0.102 0.0951
4 0.0016 0.061 0.0363 0.951 0.971 0.971 288.7
1 8.2787 0.505 0.647 0.6688
2 5.5455 0.061 0.244 0.2325
3 0.011 0.109 0.0987 0.898 0.931 0.931 41.5
1 11.2727 0.124 0.670 0.7085
2 6.875 0.011 0.230 0.2110
3 0.0016 0.100 0.0805 0.900 0.931 0.931 72.1
1 8.2787 0.5050 0.726 0.7421
2 0.0610 0.274 0.2579 0.800 0.791 0.831 7.7
1 0.5050 1.0000 1.0000 0.580 0.589 0.589 1.0
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Since monodisperse spherical particles have essentially the same packing fraction,
ϕm, independent of their particle size, then smaller particles can then fit in between the
larger particles. In general, Lee [46] has indicated that monodisperse spherical particles
have a maximum packing fraction of ϕm = 0.589 for loose random packing and ϕm = 0.639
for dense random packing. If the assumption is made that smaller spheres will fit into
the voids left by the larger spheres, then the ultimate maximum packing fraction, ϕnult,
for n different particle sizes yields the following equation, which has been previously
published [8] in detail, has been summarized in Appendix A:

ϕnult = 1− (1−ϕm)n (13)

For reference, the ultimate packing fraction has been summarized in Table 2 for up
to 12 different particles for both loose random packing and for dense random packing.
For reference, it needs to be noted that the maximum possible value for D5 cannot be
greater than the magnitude of the largest particle diameter in the distribution and the
minimum possible value for D1 cannot be smaller than the magnitude of the smallest
particle diameter in the distribution. The ultimate packing fraction, ϕnult, described by
Equation (13) is also shown in Figure 3 along with the maximum packing fractions that
were established experimentally by McGeary’s distributions as indicated in Table 1. Note
in Figure 3 how amazingly close McGeary’s experimental results were to the ultimate
theoretical packing fraction.

ϕnult = 1− (1−ϕm)n (13)

Table 2. Theoretical ultimate packing fraction based on the number of particles for both loose and
dense mono-disperse packing fractions.

Number of Particles, n ϕm ϕnult Number of Particles, n ϕm ϕnult

1 0.589 0.5890 1 0.639 0.639
2 0.589 0.8311 2 0.639 0.8697
3 0.589 0.9306 3 0.639 0.953
4 0.589 0.9715 4 0.639 0.983
5 0.589 0.9883 5 0.639 0.9939
6 0.589 0.9952 6 0.639 0.9978
7 0.589 0.998 7 0.639 0.9992
8 0.589 0.9992 8 0.639 0.9997
9 0.589 0.9997 9 0.639 0.9999
10 0.589 0.9999 10 0.639 1.0000
11 0.589 0.9999 11 0.639 1.0000
12 0.589 1.0000 12 0.639 1.0000

At this point, the maximum packing fraction for any particle size distribution
then can be calculated using the following equation, which has been developed in a
previous publication [8]:

ϕn = ϕnult − (ϕnult −ϕm)eα(1−(D5/D1)) (14)

where:

ϕn = particle packing fraction;
ϕnult = ultimate Particle packing fraction;
ϕm = monodisperse particle packing;
α = particle size distribution constant = 0.268;
D1 = number average particle size or the first moment average particle size;
D5 = fifth moment average particle size.
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Figure 3. McGeary’s maximums and theoretical maximums vs. number of particles.

This equation for the maximum packing fraction, ϕn, was required to be a function of
the ratio D5/D1 to successfully predict the maximums for McGeary’s additional blends
for tertiary and quaternary blends as well as indicated in Table 1. It has also been found
that Equation (14) has also been successfully extended to include blends with an indefinite
number of particles as well.

It has also been found that the accumulated volume fractions at the maximum packing
fraction for three of McGeary’s particle size distributions can be plotted as effective straight
lines as a function of the square root of the particle diameter as indicated in Figures 4 and 5
as well as in Table 3. The following equations were used to obtain the straight lines indicated
in Figures 4 and 5 as the results in Table 3:

i = β

∑
i = 1

fi= a ∗ ∗
√

Dβ + b ∗ ∗ (15)

a ∗ ∗ =
1− fmin√

Dmax −
√

Dmin
(16)

b ∗ ∗ =
fmin
√

Dmax −
√

Dmin√
Dmax −

√
Dmin

(17)

The correlation between the McGeary’s experimental results and the calculated results
in Figures 4 and 5 as well as in Table 3 were quite remarkable. This again suggested
that the calculated results appear to be approaching the correct theoretical explanation of
McGeary’s experimental results.

Finally, it should be noted that the ratio between McGeary’s particles sizes as indicated
in Table 1 ranged from 5.55 to 11.27. Consequently, it was of interest to see if there was an
optimum ratio that would be preferred between particle sizes. The resulting derivation of
the optimum ratio between particles, which has been generated in a recent publication [43],
simply looked at the particle ratio between the maximum packing fraction between n and
n+1 particles as described by Equation (13). An outline of this derivation which resulted in
the following equation has been summarized in Appendix B:
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Dnult
D(n+1)ult

=

(
1

1−ϕm

)2
= ZOptimum (18)

Figure 4. McGeary’s particle blend data vs. square root of particle diameter.

