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ABSTRACT
The outbreak of the COVID-19 pandemic was partially due to the challenge of identifying asymptomatic
and presymptomatic carriers of the virus, and thus highlights a strong motivation for diagnostics with high
sensitivity that can be rapidly deployed. On the other hand, several concerning SARS-CoV-2 variants,
including Omicron, are required to be identified as soon as the samples are identified as ‘positive’.
Unfortunately, a traditional PCR test does not allow their specific identification. Herein, for the first time,
we have developedMOPCS (Methodologies of Photonic CRISPR Sensing), which combines an optical
sensing technology-surface plasmon resonance (SPR) with the ‘gene scissors’ clustered regularly
interspaced short palindromic repeat (CRISPR) technique to achieve both high sensitivity and specificity
when it comes to measurement of viral variants. MOPCS is a low-cost, CRISPR/Cas12a-system-
empowered SPR gene-detecting platform that can analyze viral RNA, without the need for amplification,
within 38 min from sample input to results output, and achieve a limit of detection of 15 fM. MOPCS
achieves a highly sensitive analysis of SARS-CoV-2, and mutations appear in variants B.1.617.2 (Delta),
B.1.1.529 (Omicron) and BA.1 (a subtype of Omicron).This platform was also used to analyze some
recently collected patient samples from a local outbreak in China, identified by the Centers for Disease
Control and Prevention.This innovative CRISPR-empowered SPR platform will further contribute to the
fast, sensitive and accurate detection of target nucleic acid sequences with single-base mutations.
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INTRODUCTION
Severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) is rampaging across the world, and
researchers are struggling to elucidate the mecha-
nism of this disease and search for possible cures
[1–4]. On the other hand, rapid, specific and sen-
sitive gene detection methods are also required as
the Omicron variant has become the most con-
cerning variant [5]. As it stands, positive SARS-
CoV-2 samples are still mainly tested by poly-
merase chain reaction (PCR), and identifying the

variant types relies on gene sequencing [6]. How-
ever, these techniques are laborious, costly and time-
consuming, requiring complex reactions using mul-
tiple reagents, skillful operators andexpensive equip-
ment. More importantly, the typical method only
allows for the general detection of SARS-CoV-2
and not of specific strains. Therefore, based on the
huge amount of gene information regarding vari-
ants that gene sequencing has built, new techniques
can circumvent those limitations and promote the
development of a fast and sensitive gene-detecting
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platform that discriminates different variants in a sin-
gle step.

The clustered regularly interspaced short palin-
dromic repeat (CRISPR) system is a well-known
microbial natural adaptive immune system and
was developed as a revolutionary genomic editing
tool [7]. The widely known mechanism of CRISPR
technology is CRISPR-associated (Cas) nuclease
combined with a chimeric guide RNA (gRNA).
Such a

(Continued from
previous page)

7Department of Physics,
Faculty of Science, King
Abdulaziz University,
Jeddah 21589, Saudi
Arabia; 8Research
Center for Advanced
Materials Science
(RCAMS), King Khalid
University, Abha 61413,
Saudi Arabia;
9Department of
Chemistry, College of
Science, King Khalid
University, Abha 61413,
Saudi Arabia;
10Zhongmin (Shenzhen)
Intelligent Ecology Co.
Ltd, Shenzhen 518055,
China; 11Key Laboratory
of Optoelectronic
Devices and Systems of
Ministry of Education
and Guangdong
Province, College of
Physics and
Optoelectronic
Engineering, Shenzhen
University, Shenzhen
518060, China;
12Department of
Laboratory Medicine,
Shenzhen Children’s
Hospital, Shenzhen
518038, China;
13Optoelectronics
Research Center,
School of Science,
Minzu University of
China, Beijing 100081,
China; 14NHC Key
Laboratory of Biosafety,
National Institute for
Viral Disease Control
and Prevention, Chinese
Center for Disease
Control and Prevention,
Beijing 102206, China;
15Research Unit of
Adaptive Evolution and
Control of Emerging
Viruses, Chinese
Academy of Medical
Sciences, Beijing
102206, China and
16Institute of
Pathogenic Organism,
Shenzhen Center for
Disease Control and
Prevention, Shenzhen
518055, China

