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ABSTRACT Background: Detection and segmentation of brain tumors using MR images are challenging
and valuable tasks in the medical field. Early diagnosing and localizing of brain tumors can save lives and
provide timely options for physicians to select efficient treatment plans. Deep learning approaches have
attracted researchers in medical imaging due to their capacity, performance, and potential to assist in accurate
diagnosis, prognosis, and medical treatment technologies. Methods and procedures: This paper presents a
novel framework for segmenting 2D brain tumors in MR images using deep neural networks (DNN) and
utilizing data augmentation strategies. The proposed approach (Znet) is based on the idea of skip-connection,
encoder-decoder architectures, and data amplification to propagate the intrinsic affinities of a relatively
smaller number of expert delineated tumors, e.g., hundreds of patients of the low-grade glioma (LGG),
to many thousands of synthetic cases. Results: Our experimental results showed high values of the mean
dice similarity coefficient (dice = 0.96 during model training and dice = 0.92 for the independent testing
dataset). Other evaluation measures were also relatively high, e.g., pixel accuracy = 0.996, F1 score = 0.81,
andMatthews Correlation Coefficient, MCC= 0.81. The results and visualization of the DNN-derived tumor
masks in the testing dataset showcase the ZNet model’s capability to localize and auto-segment brain tumors
in MR images. This approach can further be generalized to 3D brain volumes, other pathologies, and a wide
range of imagemodalities. Conclusion:We can confirm the ability of deep learningmethods and the proposed
Znet framework to detect and segment tumors in MR images. Furthermore, pixel accuracy evaluation may
not be a suitable evaluation measure for semantic segmentation in case of class imbalance in MR images
segmentation. This is because the dominant class in ground truth images is the background. Therefore,
a high value of pixel accuracy can be misleading in some computer vision applications. On the other hand,
alternative evaluation metrics, such as dice and IoU (Intersection over Union), are more factual for semantic
segmentation. Clinical impact: Artificial intelligence (AI) applications in medicine are advancing swiftly,
however, there is a lack of deployed techniques in clinical practice. This research demonstrates a practical
example of AI applications in medical imaging, which can be deployed as a tool for auto-segmentation of
tumors in MR images.

INDEX TERMS Brain tumor, region segmentation, deep learning, augmentation, neural networks.

I. INTRODUCTION
Recent advancements in brain imaging, information tech-
nologies, and digital health records have opened the door for
enormous progress in holistic examination and deep pheno-
typing of the human brain. Structural, functional, diffusion,

and spectroscopy explorations are now possible using Mag-
netic Resonance Imaging (MRI) [1], [2]. These advances are
enabling health practitioners, radiologists, andmedical schol-
ars to peer into the anatomical and physiological organization
of the brain, accurately diagnose normal and pathological
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development, maturation, and aging, as well as assist health
professionals and clinicians. Manual inspection, segmenta-
tion, and analysis of MR images can be challenging for
a number of reasons. The processing of large volumes of
complexmultiresolution data, including series of images, vol-
umes, and participants; requires significant time, effort, and
unique expert skills, e.g., long training process and collabo-
rating teams of radiologists, neurologists, and data scientists.
Detection of normal and pathological traits is subjective and
includes a significant margin of error [1], [3]. Computational
and Artificial Intelligence (AI) techniques [4]–[6] can signif-
icantly assist with building interpretable models, trained on
existing medical images to automatically identify patterns,
derive labels, and diagnose new cases [7]–[9]. In general,
AI models are not intended to replace, but rather to comple-
ment, assist and enhance human medical expertise. Derived
computational models can optimize and expedite scientific
research and clinical practice. Medical image segmentation is
the process of recognizing, detecting, and labeling anatomical
parts, physiologically relevant areas, or the intrinsic network
organization of the brain. Segmentation brain maps facil-
itate clinical decision-making and provide a core step in
computer-aided diagnostics. The literature categorizes seg-
mentation into three types: automatic, semi-automatic, and
manual segmentation. Generally, there are three main models
to localize brain region boundaries as curves in 2D images
or surfaces in 3D volumes, e.g., brain tumor regions [10],
[11]. These include traditional machine learning approaches,
atlas registration, and deep learning methods. In classical
machine learning image segmentation, expert-derived man-
ual segmentation masks are employed to train a machine
learning classifier. Label annotation tools are used to identify
the target features, objects, or shapes. Machine learning
algorithms are used for training and then for testing the
model to detect analogous shapes and features in prospective
out-of-bag (new) datasets. For instance, a statistical learning
approach was used to model brain anatomical structure seg-
mentation and develop a probabilistic brain atlas [12], [13].
Another example, OpenLabeling (python tool) is used to label
tumors in medical images, and a support vector machine is
used to produce the model. This approach is considered time-
consuming and requires domain experts to obtain the initial
manual annotations. In addition, the performance is relatively
poor when the border between malignant and benign tissues
is ambiguous [14].

