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Abstract
The rapid advancements in magnetic resonance imaging (MRI) technology have precipitated a new
paradigm wherein cross‐modality data translation across diverse imaging platforms, field strengths,
and different sites is increasingly challenging. This issue is particularly accentuated when transition‐
ing from 3 Tesla (3T) to 7 Tesla (7T) MRI systems. This study proposes a novel solution to these
challenges using generative adversarial networks (GANs)—specifically, the CycleGAN architecture—
to create synthetic 7T images from 3T data. Employing a dataset of 1112 and 490 unpaired 3T and
7T MR images, respectively, we trained a 2‐dimensional (2D) CycleGAN model, evaluating its per‐
formance on a paired dataset of 22 participants scanned at 3T and 7T. Independent testing on 22
distinct participants affirmed the model’s proficiency in accurately predicting various tissue types,
encompassing cerebral spinal fluid, gray matter, and white matter. Our approach provides a reliable
and efficient methodology for synthesizing 7T images, achieving a median Dice of 6.82%,7,63%,
and 4.85% for Cerebral Spinal Fluid (CSF), Gray Matter (GM), and White Matter (WM), respec‐
tively, in the testing dataset, thereby significantly aiding in harmonizing heterogeneous datasets.
Furthermore, it delineates the potential of GANs in amplifying the contrast‐to‐noise ratio (CNR)
from 3T, potentially enhancing the diagnostic capability of the images. While acknowledging the
risk of model overfitting, our research underscores a promising progression towards harnessing the
benefits of 7T MR systems in research investigations while preserving compatibility with existent
3T MR data. This work was previously presented at the ISMRM 2021 conference (Diniz, Helmet,
Santini, Aizenstein, & Ibrahim, 2021).
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1 INTRODUCTION

Magnetic Resonance Imaging (MRI) technology has offered high
definition and noninvasive insights into the intricacies of human brain
structure and function (Hagmann et al., 2006). This advancement has
considerably improved our understanding of brain morphological and
functional changes throughout life and in various neurodegenerative
conditions (Ashburner & Friston, 2000). In addition, it has spearheaded
the discovery of potential biomarkers for numerous neurological disor‐
ders (Ross et al., 2012), thereby opening the doors to early detection
and therapeutic intervention.

The field of MRI has been shifting from conventional/clinical
3 Tesla (3T) MRI systems towards high‐field strength 7 Tesla (7T) MRI
systems (Uğurbil, 2014). The benefits of 7T MRI include augmented
signal‐to‐noise ratio (SNR), enhanced visualization of brain structures
due to reduced voxel size, and an improved contrast‐to‐noise ra‐
tio (CNR) resulting from more distinguishable tissue relaxation times
(Uğurbil, 2014). Despite these advantages, increased costs, restricted
availability, increased susceptibility artifacts, a higher specific absorp‐
tion rate (SAR), and radiofrequency (RF) inhomogeneity may complicate
image acquisition and interpretation (van Osch & Webb, 2014).
The field has seen significant advances in the design and applica‐

tion of RF coils that are instrumental in overcoming the challenges of
7T MRI, chiefly ensuring high‐quality and high‐resolution acquisition
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(Santini, Wood, et al., 2021). However, transitioning longitudinal patient
studies from the widely used 3T systems to the more advanced 7T sys‐
tems presents substantial hurdles. The primary reason for this is the
innate differences in the images generated by the two systems, espe‐
cially the contrast variations among the soft tissues. These may affect
direct image comparisons and complicate longitudinal analyses (Obusez
et al., 2018).
Other factors, such as variability in image quality and systematic

differences between varying field strengths, can complicate statistical
analyzes of aggregate data (Fortin et al., 2018). These difficulties under‐
score the need for efficient spatial adaptive data normalization method‐
ologies capable of handling variances across different field strengths;
they are paramount in strengthening our understanding of the neu‐
roanatomical shifts and progressions associated with normal aging and
pathological processes.
Artificial intelligence (AI) and machine learning technologies have

significantly shaped numerous sectors, including healthcare (Bohr &
Memarzadeh, 2020). In particular, medical imaging is being improved
by the potential of deep learning methods, which extends their reach
into the complex realm of neuroimaging (Shen, Wu, & Suk, 2017).
Specifically, applying Convolutional Neural Networks (CNNs) in image
classification tasks has improved diagnostic precision and efficiency
(Litjens et al., 2017). Building on this momentum, Generative Adver‐
sarial Networks (GANs) and their variants have emerged as powerful
tools for medical image analysis, including tasks such as image synthesis,
segmentation, and data augmentation (Nie et al., 2018).
Introduced by Goodfellow et al., (2014), GANs comprise a unique

