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Hemichannels (HCs)/gap junctions (GJs) and immunoglobulin (Ig)-like domain-containing
proteins (IGLDCPs) are involved in the innate–adaptive immune response independently.
Despite of available evidence demonstrating the importance of HCs/GJs and IGLDCPs in
initiating, implementing, and terminating the entire immune response, our understanding
of their mutual interactions in immunological function remains rudimentary. IGLDCPs
include immune checkpoint molecules of the immunoglobulin family expressed in T and B
lymphocytes, most of which are cluster of differentiation (CD) antigens. They also
constitute the principal components of the immunological synapse (IS), which is formed
on the cell surface, including the phagocytic synapse, T cell synapse, B cell synapse, and
astrocytes–neuronal synapse. During the three stages of the immune response, namely
innate immunity, innate–adaptive immunity, and adaptive immunity, HCs/GJs and
IGLDCPs are cross-activated during the entire process. The present review
summarizes the current understanding of HC-released immune signaling factors that
influence IGLDCPs in regulating innate–adaptive immunity. ATP-induced “eat me” signals
released by HCs, as well as CD31, CD47, and CD46 “don’t eat me” signaling molecules,
trigger initiation of innate immunity, which serves to regulate phagocytosis. Additionally,
HC-mediated trogocytosis promotes antigen presentation and amplification. Importantly,
HC-mediated CD4+ T lymphocyte activation is critical in the transition of the innate
immune response to adaptive immunity. HCs also mediate non-specific transcytosis of
org July 2022 | Volume 13 | Article 8827061

https://www.frontiersin.org/articles/10.3389/fimmu.2022.882706/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.882706/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.882706/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.882706/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:kaijun_luo@ynu.edu.cn
mailto:jiangj@uthscsa.edu
https://doi.org/10.3389/fimmu.2022.882706
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.882706
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.882706&domain=pdf&date_stamp=2022-07-15


GRAPHICAL ABSTRACT | HCs/GJs an
trogocytosis promotes antigen presentati
mature B lymphocytes in adaptive immun

Meng et al. Hemichannels and Immunoglobulin-Like Domains Cross-Activation

Frontiers in Immunology | www.frontiersin.
antibodies produced by mature B lymphocytes, for instance, IgA transcytosis in ovarian
cancer cells, which triggers innate immunity. Further understanding of the interplay
between HCs/GJs and IGLDCPs would aid in identifying therapeutic targets that
regulate the HC–Ig-like domain immune response, thereby providing a viable treatment
strategy for immunological diseases. The present review delineates the clinical
immunology-related applications of HC–Ig-like domain cross-activation, which would
greatly benefit medical professionals and immunological researchers alike. HCs/GJs
and IGLDCPs mediate phagocytosis via ATP; “eat me and don’t eat me” signals trigger
innate immunity; HC-mediated trogocytosis promotes antigen presentation and
amplification in innate–adaptive immunity; HCs also mediate non-specific transcytosis
of antibodies produced by mature B lymphocytes in adaptive immunity.
Keywords: connexin, pannexin, immunological synapse, T and B lymphocytes, cluster of differentiation antigens,
phagocytosis, trogocytosis, transcytosis
d IGLDCPs mediate phagocytosis via ATP; “eat me and don’t eat me” signals trigger innate immunity; HC-mediated
on and amplification in innate–adaptive immunity; HCs also mediate non-specific transcytosis of antibodies produced by
ity.
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HIGHLIGHTS

• Cx43 directly or indirectly interact with at least 20 IGLDCPs
• HCs/Panx release ATP to regulate APCs for initiating innate

immunity
• Cx43-GJs between T cells and B cells activate adaptive

immunity
• IgA induces APCs to transit adaptive immunity to innate

immunity
INTRODUCTION

Both types of immune responses, namely innate and adaptive,
are linked to immune signal transduction. Hemichannel (HC)/
gap junction (GJ)-mediated immune signal transduction in cells
triggers an immune response. A similar immunological response
is triggered by Ig-like domain-containing proteins (IGLDCPs).
Both HCs/GJs and IGLDCPs localize on the immune cell surface
to manipulate innate and adaptive immune responses. Previous
studies have shown that the cross-activation of HCs/GJs and
IGLDCPs is essential in mediating phagocyte migration,
inflammation, and fever, among other successive stages of the
innate immune response (1–6). In particular, in antigen-
presenting cells (APCs), as well as T and B lymphocytes, HCs/
GJs and IGLDCPs regulate the adaptive immune response (3, 7–
11). However, numerous contentious issues persist, highlighting
a potentially important goal: to elucidate the link between HCs/
GJs and IGLDCPs in innate–adaptive immunity and provide
available evidence on this potentially important topic.