Multi-Atlas segmentation (MAS) is a semi-automatic
segmentation method that relies on prior atlases informa-
tion. MAS was evolved from the single-atlas method but
is considered insufficient for medical segmentation due to
the lack of prior information, which leads to low perfor-
mance and suboptimal accuracy [15]. As an alternative,
multi-atlases with more prior information are used for seg-
menting novel images. For example, employing pairwise
registration between each atlas image and the novel image,
where the registration results are used to propagate the atlas
labels into the space of the new image coordinates, which is

FIGURE 1. Fully convolutional network [18].

followed by the selection of the most likely labels for each
voxel [16].

In recent years, deep learning methods for medical image
segmentation have received lots of attention, due to multi-
ple reports with outstanding results for finding and predict-
ing the target shapes in the images. The literature includes
many algorithms for segmentation, but the fully convolutional
network (FCN) and convolutional autoencoder methods are
considered the most effective methods for medical image
segmentation [17]. A fully conventional network (FCN) con-
sists of a set of layers where each layer outputs is a three-
dimensional array of size hxwxc, where h and w are height
and width respectively, and c is the channel number. The
input image is considered as the first layer, and the subse-
quent layers are the output of convolving previous layers,
the basic elements of each layer are convolution, pooling,
and activation functions. Writing xi,j for the data vector at
location (i, j) in a particular layer, and yi,jfor the following
layer, these functions compute outputs yi,j by the following
equation (eq. 1) [18]:

yi,j = fk,s
(
{xsi+δi,sj+δj} | 0 ≤ δi, δj ≤ k

)
(1)

where s denotes the stride, k is the kernel size, and fk,s
determines the layer type. The final output layer in (FCN)will
be the same size as the input layer (input image), However,
the number of channels is determined by the classification
classes number where one channel means one class which is
normally used to obtain the predicted mask (desired output).
Figure 1 shows the framework for the fully convolutional
networks for medical image segmentation.

Autoencoder methods were utilized to extract features
from images or inputs sample while attempting to keep most
of the original information. The autoencoder consists of two
main parts, the encoder and decoder. The encoder part is to
encode the input images into smaller dimensional intermedi-
ate representations, where the decoder is to reconstruct the
original input images from the intermediate representation.
The loss function in autoencoders is calculated in terms of
the similarity between input images and the reconstructed
images [19], [20].

Unet is an extension of fully convolutional network archi-
tecture to work with a limited number of training data and to
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FIGURE 2. Unet architecture [22], an extension and modification of fully
convolutional network, receives a new MR image and produces the mask
tracking the shape of the detected tumor.

produce more accurate segmentation [21], Figure 2 shows the
Unet architecture, which consists of a contracting path (left
side) and an expansive path (right side). The left side of the
network represents the normal architecture of a convolutional
network, and each block contains two 3 × 3 convolutions,
rectified linear unit (ReLU), and a 2× 2 max pooling respec-
tively; this process is called down-sampling. At the end of
each contracting block, the image size is reduced, and feature
channels are doubled. The right side of Unet architecture
is called expansive path, which consists of an up-sampling
of the feature map followed by a 2 × 2 convolution that
reduces the number of feature channels by half. Unet also
applies concatenation between the output of each block on
the left side of the diagram with the corresponding cropped
block on the right side, cropping or matching arrays sizes are
essential to combine arrays into one array, and then apply
another two 3×3 convolutions followed by a ReLU activation
function. At the final block, a 1 × 1 convolution is used to
produce the output [22]. A key feature in theUnet architecture
is the use of a large number of feature channels, and the
use of skip connections. The purpose of skip connections in
convolutional networks is to enhance gradient flow through a
large number of layers to focus on more features in the image
and to generate shapely segmentation [23].