model structure employing two deep neural networks: the generator
and the discriminator. They engage in an adversarial process, aiming
to generate synthetic data resembling the original distribution. These
networks have demonstrated proficiency in modeling complex data dis‐
tributions (Arjovsky, Chintala, & Bottou, 2017; Salimans et al., 2016),
which is beneficial for various image transformation tasks.
CycleGANs, an extension of GANs, provide a solution to unpaired

image‐to‐image translation tasks (Zhu, Park, Isola, & Efros, 2017), includ‐
ing photo enhancement (Chen & Koltun, 2017), style transfer (Gatys,
Ecker, & Bethge, 2016), and image synthesis (T.‐C. Wang et al., 2018).
In particular, within the realm of medical imaging, its applications have
been transformative. CycleGANs have also shown potential in tasks
such as lesion synthesis (Guerrero et al., 2018). These networks can
enrich rare disease datasets by generating synthetic lesion images,
facilitating better disease detection and diagnosis. In addition, they
have been used in tasks such as organ segmentation by transforming
organ‐specific images into simplified representations that facilitate the
segmentation process (Cai, Zhang, Cui, Zheng, & Yang, 2019).
One significant application pertains to the translation of images in

different modalities, such as converting Computed Tomography (CT)
images to MRI images and vice versa (Wolterink, Leiner, Viergever, &
Isgum, 2017). In practical scenarios, patients may not undergo CT and
MRI scans due to cost, radiation exposure, or other considerations. By
training in unpaired CT and MRI datasets, CycleGAN has demonstrated

the capability to generate synthetic but anatomically accurate MR im‐
ages from CT scans and, conversely, to produce CT‐like images from
MR scans.
Cross‐modal image translation, defined by the machine learning and

imaging community, consists of converting images from one modality
to another, retaining the crucial content while modifying the style to
resemble the target modality (Zhu et al., 2017). 3T and 7T, despite em‐
ploying the identical principle of nuclear magnetic resonance, exhibit
divergent operational mechanics due to distinct field strengths. This dif‐
ferentiation manifests itself in significant differences in image quality,
resolution, CNR, susceptibility effects, and spectral separation (Vaughan
et al., 2001). In this regard, 3T MRI can be considered one modality and
7T MRI another. The conversion process from 3T to 7T through GANs
fulfills this criterion, as it retains the intrinsic information (content) from
the 3T images and translates the image properties (style) to align with
that of 7T MRI.
This study uses a dataset of unpaired 3T and 7T MR images to train

a CycleGAN‐based model capable of translating 3T MRI data into syn‐
thetic 7T data. This approach aims to address the problem of spatial
adaptive MR data harmonization, allowing the combined analysis of
cross‐sectional and longitudinal data from 3T and 7T MRI systems.

2 MATERIALS & METHODS

2.1 Model Architecture

The landscape of machine learning has been significantly shaped by the
emergence of GANs, as conceptualized by Goodfellow et al., (2014).
This novel model structure, built on game‐theoretic principles, employs
two deep neural networks in strategic interaction: the generator and the
discriminator. The generator aims to generate synthetic data replicating
the actual data distribution,while the discriminator strives to discern the
synthesized data from the real data. This adversarial dance evolves over
iterative training sessions, yielding refined performance from both net‐
works and improved proficiency in modeling complex data distributions
(Arjovsky et al., 2017; Salimans et al., 2016).
Taking a step further, CycleGANs provide a robust solution to un‐

paired image‐to‐image translation, a challenging problem in computer
vision. Zhu et al., (2017) introduced CycleGAN’s architecture, compris‐
ing two GANs containing a generator and a discriminator. The generator
creates compelling images of the target domain, deceiving the discrimi‐
nator, which aims to differentiate real images from the translated ones
within the target domain. The design of CycleGAN is such that each gen‐
erator maps an input image from a source domain to a target domain
and vice versa to ensure cyclical consistency (Zhu et al., 2017).
A feature that distinguishes CycleGAN from traditional GANs is its

cycle consistency loss. This loss function aims to ensure that the cycle
of translating an image from one domain to another and back again re‐
constructs the original image. Let X denote the domain of images, and
Y denote another domain of images. We can represent an image from
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F I GUR E 1 The cyclical consistency of the CycleGAN. This figure visually demonstrates the 3T cycle consistency. The 7T loop is conceptually
symmetric. The generators are marked as performing the mappings G3T→7T : 3T → 7T and G7T→3T : 7T → 3T. The Real 3T image is fed to the
G3T→7T (top left), producing the synthetic 7T image (top middle). The D7T discriminator differentiates between the Real and Synthetic 7T images
and strives tominimize 7T adversarial loss (bottom left). The synthetic 7T image is fed into theG7T→3T generator, which produces the reconstructed
3T image. The 3T cycle consistency loss ensures the 3T image can be reconstructed from the synthetic 7T image (top right).