Cell–cell communication during the immune responses
confirms that HCs/GJs are closely involved in numerous cellular
physiological processes. It is likely that antigen presentation,
encompassing the T and B lymphocyte responses, involves in
the regulation of cell migration and phagocytosis by pannexins
(Panx) and GJ proteins, namely, connexins (Cxs) (12). Cxs form
HCs on the cell surface; they can form both independent HCs and
two HCs from two neighboring cells dock with each other to form
intercellular gap junction channel. Conversely, Panxs form a
structure, which is a single plasma membrane channel
mediating extracellular communication. Cxs and Panxs are
topologically similar with four transmembrane domains, two
extracellular loops, one intracellular loop, and one N-terminal
and one C-terminal. However, their potential interaction with
IGLDCPs remains unclear.

The Ig-like domains are among the most widespread
domains. Both sequence and structure of these domains can be
found in diverse protein families. Proteins containing an Ig-like
domain vary in their tissue distribution, amino acid composition,
and biological function. IGLDCPs include immune checkpoint
molecules of the immunoglobulin family expressed in T and B
lymphocytes, most of which are cluster of differentiation (CD)
antigens. The function of immune checkpoint modulators is to
regulate immunological responses to infectious agents, foreign
tissues, and cancerous cells; furthermore, they act to balance the
Frontiers in Immunology | www.frontiersin.org 3
immune response through either enhancement or inhibition
(13–16). However, there are relatively few studies on the
regulation of HCs/GJs by IGLDCPs

Although there is limited understanding of the interactive
mechanisms between HCs/GJs and IGLDCPs, we have
attempted to present a rational and balanced evaluation to
bridge this gap. In the present review, several important
questions have been raised on the seminal findings. HCs/GJs,
which mediate intracellular and extracellular communication,
are involved in immune response regulation. The following
pertinent questions arise. Do HCs/GJs directly interact with
IGLDCPs, including immune checkpoint molecules such as
CD antigens, to regulate innate–adaptive immunity? Do HCs/
GJs regulate IGLDCPs in T and B lymphocytes? Although both
HCs/GJs and IGLDCPs regulate phagocytosis, what is the
physical and function relationship between them? How do
HCs/GJs and IGLDCPs trigger trogocytosis and transcytosis?
MUTUAL CROSS-ACTIVATION OF HCS
AND IGLDCPS

Cxs and Panx1 on the Immunological
Cell Surface
Cxs are localized on the cell membrane of at least nine subtypes
of APCs, namely, monocytes, macrophages, dendritic cells
(DCs), including follicular dendritic cells (FDCs), Kupffer cells,
B cells, astrocytes, microglia, neutrophils, and natural killer (NK)
cells. Panx1 is also found on the eight subtypes of APCs
(Figure 1A). As shown in Figure 1A, Cx43 is expressed in the
aforementioned nine APC subtypes. Moreover, Cx37 is
expressed on macrophages and neutrophils; Cx45 is present on
the surface of DCs and microglial cells; Cx40 on the membrane
of B cells and neutrophil cells; and Cx26 on astrocytes. In
addition to those listed above, Cx36 and Cx32 are expressed
on the microglial cell surface. Seven Cxs, namely, Cx30.3, Cx31.1,
Cx32, Cx40, Cx43, Cx45, and Cx46, are present in T cells (4, 17,
18, 27–31). Unexpectedly, 8 of the 21 Cxs in the human gap
junction protein family serve as components of synapses or
participate in them. There are probably more Cx subtypes that
remain to be identified in future research, as most previous
studies focused on immune checkpoint molecules without
conclusively evaluating Cxs in innate–adaptive immunity.
Therefore, elucidating the interaction between HCs and
IGLDCPs will offer mechanistic insights into the innate–
adaptive immune response. In the following section, we have
further detailed the mutual interaction between Cxs
and IGLDCPs.