In the current literature, some studies on MRI tumor seg-
mentation use alternative methods, such as convolutional
networks, random forests, and Unet. A hybrid approach of
Unet and RESNET (residual networks) has been proposed
by [24], [25] yields high performance on brain tumor seg-
mentation, dice = 0.90. Ankari et al. [26] introduced genetic
algorithms (GA) with convolutional networks to perform
brain tumors segmentation. GA aims to obtain the optimal
CNN structure rather than the standard trial way of building
the convolutional network. This approach constructs several

FIGURE 3. (A) Samples of dataset images (B) the corresponding
annotated ground truth (tumor mask).

networks with the highest accuracy of 0.94 on the TCGA
dataset. Several experiments were performed by [27] for
brain tumor segmentation using Feature Pyramid Networks
(FPNs), RESNET, and Unet on TCGA (The Cancer Genome
Atlas [28]) dataset. The reported validation results show
optimal performance with dice = 0.93 by using RESNET.
A recent study [14] intended to build an effective segmen-
tation system for brain tumors using deep learning meth-
ods, specifically Cascade Convolutional Neural Network
(C-CNN). Their approach depends on a small amount of
data rather than using the entire dataset, which overcomes
high computation time constraints, restricts resource use, and
reduces the overfitting problem. This method also reported
competitive results with dice = 0.92. Another study [29]]
modified the Unet framework by replacing the deconvo-
lution block with the Nearest Neighbor method and two
convolutional layers. It achieved promising results for seg-
menting brain tumors with dice = 0.88 and IoU = 0.86.
Goetz et al. [30] used the ExtraTrees algorithm to segment
brain tumors. Since ExtraTrees provides more randomness
during the training phase and their reported dice = 0.83.
Automated clinical diagnosis, detection of clinical phe-

notypes, and forecasting of biomedical attributes and health
phenotypes can be subjective and error-prone. AI meth-
ods can augment human experts by deriving unbiased, reli-
able (low variability) and quick computer models that can
assist medical professionals with identifying patterns (such
as tumors) and suggesting optimal interventions. The appli-
cations of AI in medicine are advancing swiftly. Yet, there is
caution to expeditious, blind, and ubiquitous immersion of AI
in all aspects of clinical practice. This research demonstrates
one pragmatic case where the application of AI in medical
imaging provides a robust estimation of the presence and
dynamics of brain tumor development. Following broad and
deep performance assessment, such AI applications can be
deployed as desktop tools or mobile apps for automated
detection, classification, and tracking of brain tumors using
MR images.

II. METHODOLOGY
A. DATASET
The dataset used in this research study is a public bench-
mark dataset based on The Cancer Genome Atlas Low-Grade
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TABLE 1. Institutions and individuals contributed to TCGA-LGG data
collection.

FIGURE 4. Samples of data augmentation using albumentations python
library techniques.

Glioma (TCGA - LGG) [31], [32]. The idea behind
TCGA – LGG compilation is to build cancer images for
research purposes and to study the relationship between phe-
notype to genotype in cancer and medical images research.
The dataset was obtained during treatment and follow-up at
multiple locations, as shown in Table 1 [31].

Budaet et al. [32] investigated the dataset in [31] and made
it available for computational research and medical image
processing. In addition, our focus is on the FLAIR MRI
images, which contain LGG enhanced tumor images. Neuro-
radiology experts manually reviewed, annotated, and labeled
the FLAIR images for 110 patients. For pathological cases,
the experts delineated the shape boundary of the FLAIR
abnormality (tumor) for each image. The original MRI and
the manually labeled masks represented the training dataset.
The total number of image slices obtained was 3,929, with
2,556 labeled as normal and 1,373 abnormal (tumor). A few
random samples of the dataset are shown in Figure 3.

B. DATA PREPROCESSING
Randomly, the dataset was divided into training
(3005 images), validation (393 images), and testing
(432 images). The validation represents about 10% of the
original dataset, testing images represent about 15% of the
training dataset, and the remaining images are for training
the model. Images resolution in the original dataset was

256× 256, and due to extensive processing and computation
time for the size of the original image, we resized data to
128× 128 pixels.
Imaging data augmentation became a popular pre-

processing step in data science and AI applications, it is
mainly used when training data is limited or when the
amount of data is important to produce a better computer
model, in addition, data augmentation can reduce the over-
fitting problem and increase model performance [33]. In this
research, we used Albumentations, a free and open-source
python library to perform the necessary images augmenta-
tion [34]. Albumentations processes provided a broad and
holistic data augmentation. HorizontalFlip was used to pro-
duce new images from the existing images based on flipping
the input around the y-axis of input horizontally. Albumen-
tations VerticalFlip was utilized to generate new images
by flipping the input around the x-axis vertically. Random-
Rotate90 was employed to rotate the input Randomly by
90 degrees. Transpose was applied to exchange rows and
columns in the input image. Random affine transformations
using ShiftScaleRotate were applied to generate new images
based on shifting, scaling, and rotating the input images.
Finally, all input images pixels were converted to floating-
point elements in the range between 0 and 1. Figure 4 shows
sample data augmented by Albumentations python library
techniques.