X as x ∈ X , and an image from Y as y ∈ Y . Let us construct image
datasets from each domain: DX = {x1, x2, . . . , xm} consisting of M im‐
ages from X , and DY = {y1, y2, . . . , yn} consisting of N images from Y .
Now, let the mappings G : X → Y and F : Y → X be the generators
between the two domains. Then, the cycle consistency loss is:

Lcyc(G, F) = Ex∼DX [∥F(G(x)) – x∥1] + Ey∼DY [∥G(F(y)) – y∥1] . (1)

Ex∼DX and Ey∼DY are the expectations taken over the datasets
DX andDY , respectively. The terms ∥F (G(x)) – x∥1 and ∥G (F(y)) – y∥1
measure the absolute difference between the original image and the im‐
age that has been translated to the other domain and back, i.e., F (G(x))
means G translates an image x ∈ DX into the domain Y and then trans‐
lated to X by F. Similarly, G (F(y)) takes an image y ∈ DY , translates it
into domain X by F and then converts it back to Y by G. The cycle con‐
sistency loss should be small if the model performs well, indicating that
the original and the cycled‐back image are nearly identical.
Our study uses a CycleGAN to deal with unpaired 3T and 7T MRI

data. Figure 1 shows a schematic representation of the architecture
and functioning of the CycleGANmodel. Our implementation integrates
two generator networks based on the U‐Net architecture (Ronneberger,
Fischer, & Brox, 2015), with residual blocks inserted between the en‐
coding and decoding stages (He, Zhang, Ren, & Sun, 2016).
U‐Net is a CNN architecture renowned for its utility in biomedical

image segmentation. It is named after its U‐shaped structure, which con‐
sists of a contracting path to capture context and a symmetric expanding

path for precise localization of features. The expanding pathway uses
transposed convolutions, with skip connections that transfer feature
maps from the contracting path to recover spatial information.
Residual blocks, proposed in the ResNet architecture by He et

al., (2016) resolve training difficulties encountered with deep neural net‐
works. These blocks consist of several convolutions, after which the
input is added to the output, creating a residual connection. This config‐
uration allows the network to learn residual functions concerning the
layer’s inputs, facilitating the training of deeper models.
The model also uses instance normalization and stride‐2 convo‐

lutions. Instance normalization is often used in style transfer tasks
(Ulyanov, Vedaldi, & Lempitsky, 2016). It calculates the mean and vari‐
ance for each instance separately, leading to the relative scaling of the
activations. This technique is beneficial for disentangling content and
style in image generation tasks. Stride‐2 convolutions, frequently uti‐
lized in CNNs, help reduce the spatial dimensions of feature maps and
allow the model to learn more abstract representations in deeper layers
(Goodfellow, Bengio, & Courville, 2016).
Our CycleGAN model uses 70 × 70 PatchGANs for the discrimina‐

tor networks. PatchGANs, as described by Isola et al., (2017), classify
whether each patch in an image is real or fake instead of assessing the
picture as a whole. This patch‐level classification enables the genera‐
tion of sharper and more contextually accurate images in tasks such as
image‐to‐image translation.
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2.2 Dataset

We leveraged an extensive collection of unpaired and paired 3T and
7T MR images from diverse sources to ensure a rich and comprehen‐
sive dataset. The 3T MRI data were primarily sourced from the Human
Connectome Project (HCP), a globally recognized brain imaging dataset
that contains high definitionmultimodal brain imaging data fromhealthy
adults (Sotiropoulos et al., 2013). Specifically, structural 3T images were
sourced from a subset of 1112 scans in the HCP’s 1200 subjects data re‐
lease. The images were acquired using a Siemens 3T Connectome Skyra
and a standard 32‐channel Siemens receive head coil at Washington
University in St. Louis. The scans were conducted using a T1‐weighted
(T1w) Magnetization Prepared RApid Gradient Echo (MPRAGE) proto‐
col with a repetition time (TR) of 2400ms, echo time (TE) of 2.14ms,
flip angle (FA) of 8◦, field of view (FOV) of 224mm × 224mm, and
isotropic resolution of 0.7mm, lasting approximately 8 minutes.
The inclusion criteria for the 3T HCP data required participants to be

between 22 and 35 years old with no significant history of psychiatric
disorder, substance abuse, neurological or cardiovascular disease and
the ability to provide valid informed consent. Participants were required
to have a Mini Mental Status Exam score above 28.
Exclusion criteria included multiple nonprovoked seizures or a diag‐