Mutual Interaction of Cxs and IGLDCPs
Cx43 interacts extensively with at least 20 IGLDCPS, either
directly or indirectly, namely, CLMP, BCR, HepaCAM, CD4,
CD8, CD19, CD25, CD3/CD28, CD31, CD39, CD40, CD46,
CD47, CD60, CD69, CD73, CD80, CD86, IgG, and IgA
(Figure 1B). Cx43 regulates T lymphocytes and DCs via
IGLDCPs. Cx43/Cx40 maintains lymphocyte homeostasis and
July 2022 | Volume 13 | Article 882706
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cytokine production, such as in the case of Cx43 HC inhibition,
which suppresses IL-2 and IL-6 mRNA expression (32).
Furthermore, the use of mimic peptides as an inhibitor of
Cx43 HCs downregulated CD69 and CD25 activation in T
Frontiers in Immunology | www.frontiersin.org 4
cells, and led to IFN-g by release by DC-stimulated NK cells
(3). Similarly, CD3/CD28 induced ATP release by gdT cells,
aided by HCs, resulting in cell activation (33, 34). Furthermore,
Cx43 HCs in the plasma membrane of CD4+ T lymphocytes
A

B

FIGURE 1 | Cxs and Panx1 on the immunological cell surface and their mutual interaction with IGLDCPs. (A) Cxs and Panx1 localize at the cell surface. Cxs and
Panx1 HCs have been identified in nine types of APCs and T lymphocytes, primarily for the signaling role of HCs with IGLDCPs in the innate–adaptive immune
response (17, 18). (B) The mutual interaction of HCs and IGLDCPs. Cx43, which interacts with at least 20 IGLDCPs: a The activation of CD4/CD8/CD19 requires
Cx43/HC (19–21). b HepaCAM and CLAM facilitates Cx43 membrane localization and GJIC establishment (22–24). c GJIC mediates the transcytosis of IgA in
CD19+ B cells (21). d CD3/CD28/CD40 activate BCR signaling and upregulate IgG expression by Cx43/HC opening (25). e The “eating me” signaling pathway is
inhibited by CD39/CD73/CD31/CD46/CD47 (14, 26). f CD25/69 are downregulated by the inhibition of Cx43/HC (3). Cxs, connexins; Panx, pannexin; IGLDCP, Ig-
like domain-containing protein; HC, hemichannel; APC, antigen-presenting cell.
July 2022 | Volume 13 | Article 882706
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establish gap junction intracellular communication (GJIC) with
macrophages to synthesize and secrete Igs and cytokines in
immune regulation (19). Similarly, in DC–DC interaction,
CD80, CD 86, and MHC class II are expressed (33, 35).
Directly, Cx43 activates spleen cells and facilitates IgG
production. Targeting Cx43 is a potential strategy to treat
diseases associated with the antibody response (14). Cx43
regulates B lymphocyte activation directly, through BCR
signaling, which involves migration and motility (7, 36).

The IGLDCPs regulate Cx43 HCs/GJs. The Ig-like domain in
hepatocyte cell adhesion molecule (hepaCAM) stabilizes the Cx43
HCs on the cell surface. The hepaCAM gene was first described in
hepatocellular carcinoma and was also discovered in the central
nervous system(CNS); it isnamedGlialCAM,basedon the site of its
identification (37). HepaCAM is reportedly a member of the
immunoglobulin superfamily (IgSF); it consists of an extracellular
domain with two Ig loops, a transmembrane region, and a
cytoplasmic tail, and functions in conjunction with Cx43 (38). In
previous studies in U373 MG glioblastoma cells studies, it was
found that hepaCAM expression redistributes Cx43, especially to
the site of cell–cell contact, where co-localization of the two
molecules is detected (38). Furthermore, altering the Ig-like
domain of hepaCAM, especially the first extracellular IGLDCP
reduces the co-localization of intercellular Cx43. Cx43 is shuttled
back to the cytoplasm from the cell membrane, consequently
decreasing its membrane-bound expression. In summary, the
presence of IGLDCPs stabilizes Cx43 expression and promotes
transport of a protein localized in the cytoplasm to the cell surface
(22, 23). Additionally, CAR-like membrane protein (CLMP)
regulates Cx43 and Cx45, and the absence of CLMP causes
functional obstruction due to a lack of GJIC (24). Cxs and
IGLDCPs are co-localized and interact at the immunological
synapses (ISs). An increased intracellular Ca2+ level, which
induces T cell activation and signal amplification, is facilitated by
IS Cx43 HCs. Therefore, the formation of ISs is an important
function structure, which allows us to understand how HCs/GJs
and IGLDCP collaboratively modulate the precise roles in innate–
adaptive immune responses.
HCS/GJS AND IGLDCPS INTERACT TO
FORM THE SYNAPSE