Figure 5. McGeary’s calculated particle blend data vs. square root of particle diameter.

Equation (18), as derived in Appendix B, indicates that the optimum ratio between
particles, ZOptimum, should be a direct function of the monodisperse packing fraction for
spheres, ϕm. Again, note that Lee [46] found that for loose random monodisperse packing
of spheres (ϕm = 0.589), whereas for dense random monodisperse packing of spheres
(ϕm = 0.639). Consequently, the optimum Z results summarized in Table 4 have been
calculated for monodisperse packing fractions that range from loose random packing to
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dense random packing. As indicated in Table 4, values of the optimized ratio between
particles would then appear to range between 5.92 and 7.67, which is approximately the
same range as that found by McGeary experimentally, as indicated in Table 1. In general, the
agreement between theory and McGeary’s experimental results appears to be quite good.

Dnult
D(n+1)ult

=

(
1

1−ϕm

)2
= ZOptimum (18)

Table 3. Slope and intercept values for McGeary’s straight line plots compared with the calculated straight line plots.

Measured
Volume Fraction

Straight Line
Constants Least

Square

Straight Line
Constants
Calculated

Sq Root
Calculated

Volume Fraction

Straight Line
Constants Least

Square

Straight Line
Constants
Calculated

0.607 a**= 1.3888 1.4002 0.6446 a**= 1.4336 1.4370
0.230 b**= 0.0215 0.005 0.224 b**= −0.0143 −0.0212
0.102 0.0951
0.061 0.0363
0.647 a**= 1.4522 1.4709 0.6688 a**= 1.4767 1.4879
0.244 b**= −0.027 −0.0453 0.2325 b**= −0.0464 −0.0573
0.109 0.0987
0.670 a**= 2.835 2.8834 0.7085 a**= 2.923 2.9459
0.230 b**= 0.0069 −0.0153 0.211 b**= −0.027 −0.0374
0.100 0.0805
0.726 a**= 1.5668 1.5658 0.7421 a**= 1.6005 1.6005
0.274 b**= −0.1127 −0.1127 0.2579 b**= −0.1374 −0.1374

Table 4. Optimum ratio between particle sizes.

ϕm 1/(1-ϕm) Dn/Dn+1

0.589 2.433 5.9199 Maximum Monodisperse Loose Random Packing
0.590 2.439 5.9488
0.595 2.469 6.0966
0.600 2.500 6.2500
0.605 2.532 6.4092
0.610 2.564 6.5746
0.615 2.597 6.7465
0.620 2.632 6.9252
0.625 2.667 7.1111
0.630 2.703 7.3046
0.635 2.740 7.5061
0.637 2.755 7.5890
0.639 2.770 7.6734 Maximum Monodisperse Dense Random Packing

Consequently, it is of interest to include the following quote from the final statement
that McGeary [52] made in his conclusion to his study:

“To produce efficient packing, there should be at least a sevenfold difference between
sphere diameters of the various individual components. This size difference was shown to
be associated with the ‘triangular pore size’ in the established packing through which the
next component had to migrate to reach a permanent site.”

This result again indicates that the results that McGeary found experimentally agree
very nicely with the theoretical analysis of his results as addressed in this study.

3. Influence of the Maximum Packing Fraction on the Generalized Viscosity Model

The generalized viscosity model introduced earlier in Equations (1) and (2) as well
as Equations (7)–(14) were developed by Sudduth [7–10] to describe the viscosity of sus-
pensions and composites with spherical particles as a function of the pigment volume
concentration, ϕ. Three primary variables—the intrinsic viscosity, [η]; the maximum
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packing fraction, ϕn; and an interaction coefficient, σ—were included in the original devel-
opment of the generalized viscosity equation. As indicated in Table 5, the modification of
the interaction coefficient, σ, can characterize the solubility of the suspended phase [53–55].

Table 5. Generalized suspension viscosity equation for selected values of the interaction coefficient, σ.

Interaction
Coefficient σ State of Mixture Simplified Form of Generalized Equation for

Equation Derivation Previous References

−2 Solution Ln(η/ηo) =
(
[η]ϕn

3

) {(
ϕ
ϕn

)3
− 3
(
ϕ
ϕn

)2
+ 3
(
ϕ
ϕn

)}
−1 Solution Ln(η/ηo) =

(
[η]ϕn

2

) {
2
(
ϕ
ϕn

)
−
(
ϕ
ϕn

)2
}

0 Solution Ln(η/ηo) = ([η]ϕn)
(
ϕ
ϕn

)
= [η]ϕ Arrhenius (1887–1917)

Plastisizer/
Intermediate

1 Suspension Ln(η/ηo) = (−[η]ϕn)Ln
{

1−
(
ϕ
ϕn

)}
Krieger-Dougherty (1959)

2 Suspension Ln(η/ηo) = ([η]ϕn)
(
ϕ
ϕn

) {
1−

(
ϕ
ϕn

)}−1
=
(
[η]ϕϕn
ϕn−ϕ

)
Mooney (1951)

3 Suspension Ln(η/ηo) =
(
[η]ϕn

2

) {
2
(
ϕ
ϕn

)
−
(
ϕ
ϕn

)2
}{

1−
(
ϕ
ϕn

)}−2

The modification of the interaction coefficient, σ, can also be adjusted to yield several
different well known suspension equations. For example, when σ = 0, the Arrhenius [23]
equation results; when σ = 1, the Krieger–Dougherty [24] equation results; and when σ = 2,
the Mooney [25] equation results.