nosis of epilepsy, genetic disorders such as cystic fibrosis, the use of
prescription medications for migraines in the past 12 months, and con‐
ditions such as multiple sclerosis, cerebral palsy, brain tumor, stroke,
sickle cell disease, thyroid hormone treatment in the past 12 months,
current treatment for diabetes (excluding gestational or diet‐controlled
diabetes), head injury, and premature birth. Other exclusion criteria
were the presence of unsafe metals or devices in the body (such as
cardiac pacemakers, cochlear implants, aneurysm clips), current or his‐
torical use of chemotherapy or immunomodulatory agents that could
affect the brain, pregnancy, and moderate to severe claustrophobia.
The 7T dataset was sourced from the 7TBRP dataset, acquired at

the RF Research Facility at the University of Pittsburgh, a specialized
research center for high‐field imaging. The dataset included 490 sub‐
jects’ structural 7TMR images. The scanswere acquired using a Siemens
Magnetom 7T whole‐bodyMR scanner and an in‐house developed first
generation of the Tic‐Tac‐Toe head radio‐frequency coil system (Santini
et al., 2018; Santini, Wood, et al., 2021; Krishnamurthy et al., 2019; San‐
tini, Koo, et al., 2021). The scans were performed using a T1wMPRAGE
protocol with a TR of 3000ms, TE of 2.17ms, bandwidth of 391Hz/Px,
GRAPPA reconstruction with acceleration factor R = 2, and isotropic
resolution of 0.75mm, lasting approximately 5 minutes.
The exclusion criteria for the 7TBRP dataset included pregnancy or

lactation, acute medical problems that could result in neurocognitive
or brain dysfunction, including diabetes mellitus, coronary artery dis‐
ease, and causes cerebral vasculities, such as peripheral vascular disease.
Other exclusion criteria were contraindications to MRI scanning, such
as electronic implants, magnetically activated implants, tattoos above
the shoulders, or brain implants. Data acquisition in all studies was per‐
formed following the protocol approved by local institutional review

boards. All participants were older than 18 years and were able to
provide their written informed consent prior to participation.
A set of paired (acquired in the same participants) 3T‐7T data

from the 7TBRP dataset was used to compare the synthetic 7T data
from3T and the real 7T data. The data set consisted of MR images from
22 subjects. The study‐specific inclusion and exclusion criteria for the
paired data were similar to those for the unpaired 7T datasets.

2.3 Data Preprocessing

The first stage of pre‐processing, bias field correction,was performed us‐
ing FMRIB’s Automated Segmentation Tool (FAST) part of FSL (Y. Zhang,
Brady, & Smith, 2001). This technique mitigates the intensity inhomo‐
geneity observed within MR images due to receive coil profile and
patient positioning differences (Vovk, Pernus, & Likar, 2007). If not
correctly trained, deep learning models can learn from these inhomo‐
geneities and become biased, leading to sub‐optimal performance. Bias
field correction can rectify this, enabling the model to concentrate
on the salient features of the image (Arnold et al., 2001). This pro‐
cess results in enhanced feature extraction, improved segmentation,
and registration results, which further enhances the effectiveness of
subsequent processing and training phases (Tustison et al., 2010).
Following bias field correction, we performed spatial normalization

using the Statistical Parametric Mapping (SPM) toolbox’s coregister
function, co‐registering the images via normalized mutual information
to the Montreal Neurological Institute 152 standard (MNI152) space
(Ashburner, 2007; Penny, Friston, Ashburner, Kiebel, & Nichols, 2011).
Normalization facilitates the comparison and integration of data be‐
tween subjects, as each voxel location corresponds to the same anatom‐
ical structure across all images (Evans, Janke, Collins, & Baillet, 2012).
This alignment minimizes the need for the neural network to learn these
invariances, potentially improving performance (Cao et al., 2017).
In the next stage, we transform the image intensities to a standard

normal range of [–1, 1] using SPM’s image calculator function. This
transformation minimizes intersubject variability, promoting improved
image data consistency (Nyul & Udupa, 1999). Furthermore, intensity
normalization allows the model to focus more on structural or se‐
mantic differences between images than on absolute pixel intensities
(Goodfellow et al., 2016). This is critical during the early stages of train‐
ing as it prevents the gradients from vanishing or exploding, resulting
in a more stable optimization process and faster convergence (LeCun,
Bottou, Orr, & Müller, 2002). Furthermore, intensity normalization can
alsomake the learning process less dependent on the specific units used.
This is especially important when combining data frommultiple sources
with different measurement units or scales (Bishop & Nasrabadi, 2006).
Finally, we skull‐stripped the images using the Brain Extraction

Tool (BET) within FSL, removing non‐brain tissue from the MRI images
and thereby reducing dimensionality, which can improve the efficiency
of subsequent model training (Iglesias & Sabuncu, 2015; Smith, 2002).
For computational efficiency, we transformed 3D images into 2D by
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extracting axial slices using FSL’s fslslice function, which is less compu‐
tationally intensive while preserving critical anatomical information.