complex can bind to a gene locus with
protospacer-adjacent motif (PAM), and recognize
and cleave a site-specific nucleotide sequence [8].
This mechanism has been widely applied in gene
therapies [9,10]. At the same time, gene-detecting
methodologies that use different types of Cas
nucleases have been developed and used widely.
For example, Specific High-sensitivity Enzymatic
Reporter unLOCKing (SHERLOCK) is a method
employing Cas12 or Cas13 to detect preamplified
DNA or RNA sequences [11]. Other methods like
one-HOur Low-cost Multipurpose highly Efficient
System (HOLMES) [12,13], HOLMESv2 [14]
and CRISPR-Cas–only amplification network
(CONAN) [15] are demonstrating the advantages
of high specificity and flexibility. Such techniques
have progressively been applied in different clinical
scenarios: the detection of bacteria [16], diagnosis
of hereditary disease [17], screening of viruses [18],
etc.

Emerging diagnostic platforms based on
CRISPR/Cas are reported to target SARS-CoV-2
with a combination of viral purification, amplifi-
cation and detection processes [19–22]. These
diagnostic methods are making SARS-CoV-2 test-
ing more available in different application scenarios.
However, the CRISPR-based diagnoses above
rely on the amplification of sequences, leading
to an increased need for experimental time [23],
complicated devices and higher costs. Recently,
researchers have attempted to avoid the use of
polymerase-mediated amplification by improving
the sensitivity of detection systems, like droplet
microfluidics [24] and the design of modular
catalytic hairpin assembly circuits [15,25]. Another
way to thus improve the sensitivity of the detection
system is by combining CRISPR with different
platforms for enhanced signals. Kim et al. devel-
oped a CRISPR-based surface-enhanced Raman
scattering (SERS) assay for genomic DNA, with a
limit of detection (LOD) of∼8–14 fM [26]. Hajian
et al. also reported a graphene field-effect transistor
coupling with the CRISPR/dCas9 system, as a
specific capturer for specific exons of genomic DNA
related to inherited disease [17].

Surface plasmon resonance (SPR)-sensing tech-
nology is a well-known versatile technique within
the field of optical sensing platforms [27,28]. It is

widely used in research into molecular interactions,
including antigen–antibody [29], drug–target [30],
protein-nucleic acid [31], protein–protein [32] and
protein–lipid [33], and works by monitoring the re-
fractive index change on the sensor surface caused
by the surface change of weight. Our group is per-
sistently making efforts with regard to SPR-sensing
technologies for specific nucleic acid sensing [34].
More recently, we pioneered the combination of the
CRISPR/Cas system with the SPR technique to es-
tablish a CRISPR-empowered SPR diagnostic plat-
form. However, in the previous study [35], dCas9
protein and sgRNA had to be immobilized onto the
chip in advance,making the preparationprocesses of
the sensor complicated and time-consuming. More-
over, this previous system did not show the abilities
of CRISPR to distinguish singlemutated site in gene
sequences.

To date, B.1.617.2 (Delta, originally discovered
in India) and B.1.1.529 (Omicron, originally discov-
ered in South Africa) are the twomain SARS-CoV-2
subtypes of concern, and less protection from Omi-
cron than Delta (when it came to the mainly used
vaccines, Pfizer-BioNTech BNT162b2 and Mod-
ernamRNA-1273)was implied [36].There aremul-
tiplemutations on theS geneof bothDelta andOmi-
cron variants, and some of them are unique among
the major variants (Alpha, Beta, Delta and Omi-
cron) [37]. These mutations are the main reasons
for the appearing variants of SARS-CoV-2 to escape
the protection of vaccination and cause more false-
negative results of gene detection, thereby wasting
more social and medical resources. Although iden-
tification of variants through specialized sequencing
centers is useful [6], many areas in developing coun-
tries are short of such resources. Furthermore, the
delayed reports are not fulfilling the need for prompt
tracking of SARS-CoV-2 variants. Henceforth, there
is an urgent need for sensitive and specific diagnostic
platforms for SARS-CoV-2 variants.