As indicated in Figure 6, an adjustment of the interaction coefficient to yield a change
in the suspension solubility would also typically result in a change in the shape of the
viscosity curve, as indicated in Figure 6. Note that curves in Figure 6 were all calculated
using the Einstein limit [21,22] for the intrinsic viscosity of [η] = 2.5 with a maximum
packing fraction of ϕn = 0.59.
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Similarly, the results in Figure 7 were calculated with a range of values for the maxi-
mum packing fraction, again using the Einstein limit for the intrinsic viscosity of [η] = 2.5
but with a constant interaction coefficient of σ = 1.01. The results in Figure 7 then suggest
that the viscosity of suspensions can be significantly reduced at higher concentrations by
increasing the maximum packing fraction of the particle size distribution. In other words,
increasing the maximum packing fraction to reduce viscosity, as indicated in Figure 7, has
similar characteristics to decreasing the interaction coefficient to modify the solubility of
the suspended particles, as indicated in Figure 6.

Figure 7. General viscosity model vs. volume fraction filler for a range of maximum packing fractions.
([η] = 2.5 and σ = 1.01).

4. Extension of the Influence of the Slope and Intercept of Straight Line for the
Optimum Particle Size Distribution with Improved Blending Considerations

Many particle size analyzers maintain a constant ratio, Z, between successive particle
sizes analyzed such as that for the LS 130 Coulter Counter where Z = 1.09532. For such a
particle size analyzer, it is normally found that each ith particle group of diameter Di in a
particle size distribution can then be evaluated (where, in general, Z >1) as:

Di = Zi−1D1 (19)

Similarly,
DMax = Zn−1DMin = Zn−1D1 (20)

Rearranging then also gives:

Z =

(
DMax

D1

)( 1
n−1 )

(21)

and

n = 1 + Ln
(

DMax

D1

)
/Ln (Z) (22)

where:
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DMin = D1 = diameter of the smallest particle size in the particle distribution.

Note that the maximum range of particles that can be indicated using the LS 130 Coul-
ter Counter is from 0.1 microns to 899.7 microns. It can easily be shown using Equation (19)
that the maximum number of different particle size groups that can then be analyzed with
this machine is n = 101.

As described earlier, Equation (6) can be used to describe an optimum particle size
distribution with a straight line as:

i = β

∑
i = 1

fi= a ∗
√

Dβ + b∗ (23)

The values for a* and b* in Equation (23) can then be directly calculated based on the
following two boundary conditions:

For n = 1, Dβ = D1 = DMin and

FΣ1 =
i = 1

∑
i = 1

fi= f1 =

√
D1

i = n
∑

i = 1

√
Di

(24)

For n = β, Dβ = Dβ and

fΣβ =
i = β

∑
i = 1

fi=

i = β
∑

i = 1

√
Di

i = n
∑

i = 1

√
Di

(25)

It has also been shown in Appendix C that the sum
n
∑

i = 1

√
Di reduces to:

n

∑
i = 1

√
Di=

√
D1

(√
Zn − 1√
Z− 1

)
(C4)

Combining Equation (C4) as well as Equations (20), (24) and (25) with Equation (23) yields:

a∗ =

(
1√
D1

)( √
Z√

Zn − 1

)
(26)

b∗ =

(
1

1−
√

Zn

)
(27)

Note that Equation (26) indicates that the slope for the straight line will always be
positive. Conversely, Equation (27) indicates that the value of the straight line intercept,
b*, can never be positive. However, recall that for McGeary’s data using Equation (17) the
straight line intercept, b**, can be positive if:

fmin
√

Dmax>
√

Dmin (28)

At the maximum packing fraction for a particle size distribution, the ratios of two
maximum volume fractions can be obtained by combining Equations (8) and (12) to give:

fi

fk
=

Vi

Vk
=

NiD3
i

NkD3
k
=

√
Di√
Dk

(29)
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Rearranging gives:

Nimax = Nkmax
D3

k

D3
i

(
fi

fk

)
= Nkmax

D2.5
k

D2.5
i

(30)

If Nkmax = 1 for the largest particle at the maximum packing fraction, then the relative
number of smaller particles for the ith particle size indicated by Nimax can be easily calcu-
lated. In a previous article [41], it was also shown that at the optimum composition for an
optimum distribution that the general particle size average, Dx, can calculated as

Dx=

n
∑

i = 1
NiDx

i

n
∑

i = 1
NiDx−1

i

= D1

n
∑

i = 1
Z(x−2.5)(i−1)

n
∑

i = 1
Z(x−3.5)(i−1)

(31)

Further simplification similar to that described in Appendix C yields:

Dx=

n
∑

i = 1
NiDx

i

n
∑

i = 1
NiDx−1

i

=

(
Z(x−3.5) − 1

Z(x−2.5) − 1

)(
Z(x−2.5)n − 1

Z(x−3.5)n − 1

)
D1 (32)

Consequently, at the optimum composition for an optimum particle size distribu-
tion, the averages of D5 and D1 can be easily calculated using Equation (32) as well as
Equations (10) and (11) to yield the ratio D5/D1. Note that the ratio D5/D1 calculated
using Equation (32) is dimensionless and is only a function of Z and n.

