
Structural bioinformatics

Lemon: a framework for rapidly mining

structural information from the Protein

Data Bank

Jonathan Fine and Gaurav Chopra *

Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA

*To whom correspondence should be addressed.

Associate Editor: Alfonso Valencia

Received on July 31, 2018; revised on February 16, 2019; editorial decision on March 9, 2019; accepted on March 13, 2019

Abstract

Motivation: The Protein Data Bank (PDB) currently holds over 140 000 biomolecular structures and

continues to release new structures on a weekly basis. The PDB is an essential resource to the

structural bioinformatics community to develop software that mine, use, categorize and analyze

such data. New computational biology methods are evaluated using custom benchmarking sets

derived as subsets of 3D experimentally determined structures and structural features from the

PDB. Currently, such benchmarking features are manually curated with custom scripts in a non-

standardized manner that results in slow distribution and updates with new experimental struc-

tures. Finally, there is a scarcity of standardized tools to rapidly query 3D descriptors of the entire

PDB.

Results: Our solution is the Lemon framework, a Cþþ11 library with Python bindings, which

provides a consistent workflow methodology for selecting biomolecular interactions based on user

criterion and computing desired 3D structural features. This framework can parse and characterize

the entire PDB in <10 min on modern, multithreaded hardware. The speed in parsing is obtained

by using the recently developed MacroMolecule Transmission Format to reduce the computational

cost of reading text-based PDB files. The use of Cþþ lambda functions and Python bindings pro-

vide extensive flexibility for analysis and categorization of the PDB by allowing the user to write

custom functions to suite their objective. We think Lemon will become a one-stop-shop to quickly

mine the entire PDB to generate desired structural biology features.

Availability and implementation: The Lemon software is available as a Cþþ header library along

with a PyPI package and example functions at https://github.com/chopralab/lemon.

Contact: gchopra@purdue.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Experimental structures deposited in the Protein Data Bank (PDB)

(Rose et al., 2015) have resulted in several advances for structural

and computational biology scientific and education communities.

Several software packages have been developed using and applying

data available in the PDB. Computational structural biology meth-

ods are evaluated using several benchmarking datasets mined from

the PDB. As one example, for protein-ligand docking, the Astex

(Hartshorn et al., 2007), PDBbind (Liu et al., 2017) and DUD-E

(Mysinger et al., 2012) sets have been used to predict the 3D coordi-

nates of ligands, rank target activity and discriminate binders from

non-binders.

Additionally, the knowledge-based forcefields for protein

structure refinement (Chopra et al., 2008) and scoring functions

used to evaluate ligand poses in a protein binding site (Bernard and

Samudrala, 2009) require extensive feature mining of the PDB. The

VC The Author(s) 2019. Published by Oxford University Press. 4165

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 35(20), 2019, 4165–4167

doi: 10.1093/bioinformatics/btz178

Advance Access Publication Date: 14 March 2019

Applications Note

http://orcid.org/0000-0003-0942-7898
https://github.com/chopralab/lemon
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz178#supplementary-data
Deleted Text: s
Deleted Text: &hx2009;
Deleted Text: ,
https://academic.oup.com/


process for developing these benchmarking sets, structural features

for knowledge-based forcefields and scoring functions are non-

standard, time-consuming and computationally challenging as it

requires significant computational resources to mine different 3D

descriptors in the PDB. Development of software for mining these

3D features and use them for machine learning methods is challeng-

ing due to the increase in individual entry size as a significant com-

putational cost is needed to parse large text-based formats.

The Macro Molecular Transmission Format (MMTF) (Bradley

et al., 2017) was recently introduced to significantly reduce the time

required to parse text-based formats traditionally used to store crys-

tallographic data. MMTF requires a fraction of the computation

time to read multiple files into computer memory as it uses an

encoding format tailored specifically to protein and nucleic acid co-

ordinate data and topology. Specifically, MMTF stores connectivity

and chemical grouping data not captured in the PDB and mmCIF

formats that are leveraged by Lemon’s data extraction framework.

Lemon uses the entire PDB as Hadoop sequence files that are pack-

aged as 578 independent subsets for all MMTF entries and used for

the development of highly parallel workflows (Fig. 1). Lemon is the

only Cþþ11 software package to our knowledge to parse the

Hadoop sequence files natively.

2 Materials and methods

The Lemon framework uses a paradigm similar to MapReduce

developed by Google for mining ‘Big Data’(Dean and Ghemawat,

2004). The user provides a ‘worker’ function that accepts two

arguments: an object that represents the structure(s) of the chemical

entities, and a string representing the four-letter PDBID. Lemon

evaluates this function for all macromolecule entries in a multi-

threaded manner (Fig. 1a), allowing one to perform any calculation

on the structural information encoded by the MMTF file.