2.4 Model Training

Training a deep learning model requires orchestrating various strategies
and methods to optimize performance. In the context of our Cycle‐
GAN model implemented within the TensorFlow framework (Abadi et
al., 2016), we had to consider various elements such as computational
hardware, optimization algorithms, weight initialization, regularization
techniques, and learning rate schedules.
We used NVIDIA Titan RTX GPUs (24GB of memory) for training and

adopted an iterative training strategy; the discriminators were updated
four times for each update of the generators within the training loop.
This prevented the generators from overpowering the discriminators,
which is critical to supporting the dynamics of the adversarial process
(Goodfellow et al., 2014).
We used early stopping as a regularization technique to control the

model’s capacity and prevent overfitting. We stopped training when no
significant improvement in the performance of the validation set was
observed, i.e., the validation loss did not decrease by 0.1% over five
consecutive epochs (Prechelt, 2002). Furthermore, L1/L2 regularization
was employed to encourage the model to learn distributed and sparse
representations, which can increase its generalizability (Ng, 2004).
We used the Adam optimizer (Kingma & Ba, 2014) for the optimiza‐

tion algorithm. Its adaptive learning rate and efficient computationmake
it a superior choice for training deep learning models, especially for
achieving faster and more effective convergence. The Xavier weight
initializationmethodwas used for all convolutional layers (Glorot & Ben‐
gio, 2010). In addition, all bias terms were initialized to zero. Proper
weight initialization can significantly improve the convergence rate and
prevent problems such as vanishing or exploding gradients, making the
optimization process more stable.
Finally, we incorporated learning rate annealing into the training pro‐

cess to fine‐tune the speed at which the model learns. The learning rate
was set at 10–4 for the first 100 epochs and was linearly decreased to
zero. By gradually reducing the learning rate, the model can make signif‐
icant updates to learn the gross structure of the data in the early stages
and then fine‐tune its weights in later stages, allowing for smoother and
more effective convergence (Bengio, 2012).

2.5 Model Evaluation

The traditional approach to assessing GANs, primarily focusing on dis‐
criminator loss, needs an explicit measure of sample quality. This work
thus evaluates the quality of training using a pre‐trained deep neural
network to embed the samples, inspired byHeusel et al., (2017)method‐
ology. We adopted a ResNet‐50 architecture pre‐trained on ImageNet
(He et al., 2016), given its effectiveness in similarity searching in the em‐
bedding space for various forms of imaging data, including MRI, even

without fine‐tuning (Yosinski, Clune, Bengio, & Lipson, 2014). In this con‐
text, the quality of the samples is evaluated on the basis of their realism
and ”closeness” to the target domain.We calculated the Fréchet ResNet
Distance (FRD) and the Cosine ResNet Distance (CRD) between each
sample in the ResNet‐50 embedding space to facilitate a comparison
between 3T and 7T MRI features.
Let DX ′ = G(DY ) denote the dataset of synthetic samples and

ResNet(DX ) and ResNet(DX ′ ) denote the ResNet‐50 embeddings
of real and synthetic samples, respectively. The FRD, calculated as
the Fréchet Distance (Dowson & Landau, 1982), or, equivalently, the
Wasserstein‐2 distance (Vallender, 1974) between the ResNet(DX )

and ResNet(DX ′ ) embeddings is given by:

FRD (N (µX ,ΣX ),N (µX ′ ,ΣX ′ ))2 = ∥µX – µX ′∥22 + Tr(M), (2)

where

M =

(
ΣX +ΣX ′ – 2

(
Σ

1
2
X · ΣX ′ · Σ

1
2
X

) 1
2

)
,

N (µX ,ΣX ) and N (µX ′ ,ΣX ′ ) are the multivariate Gaussian distribu‐
tions over ResNet(DX ) and ResNet(DX ′ ), respectively, ∥ · ∥2 repre‐
sents the Euclidean norm, and Tr the trace.
Likewise, the CRD is the average cosine distance between each real

z ∈ ResNet(DX ) and synthetic z′ ∈ ResNet(DX ′ ):