Importantly, HCs/GJs are complex signaling components of the ISs
(39, 40)—phagocytic synapse, T cell synapse, B cell synapse and
astrocyte–neuronal synapses. First, HCs are involved in phagocytic
synapse formation between APCs and pathogens (41) (Figure 2A).
Cx HC-linked “pathologic pores” are involved in spreading injury
and perpetuating chronic disease. Opening HCs are involved in
spinal cord injury progression and the spread of cellular edema.
Theyalso control important aspects of the innate–adaptive immune
response, particularly under chronic disease conditions, as well as
the initiation and perpetuation of the inflammasome pathway in
astrocytes (45). It has been reported that Cx43 also regulates FDC
development (46), implying Cx43 may form a phagocytic synapse
and perform important functions, which warrant further research.
Frontiers in Immunology | www.frontiersin.org 5
Second, the T cell synapse containsGJs.GJIC established byCx43 is
an important functional component of the T cell synapse (41)
(Figure 2B); it also activates T cells by sustaining the
communication between T cells and APCs (11, 19, 47–49).
Furthermore, in melanoma cancer cells, Cx43 GJIC plaques
localized at the IS are required for augmenting granzyme B
activity, to enable cytotoxic T lymphocytes (CTLs) to kill B16F19
melanoma cells (50). It has been reported that Cx43 GJIC between
DCs and also activated T cells (51). These findings confirmed that
Cx43 plays a vital role in the T cell synapse. Additionally, Cx43-
formingHCs/GJs activate theT cell IS (25). Third, theB cell synapse
is formed between B cells and APCs (42) (Figure 2C). However,
compared with phagocytosis and T cell synapses, data on B cell
synapse are rather limited. These findings demonstrated that the
HCs/GJs are an intrinsic part of the ISs and are essential tomediate
IS intracellular communication in regulating the delivery of
immune factors.

The astrocyte–neuronal synapse is established between neurons
and astrocytes, which release diffusible factors to activate microglia
viaNF-kB signaling (41, 52–54). Astrocytes interact with neuronal
synapses to establish astrocyte–neuronal communication (55).
Research has shown that astrocyte-derived extracellular vesicles
promote synaptic formation through fibrin 2-mediated TGF-b
signaling. Consequently, microglia MHC-II protein, CD44, and
othermolecules recruit T cells for effective antigen delivery (43, 44)
(Figure 2D). Investigating the interaction between HCs/GJs and
IGLDCPs in the astrocyte–neuronal synapse presents a worthwhile
research opportunity. Interactions of HCs/GJs and IGLDCPs with
IS provide direct evidence suggesting that both may play an
important role in immune responses.
CX/PANX AND IGLDCPS DISPLAY DUAL
FUNCTIONS IN INNATE IMMUNITY

ATP “Eat Me” Signaling, as Well as CD31,
CD46, CD47 “Don’t Eat Me” Signal
Molecules, Triggers Phagocytosis
Panx1 releases ATP from apoptotic cells to trigger an “eat me”
signal (56) (Figures 3A–C). Key phagocytic inducers, ATP and
UTP, have been confirmed to recruit apoptotic cells in vitro and
in vivo. In contrast, “don’t eat-me” signals comprise CD31,
CD46, and CD47 expression. These signals on healthy viable
cells, which are capable of phosphatidylyserine (PtdSer) exposure
under physiological conditions, may positively inhibit phagocytic
uptake (26). These findings elucidate the mechanism governing
HC–IGLDCP interaction in phagocytosis.