The MMTF object given to the user contains biomolecular data

at the atomic, chemical group and molecular levels. This includes

the position, name, element type and charge of the biomolecular

atoms as well as the name, chain, biologic assembly, chemical links

and composition type of chemical groups (e.g. protein residues).

These features are examples that can be used to create workflows

to select and extract desired 3D interactions.

Since a primary goal of the Lemon framework is to create

standardized workflows, we have represented an example workflow

pictorially (Supplementary Fig. S1). A workflow calculation is per-

formed on the entire PDB database that is stored in its entirety

on the user’s local machine. However, users can also choose to pre-

filter the database using a query generated on the RCSB website (see

section Using an RCSB search in Supplementary Material).

The workflow examples (Listings) are divided into ‘simple,’

‘distance-based,’ and ‘complex’ categories based on the computa-

tional complexity of the workflow. First, the user ‘selects’ chemical

groups present in the PDB entry using functions in Lemon for select-

ing small-molecules, metals, nucleic acids, amino acids, etc. These

functions work on the group level by querying the group’s size and

composition type. Additionally, it can also include the selection of

topological information. Examples for these selectors are given in

Supplementary Listings S1–S6.

After obtaining a list of groups, the user can further divide

(‘prune’) these groups based on 3D environment, biologic relevance

or frequency in the PDB. Lemon provides functions to find biologic-

ally identical groups, common groups (see Supplementary Tables S1

and S2) and interacting groups via spatial relationship in 3D.

Example lambda functions for ‘pruning’ groups are given in

Supplementary Listings S7–S12.

Finally, a workflow will calculate a feature of interest. For

example, a user may perform structural alignment to a reference

protein (Supplementary Listing S13), calculate a docking score

(Supplementary Listing S14) or output statistics on geometries of

bonded entities (Supplementary Listings S15–S18). To show case the

Python version of Lemon, three example workflows were ported to

Python (Supplementary Listings S19–S21). The information

obtained from these workflows can then be directly used in machine

learning approaches and the development of new structural biology

methods.

Lemon also implements two different threading models based

on the specifications of the Cþþ standard library. The first is a

traditional (synchronous, ‘sync’) threading approach which divides

the PDB into 578 subsets and launches a user-defined number

of threads to handle an equal portion of these 578 subsets (e.g. if

the user selects two threads each thread will handle 289 subsets).

The second is an asynchronous (‘async’) model that schedules

578 threads and executes a given number of them in parallel.

Specifically, for async, the next queued thread executes when a

thread completes, compared to the ‘sync’ model that requires all

threads to complete.

Fig. 1. Workflow for Lemon. (a) The overall work follows for the Lemon frame-

work is given. The user provides Cþþ or Python API Lambda functions which

use pre-defined functions to query information about each complex to filter

the PDB into a desired subset. (b) A comparison between the Cþþ and

Python benchmarking sets, showing the effect of multiple cores on overall

runtime for simple to complex workflows for GCC (asynchronous, ‘Async’

and traditional or synchronous, ‘Sync’ threading)

4166 J.Fine and G.Chopra

Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: &hx2009;
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz178#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz178#supplementary-data
Deleted Text: &hx2009;
Deleted Text: ,
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz178#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz178#supplementary-data
Deleted Text: ,


3 Results and discussion

3.1 Querying the PDB takes minutes
To measure Lemon’s execution time, we ran all example listings

provided in the Supplementary Material for different levels of

multithreading and compiler architectures. The calculations were

performed on a community cluster with each node consisting of two

12-core Intel Xeon Gold ‘Sky Lake’ processors (see Benchmarking

Lemon in Supplementary Material). There are differences in compu-

tational time for a ‘simple,’ ‘distance-based,’ and ‘complex’ work-

flow (Supplementary Listings S6, S10 and S18) including the time to

decompress and parse the MMTF files (Supplementary Fig. S2). The

average runtime for all workflows with ‘async’ threading on eight

cores (commodity hardware) takes �8 min to complete. The Lemon

outputs for these queries are shown in Supplementary Figures S6–S8

and Tables S3 and S4.

3.2 Workflow runtime influences threading efficiency
Asynchronous threading is more efficient for ‘complex’ workflows

compared to sync threading (Fig. 1b). Theoretically, the sync

threading time should be more than async because it needs to wait

for other threads to complete. However, the async and sync run-

times are similar for ‘simple’ and ‘distance-based’ workflows

(Supplementary Listings S6 and S10) but differ for complex work-

flow (Supplementary Listing S18) for 2 and 4 cores (Supplementary

Fig. S3). The runtime reduces with increase in the number of cores

(see 1, 2 and 4 cores in Supplementary Fig. S4). However, for some

simple and distance-based workflows runtime increased from 4 to 8

cores (Supplementary Fig. S4). This result may be due to increased

performance penalty for atomic (thread locking) operations after

completion of each thread. This hypothesis is supported by the

continued increase in performance for ‘complex’ operations as they

are less likely to become bound.