The limiting Dx particle size average that would be of interest depends primarily
on which physical property is desired to be addressed. For example, it has already been
indicated that to address the viscosity [7–10] and/or modulus [26], both the first moment
or number average particle size, D1, and the fifth moment average particle size, D5, would
be need to be evaluated. However, to address an impact performance [41,42], the surface
average particle size, D3, would be of interest and could readily be calculated.

5. Influence of the of the Ratio between Particle Sizes, Z, on the Slope, Maximum
Packing Fraction, ϕn, and the Average Particle Size Ratio D5/D1

In general, the optimum packing fraction, ϕn, as described by Equation (14) would be
expected to increase with an increase in the magnitude of the ratio of two specific average
particle sizes, namely the ratio of D5/D1. This study has addressed several new approaches
to evaluate the D5/D1 ratio. In general, the larger the ratio of D5/D1 evaluated from
particle size distribution measurements, typically, the better the packing of that particle
size distribution. Most instruments that measure particle size distribution characterize the
distribution with measured values of the volume fraction, fi, and/or the relative numbers,
Ni, for each diameter of the ith particle size, Di.

The five examples of optimal straight line particle size distributions illustrated in
Figure 8 have been generated using Equations (23), (26) and (27) with each distribution
starting at the same initial particle size at D1 = DMin = 0.1 microns. The straight line for
each distribution in Figure 8 then had just six particles that were generated using a different
ratio between particles, Z, and each ended at a different particle size, DMax, generated as
the sixth particle.

The calculated results for the distributions in Figure 8 are summarized in Table 6 and
Figure 9 along with an extra distribution that was not included in Figure 8.

There are several observations of interest in Table 6, including:
Note that as the value of Z was increased, the slope continued to decrease while the

ratio of D5/D1 continued to increase, as indicated in Figure 9. This result was consistent
with the earlier observations with McGeary’s data in Table 1 as well as in Figures 4 and 5.
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Figure 8. Five calculated optimum straight line distributions with six particles and five different
ratios between particles, Z values.

Table 6. Summary of straight lines for six optimum particle distributions with different Z values but
the same starting particle size.

ϕm 0.5890 0.5890
n = 6 6
α = 0.2680 0.2680

Z Slope Intercept Dmin Dmax D5/D1 ϕmult ϕn

1.0953 10.5370 −3.1839 0.1000 0.1577 1.0993 0.9952 0.5997
1.5028 1.6195 −0.4178 0.1000 0.7664 4.1162 0.9952 0.8190
2.3629 0.3987 −0.0820 0.1000 7.3656 49.6001 0.9952 0.9952
4.7010 0.0666 −0.0097 0.1000 229.5989 1948.0385 0.9952 0.9952
5.9199 0.0373 −0.0048 0.1000 727.0811 6446.6039 0.9952 0.9952
7.6734 0.0194 −0.0022 0.1000 2660.2832 24,457.5882 0.9952 0.9952

However, note that while the value of the maximum packing fraction, ϕn, in Table 6
calculated using equation 14 was quite low at low values of the ratio D5/D1 it did increase
with an increase in the ratio D5/D1 and ultimately approached an upper limit.

Finally, the intercept, b*, also had a tendency to increase with an increase in the value
of Z. At this point, the value of the intercept does not appear to be as significant as the
change in the value of the slope in trying to optimize the packing fraction since it generally
seems to have a value near b* = 0.

To better interpret the results summarized in Table 6 as well as the results in Figures 8 and 9,
it is important to review the limits of the ultimate maximum packing fraction,ϕnult, and the
maximum packing fraction, ϕn, as influenced by the number of different particles, n, in the
particle size distribution and the average particle size ratio, D5/D1. An initial discussion of
the number of different particles, n, on the ultimate maximum packing fraction, ϕnult, were
previously indicated earlier in Table 2 and Figure 3 in association with the experimental
data of McGeary. With loose random packing and only 2 particles in the blend then the
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results in Table 2 and Figure 3 indicated that an upper limit maximum packing fraction of
only ϕn = 0.8311 can be achieved even with the maximum possible ratio of D5/D1.

Figure 9. Slope and D5/D1 vs. 6 different Z values.

Figure 10 addresses the relationship between the maximum packing fraction, ϕn, and
the average particle size ratio, D5/D1, as a function of the number of particles, n, in the
blend. Note in Figure 10 that only lower values of the maximum packing fraction are
possible for all particle combinations for up to six particles if the value of D5/D1 is less than
10. Reference back to Figure 7 also indicates that if the maximum packing fraction cannot
achieve above ϕn = 0.6 that a possible improvement in viscosity at higher concentrations
is minimized.