CRD = 1 –
1

M · N

M∑
i=1

N∑
j=1

zi · z′j
∥zi∥2 · ∥z′j ∥2

, (3)

where zi represents the i‐th feature embedding in ResNet(DX ) and z′j
represents the j‐th feature in ResNet(DX ′ ). M and N are the total real
and synthetic samples, respectively. This expression calculates the co‐
sine similarity between each pair of feature embeddings, normalizes it
by their Euclidean norms, and then averages the distances over all pairs.
Finally, we measured the sample quality over the synthetically gen‐

erated 7T MR images. The accuracy of the generated synthetic 7T MR
images was evaluated by cross‐referencing these images with their
respective real 7T ground truth counterparts. The images were seg‐
mented into white matter (WM), gray matter (GM), and cerebrospinal
fluid (CSF) using FSL’s FAST segmentation tool. We then used two
key and widely used evaluation metrics in medical imaging: the Dice
Coefficient (Dice) and the Percentual Area Difference (PAD). These met‐
rics were indispensable for evaluating the model’s performance and
provided imperative insights for future model enhancement.
The Dice, introduced by Dice, (1945), measures the overlap between

the predicted and the ground‐truth segmentation. Mathematically, for
an expected pixel setA and the ground truth pixel set B, the Dice is:

Dice = 2 ·
|A ∩ B|

(|A|+ |B|)
, (4)

where |·| represents the cardinality of a set. The range of Dice ranges
from 0 (indicating no overlap)to 1 (indicating a perfect overlap), making
it an excellent indicator of the congruence between predicted and real
segmentation (Zou et al., 2004).
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(a) (b)

(c) (d)

F I GUR E 2 Progression of CycleGAN training dynamics and quality metrics for 3T to 7T MRI translation. (a) Generator, Discriminator and Cycle
Consistency Losses for the 3T loop, (b) Generator, Discriminator, and Cycle Consistency Losses for the 7T loop, (c) Fréchet ResNet Distance (FRD),
(d) Cosine Resnet Distance (CRD). The graphs illustrate the evolution of loss functions and quality metrics over training epochs. The vertical black
dotted line mark epoch 167, where we halted training since we did not observe an improvement bigger than 0.1% in the 3T cycle consistency loss
for five consecutive epochs.

Conversely, the PAD measures the discrepancy in the size between
the predicted and the ground‐truth segmentation. Specifically, it eval‐
uates the model’s accuracy in estimating the size of the segmented
objects. For an expected area A and the ground truth segmentation
area B, the PAD is computed as:

PAD = 100% ·
|A – B|

B
, (5)

where |·| is the absolute value. The PAD is inversely proportional to
the performance of the segmentation, with smaller values indicating a
superior performance (Huang, Sun, Tseng, Li, & Qian, 2019).

3 RESULTS

The performance of the model was assessed using multiple parameters,
including generators, discriminators, and cycle consistency losses in the
validation dataset; FRD and CRD embedding quality measures; and a
detailed analysis of the prediction for various brain tissue types andDice
and PAD sample quality metrics from independent test data.

3.1 Training Performance

We assessed the model’s performance by first analyzing the generator
and discriminator losses in the validation dataset. The generator and the
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F I GUR E 3 Examples of real 7T MR images (left column) and the corresponding synthetic 7T images (right column) generated by our model.

discriminator essentially participate in a minimax game, where the gen‐
erator seeks to create images that the discriminator cannot distinguish
from the real 7T images. In contrast, the discriminator aims to accurately
classify real images from synthetic ones (Goodfellow et al., 2014).
Figures 2(a) and 2(b) show that the tug‐of‐war between generators

and discriminators resulted in the generator losses gradually decreasing,
demonstrating the generators’ increasing proficiency in creating images
that the discriminators struggle to differentiate from real MRI images.
In tandem, the discriminators’ losses also decreased, indicative of their
improving ability to distinguish between real and generated images. At
minima, the convergence of the losses substantiates the efficacy of the
model in producing synthetic MRI‐like images from real data.
However, this is evidence of improvement only during the early

stages of training. Beyond that, since the generator and discriminator
losses plateaued after the 14th epoch, just the cycle‐consistency losses
suggest that the output continued to improve. Hence, to quantitatively

assess the progression of the CycleGAN, we apply the metrics FRD and
CRD described in Methods 2.5 to the data generated at each training
epoch. This strategy allows us to examine the training dynamics of the
CycleGAN. As shown in Figures 2(c) and 2(d), FRD and CRD though
slightly noisy, stop decreasing beyond the 125th epoch. In general,
Figure 2 shows that the embedded MRI captures more relevant fea‐
tures in the data, with the measures of transformation quality showing
a consistent and smooth decrease throughout the training process.