In the macrophage cell line J774, Cx43 RNAi showed
impaired phagocytosis of the polystyrene-covered beads, and
sheep erythrocytes opsonized by IgG (47); in contrast, in sheep
erythrocytes with heterozygously or homozygously deleted Cx43,
no changes were observed in phagocytosis (12, 57). Recently,
Dosch et al. assessed Cx43 function in phagocytosis using Cx43
deletion and inhibition. It was determined that the inhibition of
autocrine communication of Cx43-dependent ATP in
macrophages improved sepsis outcome (33, 48, 49). Therefore,
July 2022 | Volume 13 | Article 882706
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full expression of intact Cx43 is essential in regulating of the
immune response through the directionality and rate of DC
migration (58). Different cytokines regulate intercellular
communication, facilitated by HCs/GJs in APCs, to execute
purinergic signaling (3). This presents an interesting research
opportunity for further investigation of Cx43-macrophage-
phagocytosis. Apoptotic cells attract phagocytes by releasing
chemotactic factors known as “find-me” signals (26).
Frontiers in Immunology | www.frontiersin.org 6
Cx/Panx and IGLDCPs Regulate the
Inflammatory Response
Cumulative evidence shows that ATP triggers the inflammatory
response. Cx HCs serve as a major pathway for the release of
cytoplasmic ATP into the extracellular space. In granulocytes, Cxs
enhance the inflammatory responses and promote cellular
activation (33) (Figure 4B). For example, ATP released by Panx1
promotes the opening of Cx43 HCs (62) and is also involved in the
A B

DC

FIGURE 2 | Formation of the IS by HC–IGLDCP interaction. (A) A phagocytic synapse formed by APCs. Phagocytes possess specific molecules on the synaptic
surface that trigger phagocytosis. For example, recognition of Fcy receptor (FcR) sites, CR3 envelope site, Dectin-1 receptor trigger site (41). MTOC: Center for
Microtubule Organization. (B) T-cell immunological synapse. A specific cellular contact between T cells and APCs. Major histocompatibility complex (pMHC-I)
molecules on the surface of APCs bind to the T-cell receptor (TCR) and deliver the antigen, leading to the polarization of APCs by T cells and the coordinated
recombination of various components of T cells, including signaling molecules and adhesion molecules, actin and microtubule cytoskeleton (41). (C) B-cell
immunological synapse. A specific cellular contact between B cells and APCs. The pMHC-I molecules are phagocytosed in a clathrin-dependent manner. The
antigens are transported to lysosomal vesicles for digestion, and the resulting peptides are loaded onto MHC-II molecules and transported back to the cell surface
for presentation to T cells (42). (D) Neuronal Synapse. It consists of neurons, astrocytes, microglia, and T cells. Astrocyte-derived extracellular vesicles promote
synapse formation through fibrin 2-mediated TGF-b signaling. Microglia MHC-II protein, CD40, and other stimulating molecules recruit T cells to deliver antigens.
Different receptors bind to different ligands (43, 44). HC, hemichannel; IGLDCP, Ig-like domain-containing protein; Cx, connexin; Panx, pannexin; APC, antigen-
presenting cell.
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innate immune response and inflammation (26, 63–70). In
contrast, the blockage of Cx43 isoform HCs alleviates
inflammation and enhances healing (2). In other inflammatory
pathologies, Cx43 expression regulates monocyte–endothelial
adhesion, with criteria for baseline adhesion set by Cx43-
expressing monocytes (71). Similarly, elevated macrophage Cx43
HC activation and Panx1 expression inhibit pathogenesis (1, 49).
Cx43 GJs transfer hypoxia-induced miR-192-5p, allowing cancer
cells to acquire immune-resistant phenotypes (25). During
inflammation in response to spinal cord injury, a decrease in the
expression of Cx43 proteins shortens animal recovery time (33).
ATP release has been inhibited using several Cx43 mimic peptides,
thereby influencing the inflammatory process (72). Therefore, ATP
integrated with the HC function promotes inflammation.

Open Cxs HCs in macrophages facilitate an effective immune
response. GJs and HCs help spread toxicity into neighboring
areas to augment viral/bacterial replication, and promote the
spread of the inflammatory response by infectious agents, such as
HIV (33),. Ig-like domains presenting T cell immunoglobulin
molecules regulate inflammation and immune responses (16,
73). Single immunoglobulin IL-1R-related molecule (SIGIRR) is
a specific inhibitor of IL-1R and toll-like receptor signals (74, 75).