III. ZNET FRAMEWORK
In the proposed network architecture, we utilized the concepts
of twowell-known segmentationmethods to construct a novel
framework for MR images tumor segmentation; adversar-
ial networks (AN) and Unet method. The framework uses
the principle of skip connections and concatenating tensors
from the AN and encoder-decoder design from the Unet
method. Figure 5 shows the complete architecture of the pro-
posed Znet method. The architecture consists of an encoding
part (analytic downsampling) and a decoder part (synthetic
upsampling).

The encoder part consists of five blocks, where each
encoder block contains double convolutions combined by
batch normalization and rectified activation function ReLU
(equation 2) and followed by max-pooling. The output of the
encoder block is concatenated with the encoder block input.
Note, the encoder block input is interpolated to match the
feature map of the encoder block output.

ReLu(z) =

{
0, z ≤ 0
z, otherwise

(2)

∑
(z) =

1
1+ e−z

(3)

ln = −wn
[
yn · log xn + (1− yn) · log(1− xn)

]
(4)

where w is the optional weight, y and x are the target
and input respectively. The decoder part consists of five
blocks, the same as the encoder block, except for the use of
ConvTranspose2d instead of max-pooling.ConvTranspose2d

VOLUME 10, 2022 1800508



M. A. Ottom et al.: Znet: Deep Learning Approach for 2D MRI Brain Tumor Segmentation

FIGURE 5. Proposed architecture of the Znet.

TABLE 2. Hyper-parameters used for training the proposed model.

is usually used to enlarge a tensor at the end of each decoder
block, so we finally get the original image dimensions in
the last decoder block. The final block is the output block
which consists of a single convolution and sigmoid activation
function (equation 3). We trained the model for 200 epochs
using adaptive moment estimation (ADAM) optimizer [35]
(equation 4),three channels 128× 128 pixels, a batch size of
32, and binary cross-entropy loss function [36]. Table 2 shows
hyper-parameters used for training the proposed model, and
Table 3 shows a sample of the architecture summary.

A. EVALUATION METRICS
The most common metrics for evaluating the performance
of medical MR images segmentation include pixel accuracy,
mean intersection over union (IoU ), and dice coefficient.

TABLE 3. The proposed method architecture summary.

FIGURE 6. The proposed algorithm training and validation performance.

However, pixel accuracy doesn’t perform well in case of
class imbalance in images because the dominant class will
overlook other classes and result in unexpected outcomes.
On the other hand, dice and IoU are proven to be a better
choices for semantic segmentation in general [37], [38]. IoU
and Dice evaluation matrices are similar and positively cor-
related since DICE is twice the amount of IoU as shown in
equations 5 and 6 to measure the similarity between ground
truth A and predicted segmentation B. In our study, we also
used pixel accuracy (eq. 7), the F1 score (eq. 8), and MCC
(Matthews Correlation Coefficient) (eq. 9 for evaluating the
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FIGURE 7. Visual results and comparison of MR images tumor segmentation using the proposed model (Znet) and the
benchmark model Unet.

proposed approach [39], (5)–(9), as shown at the bottom of
the page.

B. HARDWARE SPECIFICATION
The proposed framework ran on the server with the follow-
ing hardware and software specifications: 2x 16-core Intel
Xeon CPUs, 2x NVidia Titan 12GB GPUs, 128 GB RAM,

6 TB HDD storage, Ubuntu 18.04.5 LTS, Nvidia GPU driver
v460.91, CUDA 11.2+ CuDNN 8.1, Torch v1.10.0, torchvi-
sion v0.11.1, and Spyder v4.2.5.