3.2 Visual Representation of Results

Further, an independent test dataset evaluated the generalization ability
of the model, which involved using the model to translate 3T images
from new subjects, unseen during training, into synthetic 7T images.
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(a) (b)

89.75

81.42

83.62

6.82

7.63

4.85

F I GUR E 4 Group‐level segmentation performance for the validation (22 subjects) data set across different tissue types—Cerebral Spinal
Fluid (CSF), Gray Matter (GM), and White Matter (WM). We plot single patient data overlaid on group‐level whisker box plots (center, median; box,
25th to 75th percentiles; whiskers, 1.5 interquartile range) and the smoothed data distribution. The median Dice for CSD, GM andWM are 83.62%,
81.42%, and 89.75%, respectively. The median percentual area difference (PAD) for CSF, GM, and WM are 6.82%, 7.63%, and 4.85%, respectively.

Figure 3 shows examples of real and synthetic 7T MRI image pairs
generated by our model. The synthetic images manifest convincing res‐
olution and contrast properties that mimic the attributes of real 7T
images, demonstrating the model’s success in generating high‐fidelity
7T‐like images from 3T data.

3.3 Tissue Type Specific Prediction

Diving deeper, we analyzed the performance of the model in generating
specific brain tissue types—CSF, GM, and WM—by computing the Dice
and the PAD. The results, visualized using box plots (Figure 4), revealed
that the model achieved a median Dice of 83.62% for CSF, 81.42% for
GM and 89.75% for WM. Concurrently, the median PAD was 6.82% for
CSF, 7.63% for GM, and 4.85% for WM. These figures demonstrate con‐
sistent performance across all tissue types, corroborating the model's
robustness in translating detailed tissue‐specific characteristics from
3T to 7T.

4 DISCUSSION

The present study sought to contribute with a novel approach to spatial
adaptive MR data normalization between the 3T and 7T MR modali‐
ties, an increasing challenge in medical imaging. Using CycleGAN, an
unsupervised generative adversarial network, our model demonstrated
promising performance in generating clear 7T‐like MR images from
3T inputs, evidenced by the high Dice and PAD(Taha & Hanbury, 2015;

Zou et al., 2004). These scores affirm the model’s competence in main‐
taining the original morphological features of the brain and preserving
the clinical relevance of the images, which has a significant implication
in the advancement of neurological research (Moeskops et al., 2016;
Ronneberger et al., 2015).
The successful performance of the model, especially in tasks that

require global contrast properties, supports the hypothesis that our
approach enables a seamless transition to 7TMR systems without jeop‐
ardizing the quality of previously obtained 3T data (Ashburner & Friston,
2000; Johansen‐Berg & Behrens, 2006). This holds promise for facili‐
tating consistent and robust data analysis, mitigating potential bias and
loss of statistical power associated with data from difference MRI field
strengths in longitudinal studies (Schaer et al., 2008; Little & Rubin,
2019).
Previous research efforts have probed into creating 7T images us‐

ing advanced deep‐learning methodologies (Hou et al., 2016; Qin et al.,
2019). However, our model stands out due to its unsupervised learn‐
ing aspect and its ability to function without resorting to information in
the frequency domain (Klosowski & Frahm, 2017; Huang et al., 2019).
The effectiveness of the CycleGAN model in minimizing image variance
underlines its potential to tackle the challenge of cross‐modality image
translation between different MRI field strengths (Adriany et al., 2008;
Van der Velden et al., 2015).
Our study offers a promising approach to cross‐modality MR image

translation, allowing the efficient utilization of 3T and 7T MRI tech‐
nologies in longitudinal studies examining brain health and pathology
(Uğurbil, 2014; Keuken & Forstmann, 2015). The strategy we propose
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constitutes a progress towards exploiting the capabilities of cutting‐
edge neuroimaging technologies while preserving the value of existing
imaging data. This spatial adaptive normalization tactic helps bridge the
technological gap, potentially accelerating the identification and valida‐
tion of imaging biomarkers for neurological conditions (Bourgeat et al.,
2015; W. Zhang et al., 2015).
Our research has made a significant step forward in advancing the

application of CycleGAN to transform 3T to 7T MR data. However, the
success of the translation task is highly dependent on various factors,
including the quality and nature of the input data, the model architec‐
ture, and the training procedure. Despite our progress, it is essential to
consider the following factors as potential limitations that can impact
the results.
One of the primary limitations concerns the 2D nature of the imple‐

mented model. Adopting a 2D CycleGAN model was primarily due to
computational considerations; however, the inherent lack of a three‐
dimensional context by independently processing each slice results
in slice‐to‐slice inconsistencies (Çiçek, Abdulkadir, Lienkamp, Brox, &
Ronneberger, 2016; Milletari, Navab, & Ahmadi, 2016). Furthermore,
patch‐based image processing can result in loss of local spatial informa‐
tion, which is critical in medical image segmentation (Tajbakhsh et al.,
2020). These inconsistencies may impact the quality and fidelity of the
synthesized 7T images. As Yushkevich et al., (2006) have demonstrated,
3D analysis can significantly enhance image interpretation and extract
critical information from complex structures. Although implementing
3D CycleGAN architecture would alleviate this concern, the extensive
computational demand often hinders its deployment.
The second potential pitfall is associated with an intrinsic property