Two of the three optimum straight line distributions with six particles included in
Figure 11 were previously included in Figure 8. However, the third six-particle optimum
distribution in Figure 11 had a very different starting particle size with the remaining
five particles being generated with a ratio between particles of Z = 1.0953. The results of
the calculations for the three particle size distributions in Figure 11 have been included
in Table 7. The two particle size distributions in Figure 11 with the same ratio between
particle sizes of Z = 1.0953 and the same number of particles, 6, both ended up with the
same value of the ratio of D5/D1, even though they had very different starting particle
sizes. However, the two distributions in Figure 11 with the same ratio between particles of
Z = 1.0953 and the same ratio of D5/D1 had significantly different slopes. This is a clear
case wherein the distribution with a higher value of D5/D1 did not yield a lower slope.
These two cases with different slopes and different starting particle sizes indicated that
the ratio D5/D1 would appear to be considerably more important than the value of Z in
controlling the maximum packing fraction.

Nevertheless, the results from Figures 8–11 and Tables 6 and 7 did indicate that it
appears to be very desirable to maximize the difference between the minimum size particle,
D1 = DMin, and the maximum size particle, DMax, when trying to maximize the ratio of
D5/D1 and minimize the slope. It would also appear to be desirable to have at least six or
more different particles in an optimum blend to be able to have the possibility to maximize
the upper limit maximum packing fraction. For such an optimal particle size distribution,
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an increase in the value of D5/D1 normally yields an increase in the maximum packing
fraction, ϕn, as well as a lower slope. However, the range between the minimum particle
size and the maximum particle size would be expected to depend significantly on the
application of interest as well as other properties that may be desired.

Figure 10. Theoretical maximum packing fraction vs. D5/D1.

Figure 11. Volume fraction accumulation vs. square root of particle diameter for six particles at
two different Z values.
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Table 7. Summary of straight lines for three optimum particle distributions with different Z values
and different starting particle sizes.

ϕm = 0.5890 0.5890
n = 6 6
α = 0.2680 0.2680

Z Slope Intercept Dmin Dmax D5/D1 ϕmult ϕn

1.0953 10.5370 −3.1839 0.1000 0.1577 1.0993 0.9952 0.5997
7.6734 0.0194 −0.0022 0.1000 2660.3 24,457.6 0.9952 0.9952
1.0953 0.0811 −3.1839 1687.4184 2660.3 1.0993 0.9952 0.5997

6. Effect of a Constant Slope on the Influence of the of the Ratio between Particle
Sizes, Z, Maximum Packing Fraction, ϕn, and the Average Particle Size Ratio D5/D1

Once the desired maximum and minimum particle sizes have been generated, the
slope of the desired particle size distribution would have been established, as shown by
the example in Figure 12. At this point, it is desirable to evaluate the number of different
particles to be in the distribution as well as the ratio between particle sizes. The relation
between the number of particles and the value of Z to be used is clearly indicated using
either Equation (21) or (22) once the maximum and minimum particle sizes have been
identified so that all of these combinations have the same slope.

Figure 12. Optimum straight line distribution with the same starting particle and the same ending
particle with a constant slope and same ratio between particles (Dmin = 0.1 and Dmax = 229.6 and
Z = 1.0953).

The results indicated in Table 8 mathematically describe the relationship between the
number of particles and their corresponding Z values for these straight lines with essentially
the same slope as the straight line in Figure 12. The results in Table 8 have identified particle
size distributions with the same slope but different combinations between the number of
particles, n, and the ratio between particle sizes, Z.
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Table 8. Constant slope maximum packing fractions as a function of number of particles and the ratio between particles, Z.

Dmin = 0.100 ϕm = 0.589 0.589
Dmax = 229.60 α = 0.2680 0.2680

Number of
Particles n

Ratio
Between

Particles Z

Calculated
Slope

Volume
Fraction

Dmax

Volume
Fraction

Dmin

Fraction of
Nmin

Particles
D5/D1 ϕmult ϕn

86 1.0953 0.06734 0.0454 0.0009 0.2036 902.86 1.0000 1.0000
60 1.1402 0.06731 0.0647 0.0014 0.2796 937.04 1.0000 1.0000
40 1.2195 0.06727 0.0963 0.002 0.3911 994.89 1.0000 1.0000
20 1.5028 0.06714 0.1874 0.0039 0.6388 1176.07 1.0000 1.0000
10 2.3629 0.0669 0.3543 0.0074 0.8835 1544.80 0.9999 0.9999
6 4.7010 0.06664 0.5440 0.0114 0.9791 1948.05 0.9952 0.9952

5.3518 5.9199 0.06657 0.5941 0.0124 0.9883 2035.73 0.9914 0.9914
5 6.9222 0.06652 0.6249 0.0130 0.9921 2083.71 0.9883 0.9883

4.7978 7.6734 0.06650 0.6439 0.0134 0.9939 2110.85 0.9860 0.9860
4 13.1924 0.06638 0.7289 0.0152 0.9984 2208.15 0.9715 0.9715
3 47.9166 0.06620 0.8581 0.0179 0.9999 2282.46 0.9306 0.9306
2 2296.0000 0.06602 0.9796 0.0204 1.0000 2295.96 0.8311 0.8311

All of the slopes and intercepts in Table 8 were calculated using Equations (21) and (22)
after first relating the number of particles, n, and Z using Equations (26) and (27). However,
it is interesting that while this same process was used for all the calculations in Table 8, the
slopes seem to be decreasing ever so slightly in magnitude as the value of Z is increased.
This result has no explanation at this point.