In summary, Cxs HCs and Panx1 release ATP, which serves as an
“eatme” signal; conversely,CD31,CD47, andCD46 function as “don’t
eat-me” signals, which regulate phagocytosis in innate immunity.
CX43 AND IGLDCPS ACTIVATE INNATE–
ADAPTIVE IMMUNITY

Cx43-Dependent Trogocytosis of
Macrophages and Dendritic Cells in
Antigen Presentation
The interaction between innate and adaptive immune response is
defined as innate–adaptive immunity, which is important for
Frontiers in Immunology | www.frontiersin.org 7
antigen presentation. Cx43 contributes to trogocytosis
(Figures 4A, B). The mechanism of innate control of adaptive
immune responses involves multiple signaling pathways (16).
We focused on how macrophages detect pathogens or injured
cells. Trogocytosis is a process whereby lymphocytes extract
surface molecules of APCs and express them on their own
membranes (59, 60) (Figure 4B). However, the role of HCs
and IGLDCPs in trogocytosis has not been examined adequately.
Cx43-deleted macrophages are more proficient in T cell priming,
implying an increased accumulation of antigens as these
macrophages cannot transfer them to neighboring DCs,
resulting in efficient presentation (57, 76–80). These findings
delineate a potential mechanism by which HCs and IGLDCPs
regulate antigen presentation.

GJs also have a pivotal function in DC activation and the
amplification of antigen presentation, such as antigen transport,
dendritic activation, and antigen cross-presentation (10, 33, 81–
83). GJs-mediated antigen transfer between monocytes and
CD8+DCs may serve as a s imple and e fficac ious
immunotherapy strategy for cancers, such as in the case of
undifferentiated monocytes loaded with tumor antigen (20).
Molecules containing Ig-like domains, such as pMHC-I and II,
are involved in Cx43-dependent trogocytosis on the surface of
acceptor cells (78). This is a valuable research direction to
explore the underlying mechanism by which Cxs and
IGLDCPs regulate antigen presentation via trogocytosis.

Cx43/Panx-Mediated Activation of CD4+ T
Lymphocytes
In addition to the roles of Cx43 in regulating macrophages and
dendritic cells. HCs also mediate CD4+ T lymphocyte activation
is critical in the transition of the innate immune response to
adaptive immunity (Figure 4C). In a previous study, it was found
that Cx43 in the IS delivers microRNAs from hypoxic melanoma
cells to CTLs (25). Therefore, Cx43 stimulates T lymphocytes by
the delivery of immune factors. Cx43 is involved in the formation
A B C

FIGURE 3 | HCs and IGLDCPs display dual functions in innate immunity. Viable cells form closed HCs (A) with APCs (B) transmitting “don’t eat me” signals,
including CD31, CD47, and CD46, to suppress inflammation. In contrast, apoptotic cells (C) send an “eat me” signal to APCs by opening the HCs and releasing
ATP, which engulfs apoptotic cells and causes inflammation (56). HC, hemichannel; IGLDCP, Ig-like domain-containing protein; APC, antigen-presenting cell.
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of GJs in CD4+ T lymphocytes, Th0, Th1, and Th2, and
macrophages; this pathway was found to be especially
prominent in Cx43-Th1–macrophage interaction (19). This, in
turn, suggests the potential capability of HCs in controlling
IGLDCP activation. Cx43-GJs at the IS between DCs and
CD4+ T cells promote T cell activation during antigen
presentation (11), whereas the inhibition of GJs hindered DC-
mediated T cell activation, reflected by lower T cell proliferation,
CD69 expression, and IL-2 secretion.

Interestingly, in the absence of DCs, Cx43 GJ blockers did not
affect the activation of CD4+ T cells triggered by anti-CD3/anti-
Frontiers in Immunology | www.frontiersin.org 8
CD28. Therefore, it was inferred that suppression of Cx43
inhibits Cx43 GJ assembly between DCs and T cells, resulting
in T cell inactivation (84). In the DC–T cell IS, the blocking of
Cx43 HCs/GJs (on either DCs or T cells) inhibited IFN-g
secretion and decreased the intracellular Ca2+ concentration,
upon interaction of T cells with antigen-loaded DCs. These
results strongly suggested that Cx43 HCs act in signaling
amplification and T cell activation, by either releasing ATP or
taking up of inositol triphosphate (IP3) from DCs (25).

