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Cancer is one of the leading causes of death worldwide, bringing a significant burden to
human health and society. Accurate cancer diagnosis and biomarkers that can be used as
robust therapeutic targets are of great importance as they facilitate early and effective
therapies. Shared etiology among cancers suggests the existence of pan-cancer
biomarkers, performance of which could benefit from the large sample size and the
heterogeneity of the studied patients. In this study, we conducted a systematic RNA-seq
study of 9,213 tumors and 723 para-cancerous tissue samples of 28 solid tumors from the
Cancer Genome Atlas (TCGA) database, and 7,008 normal tissue samples from the
Genotype-Tissue Expression (GTEx) database. By differential gene expression analysis,
we identified 214 up-regulated and 186 downregulated differentially expressed genes
(DEGs) in more than 80% of the studied tumors, respectively, and obtained 20 highly linked
up- and downregulated hub genes from them. These markers have rarely been reported in
multiple tumors simultaneously. We further constructed pan-cancer diagnostic models to
classify tumors and para-cancerous tissues using 10 up-regulated hub genes with an AUC
of 0.894. Survival analysis revealed that these hub genes were significantly associated with
the overall survival of cancer patients. In addition, drug sensitivity predictions for these hub
genes in a variety of tumors obtained several broad-spectrum anti-cancer drugs targeting
pan-cancer. Furthermore, we predicted immunotherapy sensitivity for cancers based on
tumor mutational burden (TMB) and the expression of immune checkpoint genes (ICGs),
providing a theoretical basis for the treatment of tumors. In summary, we identified a set of
biomarkers that were differentially expressed in multiple types of cancers, and these
biomarkers can be potentially used for diagnosis and used as therapeutic targets.

Keywords: biomarkers, pan-cancer, transcriptome analyses, diagnosis, therapeutic

INTRODUCTION

Cancer is a serious threat to human life and health and is an important public health problem
worldwide. According to the World Health Organization 2021, cancer is the first or second leading
cause of human death (Siegel et al., 2021). Cancer arises from genetic mutations and dysregulation of
transcriptional processes (Huntsman and Ladanyi, 2018), and its development is influenced by a
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variety of factors,
differentiation, and
Sottoriva, 2017).

Early detection and accurate diagnosis of cancer based on robust
biomarkers are of great value as they dramatically improve the
therapeutic outcome (Sharma, 2018). Reduced costs through
molecularly targeted therapies and improved accessibility of early
and accurate diagnosis for cancer patients can ultimately lead to
better clinical decision-making and additional possibilities for the
precision treatment of tumors. Many studies have identified markers
that can be used for cancer diagnosis, however, most of them have
focused on diagnostic markers for a single type of cancer.

In recent years, pan-cancer analysis brought us to a new level
of cancer research, which overcomes the limitation in the sample
size of single-cancer studies, and it is powerful for studying a
highly heterogeneous disease like cancer. These pan-cancer
studies have led to an increasing understanding of the
complexity and heterogeneity of tumors. For example, in
human pan-cancer studies, overexpression of BRCAI-
associated protein (BRAP) was associated with poor prognosis
and immune infiltration in a variety of cancers (Ju et al., 2020a).
PINK1 was down-regulated in most tumors and may play a
protective role in cancer patients (Zhu et al., 2020). NFE2L2
was positively associated with immune infiltration in pan-cancer
(Ju et al, 2020b). Pan-cancer research has allowed us to
understand that the same cancer may be very different at the
molecular level (Hu et al., 2017), while diverse cancers may share
the same molecular profile (Comprehensive genomic cha, 2008).
Thereby deepening the pan-cancer level studies with a large
sample size will hopefully discover new biomarkers which can
be used to develop new cancer treatment strategies.

Currently, the TCGA (Weinstein et al., 2013) project provides
sufficient transcriptome-level data to allow a systematic analysis of
a wide range of cancers. However, early diagnostic studies of
tumors also require a large amount of transcriptomic data of
matched normal tissues to conduct the differential analysis.
Although the TCGA has matched some para-cancerous tissues
transcriptome datasets, the sample size is limited. GTEx (Human
genomics. The Genot, 2015; Melé et al., 2015) samples can serve as
alternative high-quality matched tissue controls, which provides an
excellent opportunity to elucidate the transcriptional variation
between normal and tumor tissues and the underlying genetic
basis of the normal-to-tumor transition.

There are different treatment modalities for each tumor at
present, while fewer broad-spectrum anti-cancer drugs are
available, and it is urgent to find more broad-spectrum anti-
cancer drugs. In addition, except for traditional treatment
modalities like chemotherapy, immunotherapy represented by
immune-checkpoint inhibitors (ICIs) has significantly improved
the survival status of cancer patients, which is now changing the
way of cancer treatment. However, the response to ICIs varies
dramatically among patients with different malignancies.
Therefore, screening the appropriate immunotherapy
population before treatment is crucial to achieving precise
treatment (Wang et al., 2019a).