3.3 Large biomolecules do not affect runtime
Supplementary Figure S4 shows that removal of the largest size

PDBs (3J3Q, 3J3Y, 5Y6P) does not significantly reduce the overall

runtime for most workflows when compared to the entire PDB

(left column in the figure). An exception is the calculation of small-

molecule/peptide interactions that requires distance calculations

between millions of atoms for large complexes (see Peptides in

Supplementary Fig. S4). Hence, Lemon workflows scale with the

size PDB entries. This is a significant result given the increase in the

amount of large structures in the PDB (RCSB stats page).

3.4 Compiler choice significantly impacts runtime
The selection of the Cþþ compiler dramatically affects the perform-

ance of Lemon (Supplementary Fig. S5). However, the timings

shown in Supplementary Figure S5 indicate that there is only a mar-

ginal difference between the ‘sync’ and ‘async’ models averaged over

all workflows. The GNU Compiler Collection (GCC) version 6.3.0

with ‘sync’ threading compilation outperforms the Intel compiler

version 17.0.1.132 with sync threading (Supplementary Fig. S5,

green and blue bars). This discrepancy could be a result of GCC’s

use of a modern version of the Cþþ standard library or the specific

optimizations performed by this compiler are better for Lemon.

Further profiling is beyond the scope of this work and may be

addressed in future publications.

3.5 Python is slower than C11 for complex workflows
The data shown in Figure 1b indicates that the Python bindings are

just as fast as the Cþþ version for ‘simple’ and ‘distance-based’

workflows. Complex calculations scale poorly with the number

of cores, a result due to the Python global interpreter lock. This

underlines the importance of development in the Cþþ language,

potentially after prototyping a complex workflow in Python.

3.6 Code availability
Lemon is hosted on GitHub (see ‘Obtaining Lemon’ in

Supplementary Material) along with Cþþ and Python API docu-

mentation on the GitHub page repository. File input and output are

provided by the Chemfiles library. A link to the Lemon GitHub

repository has been added to the official MMTF webpage on

mmtf.rcsb.org.

Acknowledgements

We thank Gerardo Tauriello and Daniel Farrell for MMTF-CPP and

Guillaume Fraux for Chemfiles libraries.

Funding

This work was supported by the Institute for Integrated Data Science award;

Purdue Instructional Innovation Award; and Purdue Research Foundation

and the Department of Chemistry start up award (to G.C.).

Conflict of Interest: none declared.

References

Bernard,B. and Samudrala,R. (2009) A generalized knowledge-based discrim-

inatory function for biomolecular interactions. Proteins, 76, 115–128.

Bradley,A.R. et al. (2017) MMTF—an efficient file format for the transmis-

sion, visualization, and analysis of macromolecular structures. PLoS

Comput. Biol., 13, e1005575.

Chopra,G. et al. (2008) Solvent dramatically affects protein structure refine-

ment. Proc. Natl. Acad. Sci. USA, 105, 20239–20244.

Dean,J. and Ghemawat,S. (2004) MapReduce: simplified Data Processing on

Large Clusters. In: OSDI’04 Proceedings of the 6th Conference on Symposium

on Opearting Systems Design & Implementation, Vol. 6, pp. 137–150.

Hartshorn,M.J. et al. (2007) Diverse, high-quality test set for the validation of

protein-ligand docking performance. J. Med. Chem., 50, 726–741.

Liu,Z. et al. (2017) Forging the basis for developing protein-ligand interaction

scoring functions. Acc. Chem. Res., 50, 302–309.

Mysinger,M.M. et al. (2012) Directory of useful decoys, enhanced (DUD-E):

better ligands and decoys for better benchmarking. J. Med. Chem., 55,

6582–6594.

Rose,P.W. et al. (2015) The RCSB Protein Data Bank: views of structural biol-

ogy for basic and applied research and education. Nucleic Acids Res., 43,

D345–D356.

Lemon 4167

Deleted Text: P
Deleted Text: p
Deleted Text: rotein D
Deleted Text: d
Deleted Text: ata B
Deleted Text: b
Deleted Text: ank
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz178#supplementary-data
Deleted Text: &hx201C;
Deleted Text: &hx201D;
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz178#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz178#supplementary-data
Deleted Text: &hx2009;
Deleted Text: utes
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz178#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz178#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz178#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz178#supplementary-data
Deleted Text: ,
Deleted Text: four
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz178#supplementary-data
Deleted Text: cores 
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz178#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz178#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz178#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz178#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz178#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz178#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz178#supplementary-data