Cx43-GJs amplify antigens to activate T lymphocytes via the
antigen cross-presentation pathway. In the immune synapse,
A

B

DC

FIGURE 4 | HCs and IGLDCPs activate innate–adaptive immunity. (A) Uptake of pathogens by APCs. The pathogenic antigens are phagocytosed by APCs and
digested by proteases to form peptides, which are then transmitted by MHC molecules to the cell surface by phagocytosis. (B) Dendritic cell Cx43s are dependent
on trogocytosis for antigen delivery to T cells. The antigen is processed by APCs and binds to MHC receptors on the APC membrane. The HCs and IGLDCPs in
innate–adaptive immunity recognize and remember specific pathogens to trigger immunity. The former facilitates ATP release and autocrine feedback mechanisms
that control Ca2+ entry. GJs between monocytes and CD8+ DCs transfer antigens via Cx43-synapse-CD4+ T cells (59, 60). (C) Cx43-T-cell–B-cell response. The
activated T cells facilitate the opening of HCs, which liberally release ATP into B cells. This results in the simultaneous release of IL-2, IL-4, and IL-5, which act on the
IL-R receptor and further stimulate B cells to produce antibodies. (D) Antibody production. Activated B cells form plasma cells, which produce antibodies (61). HC,
hemichannel; IGLDCP, Ig-like domain-containing protein; APC, antigen-presenting cell; MHC, major histocompatibility complex; DC, dendritic cell.
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Panx1, which releases ATP, controls Ca2+ entry to activate T
cells; this happens by stimulating autocrine/paracrine receptors,
such as P2X1 and P2X4 (85). Cx43-GJs between monocytes and
CD8+ DCs transfer antigens (20), whereas Cx43 HCs activate
CD4+ T cells (86). Together, Cx43-dependent trogocytosis of
macrophages and dendritic cells promote antigen uptake,
transfer, and presentation to activate innate–adaptive
immunity. The GJ protein Cx43 induces B lymphocytes (8) to
produce antibodies in plasma cells (61) (Figure 4D).
CXS AND IGLDCPS MEDIATE ADAPTIVE
IMMUNITY AND IGA TRANSITS ADAPTIVE
IMMUNITY TO INNATE IMMUNITY

Cx43-CD39/CD73-Treg-Mediated
Immunosuppression
In cellular suppression mechanisms, naturally occurring Treg
cells and helper T cells communicate via GJs to deliver cAMP to
responder T cells, thereby inhibiting T cell proliferation and IL-2
synthesis (87–89) (Figures 5A–C). In a recent review, it has been
Frontiers in Immunology | www.frontiersin.org 9
reported how the cross-talk between Cxs and cAMP regulates
cell-cycle progression, particularly in cancer cell populations
(90). Furthermore, Cx43 expressed by thymic Treg cell
progenitors supports Treg cell development. Conversely, Cx43
deletion decreased the number of functional Tregs and increased
non-functional CD4+CD25+GITR+FOXp3- T cells, which are
incapable of producing inflammatory cytokines and inhibiting
cancer cell progression (91). In human Treg cells, it has been
shown that CD4-mediated activation involves elevation in the
intracellular cAMP concentration. In contrast, the decrease in
the cAMP level, caused by the application of adenylate cyclase
(AC) inhibitor MDL12, resulted in the proliferation of Treg cells,
in vitro and in vivo (87, 89) (Figure 5B). Consequently, it is
inferred that Cx43 HCs may release cAMP; however, this needs
to be studied further.

Cx43-GJs accumulate at the cytotoxic IS, enabling CTL-
mediated melanoma cell killing (50). Additionally, Cx43
regulates the proliferation of CD4+CD25+ T lymphocytes and
production of cytokines (92). Cx43-GJs regulate CD4+CD25+

Treg lymphocyte activation and inflammatory cytokine (IL-2
and IL-6) production in hypertensive inflammation in the spleen
of rats (32, 92).
A