Note that the values of Z in Table 8 have been plotted as a function of the number or
particles, n, in Figure 13.

Figure 13. Ratio between particles, Z, vs. number of particles with a constant slope.

In order to understand the results in Figure 13, it is first important to point out that
there is an optimum ratio between particles, as addressed in Appendix B. Appendix B
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addresses the derivation [43] of the optimum ratio between the ultimate packing fractions
described in Appendix A. The final result in Appendix B is Equation (B10), which is:

Dnult
D(n+1)ult

=

(
1

1−ϕm

)2
= ZOptimum (B10)

The calculated results using Equation (B10) as previously discussed and summarized in
Table 4 yielded a range of this optimum ratio between particles of 5.9199 ≤ ZOptimum ≤ 7.6734.
It is apparent in Figure 13 that the location of these optimum values for Z is where the
curve increases sharply.

The maximum packing fractions in Table 8 have also been plotted in Figure 14 as a
function of the number of particles in the blends. As indicated in Figure 14, there is a sharp
drop in the maximum packing fraction when the number of particles in the distributions
drops below 10. It is also important to note in Table 8 that the ratio of D5/D1 continues to
increase unabated as the number of particles in the distribution decreases from 86 to 2.

Figure 14. Maximum packing fraction vs. number of different particles in constant slope blends.

Note that optimum Z values of 5.9199 and 7.6734 have been included in both Tables 6 and 8.
In Table 6, these values for Z were both applied to the same number of particles in the blend.
However, in Table 8, these same values of Z were applied to a constant slope analysis of
the blend. The availability of both of these approaches as outlined in Tables 6 and 8 can be
potentially useful when optimizing a particle size distribution for a specific application.

Another important observation in Table 8 is the change in the volume fraction of small
particles as the number of different particles in the blend is decreased. For reference, the
volume fraction of particles in Table 8 has also been recalculated as the number of small
particles relative to the total number of particles in the blend. Note that the volume fraction
of the smallest particles has only increased from a volume fraction of 0.00095 to 0.0204 in
going from 86 particles to 2 particles. However, as indicated in both Table 8 and Figure 15,
the number fraction of the smallest particles increased from 0.203 to approximately 1.000
as the number of particles decreased from 86 particles to 2 particles.
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Figure 15. Fraction of number of small particles vs. number of different particles in constant
slope blends.

The increase in the number of small particles can also play a significant detrimental
role in modifying a property such as viscosity.

In general, the volume of a sphere vs. can be obtained as:

Vs = (4/3) π r3 (33)

where r = sphere radius.
In addition, the surface area of a sphere, As, can be obtained as:

As = 4 π r2 (34)

The ratio of surface to volume is then:

As/Vs = 3/r (35)

As the diameter of a sphere becomes smaller, the surface-to-volume ratio of the small
particles can contribute dramatically as the number of small particles increase. This can be
important since the interaction coefficient, σ, in the generalized viscosity model [7–10] can
be described by Equation (2) as:

σ =
λPC

D1
+ σs (2)

where D1 = number average diameter of particles in the blend.
Consequently, as the number of small particles in the blend increases, the interaction

coefficient can increase significantly as a result of an increase in the surface to volume of
the particles, which, in turn, can increase the viscosity as indicated in Figure 6. This is then
another significant reason to have a large number of different-sized particles in the blend
to minimize the possibility of having an increase in viscosity as a result of having too many
small particles.

In general, as indicated in Figure 10, a minimum of six particles should be included in
the final particle blend to be able to maximize the packing fraction. Utilizing the results
in Figure 10 along with the other equations in this study, the possibility of using only
six particles to generate an effective optimum particle size distribution has been addressed
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in Table 9. Note in Table 9 that when only six particles are in the distribution and the
ratio between particles is Z = 1.0953, a maximum ratio of D5/D1 = 1.099 is obtained. As
indicated in Figure 10, a ratio D5/D1 = 1.099 would obviously be quite inadequate.

Table 9. Estimated limits of the ratio of the maximum diameter/minimum diameter particles in a
particle size distribution.

Number of Particles n Ratio Between Particles Z Dmax/Dmin D5/D1

6 1.09532 1.577 1.099
6 2.00000 32.000 19.809
6 3.00000 243.000 181.0
6 4.00000 1024.000 835.4
6 5.00000 3125.000 2686.2
6 5.91993 7270.793 6446.6
6 6.00000 7776.000 6909.6
6 7.00000 16,807.000 15,275.8
6 7.67336 26,602.849 24,457.6

Consequently, based on the results in Figure 10, it would generally be undesirable
to generate an optimum particle size distribution if the ratio of D5/D1 < 25. Therefore,
as indicated in Table 10, a minimum requirement of D5/D1 ≥ 25 would be a strongly
recommended for an optimum particle size distribution to achieve an effective maximum
packing fraction. In general, blends with less than six particles would need to be adjusted
extremely carefully to make sure that whatever property (such as viscosity) is addressed,
the property will not be adversely affected.