Herein, we demonstrate the synergistic power
of the highly sensitive SPR sensor and the mu-
tation site-specific recognizing ability of the
CRISPR/Cas12a system (Fig. 1), producing a
biosensor that correctly reports the concentration
of currently concerning variants of SARS-Cov-2 in
both fake viruses and clinical samples. We name
this sensing platform ‘MOPCS’ (Methodologies
of Photonic CRISPR Sensing). In this study, we
utilized the lateral (trans-) cleavage properties
of the CRISPR/Cas12a system, therefore only
gold-nanoparticle linked single-strand DNAs have
to be immobilized on the chip in advance, which
makes the preparation of the chips much easier than
before. We fully utilized the single-site mutation
distinguishing power of the CRISPR/Cas system
to discern subtypes of SARS-CoV-2 as soon as the
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Figure 1. Scheme of MOPCS in this study. Within the whole genome sequence of
SARS-CoV-2, a highly conserved region of N sequence was selected to detect the pos-
itive samples, and a region of S sequence with three featured mutation sites of Delta,
Omicron and BA.1 variants was selected to distinguish the variants of positive sam-
ples. After the RNA sequences were extracted, purified and reverse transcribed into
double-strand DNA templates, the templates were mixed with Cas12a-crRNA com-
plexes. crRNAs were designed to target the conserved region, D950N, N969K and
L981F mutation sites. After loading onto the SPR chips with pre-immobilized ssDNA
reporter, only if the DNA templates contained the exact same sequences as the crRNA
could the Cas12a be activated and the ssDNA reporter be trans-cleaved, inducing a
changed (decreased) SPR wavelength.

‘positive’ signals came out. By targeting these unique
mutated sites, we distinguished specific target vari-
ants in the samples in this study, even for BA.1, a
subtype of Omicron, from ordinary Omicron sam-
ples. The advantages of MOPCS can be categorized
as: (i) the SPR technique has high sensitivity when
it comes to detecting amplification-free samples
(LOD: 15 fM); (ii) the CRISPR/Cas12a system
correctly distinguishes specific mutation sites and
reports which variant the samples belong to. Above
all, this novel CRISPR-empowered SPR detection
can facilitate precise, stable, sensitive and reliable

gene analysis of clinical samples with SARS-Cov-2
variants. This study has proved that there are possi-
bilities with regard to combining CRISPR and SPR
techniques, and consolidated further developments
in this new nucleic acid detecting strategy.

RESULTS AND DISCUSSION
Bioinformatic analysis and selection of
SARS-CoV-2 target regions
The MOPCS platform is capable of univer-
sal SARS-CoV-2 detection, by using crRNA
that targets the same region on the N (nu-
cleoprotein) gene of the Centers for Disease
Control and Prevention in United States (US
CDC) assay of qPCR [38]. Moreover, due to
the high specificity of CRISPR technology,MOPCS
can recognize featured single mutated sites of the
emerging variants, for example, we demonstrate
the capability of this platform to discern B.1.617.2
(Delta), B.1.1.529 (Omicron) and BA.1 variants
in this study. For the Delta variant, the featured
mutation of D950N (24410 G > A) was selected
as the target site, because this mutation mapped to
the trimer interface, suggesting that this mutation
may contribute to the regulation of spike protein
dynamics [39]. Furthermore, the Omicron variant
and its subtype BA.1 contains mutation sites in-
cluding N969K (24469 T > A, both Omicron and
BA.1) and L981F (24503 C > T, BA.1 only) [40],
and those sites were selected to distinguish them
according to variants usingMOPCS (Fig. 1).