B C

FIGURE 5 | HCs/GJs and IGLDCPs mediate adaptive immunity. (A) Cx43-cAMP cell-mediated immune response. Regulatory T cell-mediated inhibition of naturally
occurring Treg cells and conventional T cells delivers cAMP to responder T cells via GJs to inhibit T-cell proliferation and IL-22 synthesis (89). (B) HCs in infected
inflammatory cells release ATP. (C) Extracellular adenosine limits the extent of the inflammatory immune response. Activated CD4 + T cells. The activated CD39 + cells
release cAMP via paracrine signaling, to suppress T effector (Teff) cell and dendritic cell (DC) functions (89). HC, hemichannel; IGLDCP, Ig-like domain-containing protein.
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CD19+ B Cell IgA Transcytosis Transits
Adaptive Immunity to Innate Immunity
Recently, it was determined that tumor antigen-specific and tumor
antigen-independent IgA transcytosis and antigen regulate ovarian
cancer immunity. Tumor B cell-derived IgA binds to the polymeric
immunoglobulin IgA receptors (pIgR) on ovarian cancer cells and
reprograms myeloid cells against extracellular oncogenic drivers,
such as EGFR and KRAS, which causes cell death. In particular,
innate immunity triggered by antigen-independent IgA
transcytosis is a novel strategy. IgA transcytosis through
malignant epithelial cells causes tumor cells to encounter
cytotoxic T cells, thereby hampering malignant progression;
furthermore, the associated transcription changes result in
suppression of the RAS pathway (21). In the ovarian cancer
immunological response, IgA, B cells, and atypical B cells are
observed (93). Transcytosis is a process in which molecules cross
cellular barriers, which includes pinocytosis, endocytosis, and
trafficking of vesicles to the opposite membrane (94).

In summary, Cx43-CD39/CD73-Treg-immunosuppression
mediates adaptive immunity, specifically, IgA transcytosis, with
Frontiers in Immunology | www.frontiersin.org 10
tumor antigen-dependent and -independent mechanisms. It also
regulates the establishment of immunity in ovarian cancer.
CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

In conclusion, GJs between two APCs interact with pMHC-1 of
phagocytic APCs and TCR of trogocytic APCs to execute antigen
delivery (14, 50) during innate immunity (Figure 6A). GJs
interact with pMHC-I, B7 from APCs and TCR, CD28 from T
cells to facilitate Ca2+-mediated T cell activation (Figure 6B); GJs
interact with CD40, pMHC-II from activated T cells and with
BCR, CD40-L from activated B cells to stimulate B cell response
during innate–adaptive immunity (95) (Figure 6C). The
adaptive immunological response involves the generation of
antibodies by plasma cells; innate immunity is regulated by
IgA transcytosis in ovarian cancer (96) (Figure 6D). The
transition from the innate immune response to adaptive
immune response involves antigen presentation, followed by T
A

B

D

C

FIGURE 6 | GJs and IGLDCPs regulate phagocytosis, trogocytosis, and transcytosis during innate–adaptive immunity. (A) Innate immunity – antigen production.
APCs receive pathogens and form epitopes on the membrane surface through digestion and processing of antigens. Interaction of GJs with IGLDCPs triggers
phagocytosis and trogocytosis, thereby resulting in T-cell activation (14, 50). (B) Innate immunity – T-cell activation. Interaction of GJs with IGLDCPs: the former
delivers Ca2+ and ATP to T cells, whereas the latter, in contact with CD28 and facilitated by paracrine IL-2 signal transmission, activates T cells. (C) Adaptive
immunity – B-cell activation. After CD4+ T-cell activation, pMHC-II establishes contact with the B-cell receptor (BCR). The resultant release of IL-2, IL-4, and IL-5
leads to B-cell activation. The adaptive immune response is jointly mediated by GJs and IGLDCPs (95). (D) Adaptive immunity – Antibodies affect pathogens. GJs
activate the adaptive immune response to generate antibodies (D). Conversely, IgA can induce APCs to activate the innate immune response via transcytosis (A) IgA
can also promote B-cell activation (C) (96). HC, hemichannel; IGLDCP, Ig-like domain-containing protein; APC, antigen-presenting cell; GJ, gap junction.
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cell activation, and, finally, B cell activation. The immune system
is an unitary entity, and its regulation is dependent on a range of
complex and diverse factors. HCs and IGLDCPs play an essential
role in the three stages of the immune response, namely, innate
immunity, innate–adaptive immunity, and adaptive immunity.

In the present review, we have discussed the interactive roles
of HCs and IGLDCPs. Our goal is to provide novel insights based
on existing concepts, and we believe that this will serve as a
foundation for future research. The questions raised in the
introductory section of the manuscript have been addressed
and the knowledge gaps in the existing literature have been
acknowledged. Along this line of investigation, potential clinical
and research-related applications would greatly benefit
immunological researchers and medical professionals.
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