Table 10. Practical limits of the ratio of the maximum diameter/minimum diameter particles in a
particle size distribution.

Number of Particles n Ratio Between Particles Z Dmax/Dmin D5/D1

47 1.09532 65.900 25.997
7 2.00000 64.000 39.519
6 3.00000 243.000 181.0
6 4.00000 1024.000 835.4
6 5.00000 3125.000 2686.2
6 5.91993 7270.793 6446.6
6 6.00000 7776.000 6909.6
6 7.00000 16,807.000 15,275.8
6 7.67336 26,602.839 24,457.6

7. Blends of Multiple Particle Size Distributions to a Constant Slope to Maximize
Packing Fraction, ϕn

After the maximum and minimum particle sizes have been identified, giving rise to
a well-defined slope, the creation of an optimum blend can also be achieved by blending
several particle size distributions to that slope, as indicated in Figure 16. Note in Figure 16
that the preferred slope has been designated with a separate straight line to which combi-
nations of other particle size distributions can be matched. A measurement of the goodness
of the blend can then be obtained by comparing the least square fit straight line of the
blends to the preferred straight line. The Z value in this instance has been determined by
the particular particle counter used in the blending process such as the Coulter Counter
with Z = 1.0953. Such blends can often be achieved very quickly with a computer program.

The disadvantage of many particle counters is that their value of Z is often limited to
a value not much greater than Z = 1. While this approach can be effective when utilized
properly, the use of multiple sieves can also be used to improve the value of Z addressed in
the particle size analysis.
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Figure 16. Accumulated volume percent vs. square root of particle diameter for an actual blend of
three particle size distributions to the straight line distribution.

8. Conclusions

This study has identified several practical limits to address the two dominant fun-
damental approaches to designing optimum particle size distributions with a maximum
packing fraction. For a property such as viscosity, if the maximum packing fraction cannot
reach above ϕn = 0.6, the possibility of lowering the viscosity at higher particulate concen-
trations is significantly reduced. At maximum packing fractions such that ϕn > 0.6, the
generalized viscosity model has indicated that the viscosity at higher concentrations can
be reduced since a higher packing fraction can act similarly to reducing the interaction
coefficient. However, it has also been shown that if there is a large difference in the sizes of
the particles, if there are fewer than six particles, and if the ratio of D5/D1 is less than 10,
then it has been shown that too many small particles can cause the viscosity to increase.
An increase in the number of small particles associated with an increase in the surface-
to-volume ratio of small particles can play a significant role in modifying or degrading a
property such as viscosity.

Based on a detailed analysis of McGeary’s extensive study of several binary, tertiary,
and quaternary particle size distributions, it has been found that the maximum packing
fraction appears to be fundamentally related to the average particle size ratio D5/D1.
Two important observations identified from a detailed analysis of McGeary’s extensive
study included:

(1) Of all the possible ratios of average particle sizes only the ratio of the fifth moment to
the first moment average particle sizes, D5/D1, was able to effectively characterize
both the relative magnitude and the location of the maximum packing fraction for
each of McGeary’s binary, tertiary, and quaternary particle size distributions.

(2) The location of the maximum value of the ratio, D5/D1, at the maximum packing
fraction was obtained when the volume fraction for each particle size in the distribu-
tion was calculated from the square root of the particle diameter divided by the sum
of the square roots of all the particle diameters in the distribution.

At the maximum packing fraction for an optimum constant ratio particle size distribu-
tion, a plot of accumulated particle volume fractions vs. square root of particle diameter
will normally yield the following characteristics:
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For an optimum particle size distribution with a constant ratio between particle sizes,
Z, a plot of the accumulated volume fraction vs. the square root of the particle size will,
out of necessity, form a straight line with the following characteristics.

a. If the value of Z >1, then the slope, a*, will be positive and the intercept, b*, will
be negative.

b. The magnitude of the optimum maximum packing fraction is normally increased
when the ratio of D5/D1 has been increased and the slope of the straight line has
been lowered.

c. For the same ratio between particles, Z, and the same number of particles, n, the ratio
of D5/D1 will normally remain the same independent of the value for the initial or
minimum particle size, Dmin.

d. For the same ratio between particles, Z, if the particle distribution has the same initial
particle size, Dmin, and the maximum particle size, Dmax, has been increased, the
ratio of D5/D1 must necessarily increase and the slope will normally decrease.

e. An increase in the ratio between particles, Z, normally results in an increase in the
ratio of D5/D1 with a decrease in the number of different particle sizes, n, and the rel-
ative volume fraction of the smallest particle size will normally necessarily increase.

In general, an optimum particle size distribution can be generated if the volume
fractions for a particle size distribution are calculated from the square root for each particle
diameter divided by the sum of the square roots of the particle diameters, even if there is not
a constant ratio between particles. However, if there is not a constant ratio between particle
sizes, then such an optimum particle size distribution may only generate an approximate
straight line for the accumulated sum of the volume fractions vs. the square root of the
particle size. For such an approximate straight line such as was obtained for McGeary’s
experimental data that did not necessarily have a constant ratio between particles, it was
found that the intercept b** can be positive when:

fmin
√

Dmax>
√

Dmin

The two dominant fundamental approaches to designing optimum particle size distri-
butions with a maximum packing fraction can be described as:

(1) The first design approach would be generated utilizing the same initial particle size,
Dmin, but by using different ultimate particle sizes, Dmax.