SHERLOCK assay that specifically
identifies SARS-CoV-2 variants
MOPCS is basedon theSHERLOCKassay that uses
theCRISPR/Cas12a system to detect specific target
gene sequences. Therefore, we performed SHER-
LOCK assays to confirm the specificity of each de-
signed crRNA to their target sequences prior to the
on-device detection of MOPCS. As shown in Fig. 2,
five recombinant pUC57plasmidswereprepared for
the dsDNA templates for the CRISPR/Cas12a sys-
tem, providing regions of the wild-type N sequence,
wild-type S sequence, S sequence of Delta variant,
S sequence of Omicron variant and S sequence of
BA.1 variant, respectively. The detailed inserted se-
quences can be found inTable S2, and the successful
constructionof variantswas verifiedusingSangerSe-
quencing (Fig. S1 in theonline supplementarydata).
After being amplified using PCR (primers are shown
in Table S1), the concentrations of linear dsDNA
products were measured using NanoDrop (Ther-
moFisher Scientific) and stored at−80◦C until use.
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Figure 2. DNA templates, design of crRNAs and the verification of specificity. (A) dsDNA templates were acquired by ampli-
fying certain inserted sequences in the plasmids or extracting RNA from the virus and performing RT-PCR. SHERLOCK assay
was performed by mixing Cas12a protein, crRNA, DNA template and FAM-BHQ probes and incubating at 37◦C for 30 min.
Only if the crRNA and DNA were paired would the trans-cleavage happen and freed FAM generate fluorescence. Several
mutation sites on S gene sequence and a highly conserved region on N gene sequence were selected as the targets. For
D950N and N969K mutation sites, representing Delta and Omicron variants respectively, TTTV PAM sequences are formed
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Figure 2. Continued. and therefore they have a much higher affinity with the Cas12a protein compared to wild-type se-
quences. For L981F, which represents the Omicron-BA.1 variant, crRNA was designed according to the mutation sequence.
(B) Verification of successful trans-cleavage and cis-cleavage was performed using agarose gel electrophoresis. Lane 1,
100 nM DNA template (N gene) only; Lane 2, the 100 nM DNA template performed a SHERLOCK assay, cis-cleavage (T band)
and freed FAM coursed by trans-cleavage (F band) were observed; Lane 3, the 1 nM DNA template performed a SHERLOCK
assay, although the band of DNA was not observed because of the low loading amount—trans-cleavage (F band) was also
observed; Lane 4, 0.01 nM DNA template performed SHERLOCK assay—neither of the bands was observed because the
loading amount was too low and no FAM was freed by trans-cleavage. (C) Specificity of the crRNA-dsDNA pairs was per-
formed by cross-reactions between each crRNA and dsDNA template (10 nM). Only right paired reactions were observed with
strong fluorescence signals: dsDNA-N and crRNA-N; dsDNA-D and crRNA-D; dsDNA-O and crRNA-O; dsDNA-B and crRNA-
O/crRNA-B (because BA.1 is one subtype of Omicron). The difference between positive reactions (strong fluorescence) and
negative reactions (transparent) is also presented.

SHERLOCK assay was performed using the ds-
DNA templates and each crRNA to verify the speci-
ficity (Fig. 2). As shown in Fig. 2A, there are two
ways to acquire dsDNA templates used in this
study. One is inserting target sequences, including
a conserved sequence of N gene, and wild type,
Delta, Omicron, or Omicron-BA.1 sequences in the
pUC57 plasmids, and amplifying the desired re-
gions. The other way is extracting RNA from the
virus and performing Reverse transcription Poly-
merase Chain Reaction (RT-PCR) to acquire the
target regions. SHERLOCKassaywas performed by
mixing Cas12a protein, crRNA, DNA template and
Carboxyfluorescein-Black Hole Quencher (FAM-
BHQ) probes and incubating at 37◦C for 30 min.
Several mutation sites on the S gene sequence and
a highly conserved region on the N gene sequence
were selected as the targets. For D950N andN969K
mutation sites, representing Delta and Omicron
variants respectively, TTTV PAM sequences are
formed and therefore they have a much higher affin-
ity with the Cas12a protein than the wild-type se-
quences. For L981F,which represents theOmicron-
BA.1 variant, crRNA was designed according to the
mutation sequence.