IV. RESULTS
The training process on TCGA – LGG dataset for 200 epochs
showed a validation dice of 0.96 for detecting and segmenting

IoU (A,B) =
|A ∩ B|
|A| ∪ |B|

(5)

DICE(A,B) =
2|A ∩ B|
|A| ∪ |B|

(6)

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(7)

F1Score =
2 ∗ Precision ∗ Recall
Precision+ Recall

=
2 ∗ TP

2 ∗ TP+ FP+ FN
(8)

MCC =
(TP ∗ TN )− (FP ∗ FN )

√
(TP+ FP) ∗ (TP+ FN ) ∗ (TN + FP) ∗ (TN + FN )

(9)
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TABLE 4. Evaluation metrics comparison between the proposed
approach (Znet) and the benchmark algorithm Unet.

the brain tumor on MR images. Each epoch required
2-3 minutes using hardware specification in section 2.5.
In data science applications, we usually divide the data into
two parts - the training set, and the testing set. The training
set is also split into two parts, the model training set and
model validation set, the purpose of dividing the training
set into two parts is to avoid overfitting during the training
process, and to ensure that model evaluation (during training)
is performed using an unseen set of data. Figure 6 shows the
proposed algorithm training and validation performance (red
and dark blue curves, respectively), and model loss is a light
blue curve.

We compared the performance of the proposed framework
with the well-known segmentation algorithm Unet. The test-
ing was performed on 432 random MR images. The results
show that Znet outperforms Unet in regards to dice, dice loss,
pixel accuracy, F1 score, and MCC as shown in Table 4.

Figure 7 shows samples of auto segmentation for MR
images using the proposed framework and the Unet model.
Part (A) shows the original images before the segmentation
process, (B) shows the ground truth for tumor location and
shape in the original image, (C) indicates the produced mask
(location and shape) for the tumor using Znet model, (D) dis-
plays the constructed mask for tumor using Unet model,
(E) shows the auto segmentation of tumor using the Znet
model, (F) is the corresponding segmentation using Unet, and
(G) is the overlap between Znet and Unet. The analysis of the
432 testing dataset indicates that the Znet model can predict
and segment the tumor in MR images with a dice value of
about 0.92 and dice loss of 0.08.

V. DISCUSSION AND CONCLUSION
In this work, we proposed a new approach for MR
images segmentation based on the deep learning concept
of convolutional network and data augmentation to utilize
the available labeled images. The architecture relies on auto
encoder-decoder, the concept of skip-connections, and resid-
ual neural networks, which requires combining the output of
the previous layer with the next layer. Also features maps
are required to map the dimensions between the input and
the output of each layer. The benefit of skip-connections is
to find alternative and further paths for the learning process
and the gradient, which increase the probability of model
convergence and avoid vanishing gradients dilemma [40].
Themodel was trained for 200 epochs using a server equipped

with 2x NVidia Titan 12GB GPUs and showed a dice accu-
racy of 0.96 during training and about 0.92 for the testing
dataset. Other measurements include pixel accuracy of 0.996,
and 0.81for F1 score and MCC. For the benchmark Unet, the
performance measures were 0.85 for dice, 0.992 for pixels
accuracy, and 0.79 for F1 score and MCC. The evaluation
metrics and the visualization of auto segmentation in the
testing dataset (Figure 6) show the capability of the pro-
posed approach for diagnosing and auto-segmentation of MR
images of brain tumors.We can confirm that pixel accuracy is
not a suitable evaluation measure for semantic segmentation
in presence of class imbalance, just like in this case of MR
images segmentation. Because the dominant class in ground
truth images is the background. Also, high pixel accuracy
can be misleading in some computer vision applications.
On the other hand, some evaluation metrics, such as dice and
IoU, provide more accurate assessment of the performance of
alternative semantic segmentation techniques.

In the future, we will report about a prospective improve-
ment and extension of the proposed Znet architecture to
enable classification, extraction, parcellation, and prediction
of the presence and extent of brain tumors using multichan-
nel 3D MRI volumes. Predictive analytics and modeling of
high-dimensional neuroimaging hyper-volumes is challeng-
ing for a number of reasons, e.g., complexities of representing
higher-order data tensors, computational barriers, and the
natural exponential increase of the state space of the opti-
mization problem. Training supervised techniques such as
Znet requires a large number of annotated ground truths
(labels). Acquiring such large-scale testing and validation
data is resource-intensive and time-consuming. We are also
working on deep learning strategies to generate realistic high-
dimensional and multimodal neuroimaging data along with
ground truth labels. The transfer learning approach can be
utilized along with the proposed Znet to optimize the training
and minimize the costs of developing, validating, and embed-
ding AI techniques in clinical practice settings.
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