of CycleGANs, namely the non‐bijective or many‐to‐many mapping be‐
tween domains (Zhu et al., 2017). This can lead to struggles with control‐
ling the mode of output (Ghosh, Kulharia, Namboodiri, Torr, & Dokania,
2018) and non‐functional transformations, which introduce potentially
unrealistic information, or ”hallucinations,” into the synthetic images
(Almahairi, Rajeshwar, Sordoni, Bachman, & Courville, 2018). These lim‐
itations and the difficulty of maintaining the semantic consistency of
anatomical structures in synthesized images (Chartsias, Joyce, Giuffrida,
& Tsaftaris, 2018) hinder their diagnostic applicability (G. Wang et al.,
2020). Consequently, future research should focus on devising strate‐
gies to rectify this challenge, such as regularizing the model with a
perceptual loss (Johnson, Alahi, & Fei‐Fei, 2016) or improving training
procedures to facilitate a better generalization (Roth et al., 2020).
Variations in image quality across different MRI scanners and imag‐

ing protocols can also influence our model’s performance (Jovicich et al.,
2006; Kruggel, Turner, Muftuler, & Alzheimer’s Disease Neuroimaging,
2010). This issue is frequently encountered in multi‐center studies and
can generate images that do not accurately represent real‐world vari‐
ance, reducing its practical use. Therefore, future research is warranted
to assess the model’s resilience against such variations and verify its
performance on diverse datasets, including those featuring pathological
changes (van Opbroek, Ikram, Vernooij, & de Bruijne, 2015).

The question of data dependence and the potential for error in
translation must also be mentioned. The translation’s success relies
heavily on the quality of the input data, meaning that errors during
preprocessing, like inaccurate skull‐stripping or normalization, could ad‐
versely impact the output (Iglesias & Sabuncu, 2015). Similarly, the
translation process could inadvertently introduce or exaggerate noise
or artifacts not present in authentic 7T images, leading to misleading
interpretations (Chen & Koltun, 2017).
The performance evaluation of segmentation algorithms plays a sig‐

nificant role in medical imaging. It determines the efficacy and reliability
of these algorithms in clinical practice. We employed the Dice and
PAD scores. Despite its widespread usage, the Dice score has a few
limitations. One major drawback is that it needs to account for the
geometric correspondence between the predicted and ground truth
segments (Taha & Hanbury, 2015). It does not consider how well the
predicted segment’s shape, location, and orientation match the ground
truth. In some scenarios, this information is critical, mainly when the
size and position of the segment are clinically significant (e.g., tumor
segmentation) (Crum, Camara, & Hill, 2006).
Conversely, the PAD evaluates the size estimation accuracy of seg‐

mentation results. While PAD effectively measures size discrepancies,
it does not provide information on the spatial overlap between the pre‐
dicted and the ground truth segmentation. Thus, two segmentations
with the same area but in different locations would yield a zero PAD, fail‐
ing to account for the spatial mismatch (Isensee, Kickingereder, Wick,
Bendszus, & Maier‐Hein, 2017). This limitation is critical in situations
where the accurate localization of the object of interest is essential.

4.1 Conclusion and future work

Our study underscores the transformative potential of blending ad‐
vanced machine learning techniques with clinical applications, particu‐
larly within neuroimaging (Obermeyer & Emanuel, 2016; Esteva et al.,
2019). Our results provide a powerful testimony to the potential of Cy‐
cleGAN in handling unpaired data, thus offering a compelling solution
to MR translation across different field strengths.
However, despite its merits, the CycleGAN model has limitations,

and these challenges delineate promising avenues for future enhance‐
ment. Our study used generators based on the U‐Net architecture
(Ronneberger et al., 2015), which have delivered excellent results in
medical image segmentation tasks. However, U‐Net‐based models pri‐
marily exploit local dependencies in the data, potentially neglecting
long‐range relationships between pixels. In contrast, with the advent
of Vision Transformers (ViTs), there is potential to enhance our model’s
performance further (Dosovitskiy et al., 2020). ViTs can capture these in‐
tricate, long‐range dependencies, which could be highly advantageous
for tasks involving complex morphological structures such as brain MR
images (T.‐C.Wang et al., 2018). This, in turn, could improve the segmen‐
tation performance, particularly for brain images that exhibit non‐local
relationships between anatomical structures (Petit et al., 2021).
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