Verification of successful trans-cleavage and cis-
cleavage was performed using agarose gel elec-
trophoresis. As shown in Fig. 2B: lane 1, 100 nM
DNA template (N gene) only; lane 2, 100 nM
DNA template performed SHERLOCK assay, cis-
cleavage (T band) and freed FAM coursed by trans-
cleavage (F band)were observed; lane 3, 1 nMDNA
template performed SHERLOCK assay, although
the band of DNA was not observed because of the
low loading amount—trans-cleavage (F band) was
also observed; lane 4, 0.01 nM DNA template per-
formed SHERLOCK assay, neither of the bands was
observed because the loading amount was too low
and no FAMwas freed by trans-cleavage.

Specificity of the crRNA-dsDNA pairs was per-
formed by cross-reactions between each crRNA
and dsDNA template (Fig. 2C). Only right paired
reactions were observed with strong fluorescence

signals: dsDNA-N and crRNA-N; dsDNA-D and
crRNA-D; dsDNA-O and crRNA-O; dsDNA-B and
crRNA-O/crRNA-B (because BA.1 is one subtype
of Omicron). The difference between positive reac-
tions (strong fluorescence) and negative reactions
(transparent) is also presented.

Through the results above, highly specific trans-
cleavage of crRNA targeting variants of sequences
fromSARS-CoV-2was verified, however,DNA tem-
plates in low concentration (<0.01 nM) cannot
be determined. Therefore, in the following experi-
ments, sensors based on SPR were applied to im-
prove the sensitivity.

MOPCS on-device measurement
Based on the specificity of crRNA-target sequences
proved above, on-device measurement was per-
formed to further improve sensitivity and lower the
LOD to meet the requirement for the detection
of unamplified samples from patients. Here, we
used H1-, H2- and AuNP@H3-handle-assembled
reporters because, on one hand, this design can
be programmed to link other nanomaterials on
the H3 handle, and on the other hand, the partly
double-strand structure can maintain a more stable
distance between the chip surface and the AuNP, to
offer a more stable SPR signal [41]. The on-device
workflow is described in Fig. 3A and Fig. S2, and
stated below. Firstly, three single-strand DNA re-
porters were prepared:H1, a long handle containing
a sequence for trans-cleavage of activated Cas12a;
H2, a short handle with a complementary sequence
of part of H1; H3, another short handle with a com-
plementary sequence of the other part of H1—this
was linked to Au nanoparticles by using the thiol-
free freezing method [20]. On-device, started with
Phosphate Buffered Saline (PBS) rinsing on the
chip (wavelength = λ0), H1 was then immobilized
onto theAu surface of SPR chips. After short rinsing,
H2 and AuNP@H3 handles were added to the flow
cell, and a double-strandDNA structure was formed
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Figure 3. On-device measurement. (A) Scheme of the workflow. Three single-strand DNA handles were designed and syn-
thesized: H1, a long handle containing a sequence for trans-cleavage of activated Cas12a; H2, a short handle with a comple-
mentary sequence of part of H1; H3, another short handle with a complementary sequence of the other part of H1, and it was
linked to Au nanoparticles by using the thiol-free freezing method. On-device, H1 was firstly immobilized onto the Au surface
of SPR chips. After short rinsing, H2 and H3-AuNP handles were added to the flow cell, and a double-strand DNA structure
was formed. During the CRISPR detecting process, Cas12a protein was activated if the DNA template was the target of crRNA
and would thus resulted in trans-cleave H1, followed by the release of Au nanoparticles. By washing the surface to remove
non-specific absorption of a substance like Cas12a protein, the SPR signal could be determined. The higher concentrations
of DNA templates caused an increase in final shifted wavelengths from the endpoint of H2 + AuNPs@H3. (B) Specificity of
on-device measurement was verified by cross-reaction of each crRNA and dsDNA template. (C) A comparison between the
fluorescent signal and SPR signal, testing different concentrations of target dsDNA template (n= 3, ∗∗∗P< 0.001).
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from patients, and the virus was deactivated and followed by RT-qPCR or MOPCS.
(B) qPCR results for 30 patients (Omicron variant) and healthy people. (C) MOPCS for
detection of the N969K mutation site (only in Omicron variant) were performed using
the same samples of qPCR. Positive SPR signals for two of the patients (arrowed) were
not detected (false negatives). (D) MOPCS for detection of the D950N mutation site
(only in Delta variant) were performed using the same samples above, and no positive
result was shown.