(2) The second design approach would be generated where each distribution starts
with the same initial particle size, Dmin, and ends with the same ultimate particle
size, Dmax.

For small-scale particle-size distributions measured with an instrument such as a Coul-
ter Counter, typically, the measured volume fractions are generated with a constant ratio
between particle sizes. In this case, once the minimum and maximum particle sizes have
been established, the ratio D5/D1 can be maximized by blending several particle size distri-
butions to an identified straight line to generate the desired final particle size distribution.

It was also found that there is a theoretical optimum ratio between particles, ZOptimum,
which appears to range from 5.9199 ≤ ZOptimum ≤ 7.6734. This range of ratios was ap-
proximately the same range that McGeary found to be optimum in his study as well. This
result indicated that these theoretical calculations agreed nicely with McGeary’s extensive
experimental results.

The disadvantage of many particle counters is that their value of Z is often limited to
a value not much greater than Z = 1 such as the Coulter Counter with Z = 1.0953. Such a
blending approach often requires large numbers of particles to be in the blend to be effective.
However, such blends can often be carried out very quickly with a computer program.

While particle counters can be effective when utilized properly, the value of Z can be im-
proved significantly by using multiple sieves to generate optimum particle size distributions.
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Appendix A. Derivation of the Ultimate Maximum Theoretical Packing Fraction
Possible for n Different Monodisperse Particles

The derivation of the ultimate maximum packing fraction, ϕnult, for the case of a
combination of n different sizes of monodisperse spherical particles can then be derived [8]
by first describing the first particle size packing fraction as:

ϕ1ult = ϕm (A1)

The maximum occupied volume fraction for the case of inserting the next size smaller
spherical particles in between the spaces of larger spherical particles then gives:

ϕ2ult = ϕ1ult + (1 − ϕ1ult)ϕm (A2)

or
ϕ2ult = ϕm(1 − ϕm) + ϕm (A3)

Similarly, for the maximum volume fraction for three spherical particle sizes,

ϕ3ult = ϕ2ult + (1 − ϕ2ult)ϕm (A4)

With appropriate substitutions,

ϕ2ult = (1 − ϕm)2ϕm + (1 − ϕm)ϕm + ϕm (A5)

In general, it can be shown that for n different spherical particles, the ultimate theoret-
ical maximum packing fraction can be written as:

ϕnult = ϕm

z = n

∑
z = 1

(1−ϕm)z−1 (A6)

With further simplification, Equation (A6) reduces to the following:

ϕnult = 1 − (1 − ϕm)n (A7)

Appendix B. Derivation of the Optimum Ratio between Particle Sizes, ZOptimum, for
Monodisperse Packing Fractions for Either Loose Random Packing or Dense
Random Packing

The derivation of the optimum ratio between particle sizes, ZOptimum, for the case of a
combination of n different sizes of monodisperse spherical particles can then be derived [43]
by first describing difference in the ultimate packing fraction from Appendix A between
the equation of the different number of particles in the distribution as

ϕ(n−1)ult = 1 − (1 − ϕm)n−1 (B1)

ϕnult = 1 − (1 − ϕm)n (B2)

ϕ(n+1)ult= 1 − (1 − ϕm)n+1 (B3)

Therefore, the fractional increase in volume between particles can be written as:
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V(n)ult = ϕ(n)ult −ϕ(n−1)ult = (1−ϕm)n−1 − (1−ϕm)n = (1−ϕm)n
(

ϕm

1−ϕm

)
(B4)

ϕ(n+1)ult = ϕ(n+1)ult − ϕn)ult = (1 − ϕm)n − (1 − ϕm)n+1 = (1 − ϕm)n ϕm (B5)

Thus,
Vnult

V(n+1)ult
=

(
1

1−ϕm

)
(B6)

However, in a previous publication [10], it was shown that for an optimum particle
size distribution, the volume fraction for each particle size can be described as:

fi =
Vi

VT
=

NiD3
i

n
∑

i = 1
NiD3

i

=

√
Di

n
∑

i = 1

√
Di

(B7)

Again, taking the ratio of volume fractions gives:

fi

fk
=

Vi

Vk
=

NiD3
i

NkD3
k
=

√
Di√
Dk

(B8)

Thus,
Vnult

V(n+1)ult
=

(
1

1−ϕm

)
=

√
Dnult√

D(n+1)ult

(B9)

Yielding:
Dnult

D(n+1)ult
=

(
1

1−ϕm

)2
= ZOptimum (B10)

Appendix C. Summation of
n
∑

i = 1

√
Di

Note that:
Dn= Zn−1D1 (C1)

Therefore,
n

∑
i = 1

√
Di=

√
D1 +

√
D2 +

√
D3 + . . . +

√
Dn (C2)

=
√

D1

(
1 +

√
Z+

√
Z2+

√
Z3 + . . . +

√
Zn−1

)
(C3)

finally yielding:
n

∑
i = 1

√
Di =

√
D1

(√
Zn − 1√
Z− 1

)
(C4)
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