(wavelength = λinit). After reacting with the matrix
containing the Cas12a, crRNA and DNA templates,
Cas12a protein would be activated if the DNA
template was the target of crRNA, and thus resulted
in trans-cleave H1, followed by the release of Au
nanoparticles. By washing the surface to remove
non-specific absorption of a substance like Cas12a
protein, the final SPR signal (wavelength = λend)
can be determined.The�Wavelength, which is cal-
culated as SPRcut/SPR0 (where SPRcut =λinit−λend,

and SPR0 = λinit − λ0) is the result that reflects
the concentration of target dsDNA templates. The
more target sequences that exist in the reaction,
the more Cas12a can be activated, thus the more
H1 handle would be cleaved in a certain time.
Therefore, the �Wavelength signal can reflect the
concentration of target sequences. Because the
steps before CRISPR can be prepared in advance,
the total test time is 6720∼9000 s, in other words,
it can be<38 min.

Next, the specificity of on-device measurement
was verified by cross-reaction of each crRNA and
dsDNA template (Fig. 3B). As a result, right-paired
crRNA and dsDNA can cause a significantly higher
�Wavelength (N: 66.6%± 3.1%,D: 58.6%± 3.1%,
O: 66.6% ± 2.4%) compared to any wrong paired
groups.The specificity was cross-proved with the re-
sults of fluorescent methods (Fig. 2).

Furthermore, a comparison between fluorescent
signal and SPR signal, testing different concentra-
tions of target dsDNA templates, was performed
(Fig. 3C). Firstly, the positive threshold was defined
as the average of the blank signals plus triple its
standard deviation, which is 2117 a.u. for the fluo-
rescent measure (black dashed line) and 7.11% for
�Wavelength signal (red dashed line). Any signal
above the positive threshold indicates the existence
of target sequences. Therefore, the LOD for the
fluorescent method and MOPCS is 50 pM and 15
fM, respectively. This means that the sensitivity
of MOPCS is >1000-fold higher than the typical
fluorescent method of CRISPR diagnosis for target
gene sequences.

Performance of the MOPCS diagnostic
device and validation with clinical
samples
Theultimate purpose ofMOPCS is to practically de-
tect clinical samples with target nucleic acids. We
tested30 samples fromSARS-CoV-2patients identi-
fied as having the Omicron variant; this was already
determined using qPCR and Sanger sequencing by
the Shenzhen Center for Disease Control and Pre-
vention (China). From healthy people, 30 samples
were also used as the negative control.

As shown in Fig. 4, nasal swabs were obtained
from patients. The virus was deactivated and fol-
lowed by MOPCS, and compared with the results
of qPCR. The qPCR results (Fig. 4B) for 30 pa-
tients were all positive (Ct value < 40), and the re-
sults for healthy people were all negative (not reach-
ing the threshold within 40 circles of amplification).
MOPCS for detection of the N969K mutation site
(only exists in the Omicron variant) was performed
using the same samples. Similar to the results of
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qPCR, no positive result was shown in the healthy
control group.However, positiveSPRsignals for two
of the patients (Fig. 4C, arrowed)were not detected,
which was a false-negative result. The accuracy of
MOPCS in this test was 93.3% (28 out of 30 patients
were detected). Because no amplification step was
involved, this accuracy is relatively high. Moreover,
MOPCS for detection of the D950N mutation site
(only in the Delta variant) was performed using the
same samples above, and no positive result had been
shown (Fig. 4D), indicating that MOPCS could not
only detect the positive samples but also distinguish
the variant of SARS-Cov-2. Obviously, if general de-
tection of SARS-Cov-2 is desired, MOPCS can per-
form with only crRNA targeting the conserved se-
quence of the N gene.

CONCLUSION
As SARS-CoV-2 variants emerge, the control of
the ongoing COVID-19 pandemic requires a gene-
detecting platform with both high sensitivity and
specificity. The streamlined workflow and flexible
design ofMOPCS—a label-free and rapid CRISPR-
empowered SPR technique—were developed for
detecting different variants of SARS-CoV-2. In this
study, featuredmutation sites of theDelta, Omicron
and Omicron-BA.1 variants were selected, and the
specificity of the designed crRNAs was verified. To
resolve the problem of the low sensitivity of typical
CRISPR assays, we developed a combined assay of
CRISPR and SPR to achieve 1000-fold sensitivity;
theLODofMOPCS reached 15 fMwithout the pro-
cess of preamplification of the samples, and the on-
device test timewas∼38min. Finally, we tested pos-
itive samples from SARS-CoV-2 patients to validate
the accuracy and the ability to distinguish variants
by MOPCS, and no false-positive results occurred.
We have built the rudimentarymethods for combin-
ing the utilities of CRISPR and SPR, and hopefully it
will further develop in several aspects. In future stud-
ies, this systemcouldbe improvedby functionalizing
with nanomaterials to further improve the SPR sig-
nal response, and integrating withmicrofluidic tech-
nology for multiplex gene detection. Above all, with
the integrated sequence-specific recognizing ability
of the CRISPR/Cas system and the high sensitiv-
ity of the SPR sensor, we provide a novel sensing
methodology for precise, stable, sensitive and reli-
able gene analysis of clinical samples.

METHODS
Sample preparation
As the dsDNA templates—plasmids containing
wild-type or mutated N gene or S gene sequences

(Table S2)—were also synthesized by Sangon
Biotech (Shanghai) Co. Ltd., the Delta, Omicron
and BA.1 mutation sites were verified by Sanger se-
quencing (Fig. S1). Further, samples from 30 pa-
tients confirmed ‘positive’ by qPCR previously were
collected andMOPCS detection was performed.

On-device reactions
H1-, H2-, H3-handle (Table S1) assembled re-
porters were used on the SPR device. Firstly, H3
DNA solution (5 μL, 100 μM; shown in Table S1)
was added to 100μL of AuNP (15 nm in diameter)
solution and mixed via a brief vortex. After being at
−20◦Cfor 2h, the solutionwas thawedat roomtem-
perature (RT). Finally, the mixture was centrifuged
at 12 000 rpm for 20min and the supernatantwas re-
moved.The pellet was washed three times with PBS
to remove free DNA.The conjugate was redispersed
in PBS for further use.

For the SPR measurement, thiolate H1 ss-
DNA handle (Table S1) was firstly dissolved in
100 mM PBS buffer solution (10 mM tris(2-
carboxyethyl)phosphine (TCEP) in PBS, pH 7.4)
for 30min. After the SPR chip was rinsed by PBS for
1 min, thiolate ssDNA solution was introduced into
the Teflon sample chamber via a capillary tube for
over60minat 37◦C.Subsequently, theSPRchipwas
rinsedwithPBS for 3min and further incubatedwith
the H2 handle and AuNPs@H3 handle described
above, for 45 min at 37◦C. After rinsing with PBS
buffer for 3min, the chip was ready to use for detect-
ing the samples. The reactions of SHERLOCK as-
say (100 nM Cas12a New England Biolabs (NEB),
100 nM crRNA, 1 × NEB 2.1 buffer (NEB) and
target dsDNA sequences at desired concentrations)
were introduced into the chamber and incubated
for 20 min at 37◦C. Subsequently, Proteinase K
(1:1000) in 1×NEB 2.1 buffer was introduced into
the chamber and incubated for 10min at 37◦C to re-
move the non-specific binding of Cas12a protein on
the SPRchip. Finally, the SPR signalwas acquired af-
ter rinsing with PBS briefly. The change in SPR sig-
nalwasused toquantify the target dsDNAsequences
in SHERLOCK reactions. The SPR response was
monitored in real time for further analysis. All the
SPRcurveswere smoothedusing theSavitzky-Golay
method.
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