In this study, we identified DEGs that are consistently
expressed differentially in different cancers by performing

including
epigenetic

cancer cell development,
regulation (Graham and

Potential Biomarkers for Pan-Cancer

differential gene expression analysis on transcriptomic data
from TCGA and GTEx databases. A pan-cancer diagnostic
model was further constructed to classify pan-cancers and
normal samples with good performance. We also investigated
the feasibility of using hub genes for prognostic assessment and
drug sensitivity prediction. This study identified a set of candidate
pan-cancer biomarkers, brought new insight into the etiology of
tumors, and potentially provided new therapeutic targets for
some cancers.

MATERIALS AND METHODS

Data Acquisition

The transcriptome data of tumor samples and part of the matched
control samples were obtained from the TCGA, including 9,213
tumor tissue samples and 723 para-cancerous tissue samples. In
addition, we matched 7,008 tissue samples from GTEx (https://
gtexportal.org/home/) database to obtain the transcriptomic data
of normal tissues. The related normalized mRNA data and
clinical data were downloaded from the UCSC Xena database
(https://xena.ucsc.edu/) and used for subsequent differential gene
expression analysis.

Differential Expression Gene Analysis

The DEGs were identified using the DESeq2 R package (1.30.1).
Genes were defined as differentially expressed by thresholds of
adjusted p-value < 0.05 and absolute log2 fold change (FC) > 1.0.
When readings for genes are not detected in half or more of the
samples, these genes will be filtered out by quality control.

Pathway Enrichment Analysis

Functional enrichment analysis based on the Kyoto
Encyclopaedia of Genes and Genomes (KEGG) database
(Kanehisa and Goto, 2000) was performed using Kobas3.0 (Bu
et al,, 2021). The top 30 items of the KEGG pathway enrichment
analysis were sorted and presented as bar charts, which were
plotted with the ggplot2 R package based on the p values of the
statistical software R (version 4.0.4). p < 0.05 was considered to be
statistically significant.

Protein-Protein Interaction Network

Construction

The interaction between the DEGs was identified by the Search
Tool for the Retrieval of Interacting Genes/Proteins database
(STRING v10.5) (https://string-db.org/) and visualized using
Cytoscape software (Shannon et al, 2003). The top 10 genes
with the highest degree of connectivity were then selected as the
target hub genes by using the Cytoscape plugin cytoHubba. The
criteria of the protein-protein interaction (PPI) network included
a confidence score > 0.4.

Survival Analysis

Patient survival and related analysis were performed on Gene
Expression Profiling Interactive Analysis 2 (Tang et al.,, 2019)
(GEPIA2, http://gepia2.cancer-pku.cn), which is a web server
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TABLE 1 | 28 cancer types from TCGA and corresponding normal tissue samples from GTEx used for gene expression profiling.

Abbreviations Full Name GTEXx tissue type No. of samples

TCGA-tumor TCGA-Normal GTEX
ACC Adrenocortical carcinoma Adrenal gland 77 0 128
BLCA Bladder urothelial carcinoma Bladder 407 19 9
BRCA Breast invasive carcinoma Breast 1,099 113 179
CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma Cervix uteri 306 3 10
CHOL Cholangiocarcinoma Liver 36 9 110
COAD Colon adenocarcinoma Colon 290 41 308
ESCA Esophageal carcinoma Esophagus 182 13 655
GBM Glioblastoma multiforme Brain 166 5 1,162
HNSC Head and neck squamous cell carcinoma Salivary gland 520 44 55
KICH Kidney chromophobe Kidney 66 25 28
KIRC Kidney renal clear cell carcinoma Kidney 531 72 28
KIRP Kidney renal papillary cell carcinoma Kidney 289 32 28
LAML Acute myeloid leukemia Blood 173 0 337
LGG Brain lower grade glioma Brain 523 0 1,152
LIHC Liver hepatocellular carcinoma Liver 371 50 110
LUAD Lung adenocarcinoma Lung 515 59 288
LUSC Lung squamous cell carcinoma Lung 498 50 288
ov Ovarian serous cystadenocarcinoma Ovary 427 0 88
PAAD Pancreatic adenocarcinoma Pancreas 179 4 167
PCPG Pheochromocytoma and paraganglioma Adrenal gland 182 3 128
PRAD Prostate adenocarcinoma Prostate 496 52 100
READ Rectum adenocarcinoma Colon 93 10 308
SKCM Skin cutaneous melanoma Skin 469 1 557
STAD Stomach adenocarcinoma Stomach 414 36 175
TGCT Testicular germ cell tumors Testis 154 0 165
THCA Thyroid carcinoma Thyroid 512 59 279
UCEC Corpus endometrial carcinoma Uterus 181 23 88
ucs Uterine carcinosarcoma Uterus 57 0 88

built for analyzing the RNA expression data of tumors and
normal samples from the TCGA and the GTEx projects, using
a standard processing pipeline. GEPIA2 was also used for
generating survival heatmaps of hub genes.

Drug Response Prediction

Drug response prediction was carried out using Gene Set Cancer
Analysis (GSCA, http://bioinfo life.hust.edu.cn/GSCA/) with 20
up- and downregulated hub genes as input, respectively. GSCA is
an integrated database for genomic and immunogenomic gene set
cancer analysis, which predicts the drug response based on the
calculated correlation between mRNA expression and drug IC50
(Liu et al., 2018). The IC50s of more than 700 small molecule
drugs in over 1,000 cell lines were obtained from the database of
Genomics of Drug Sensitivity in Cancer (GDSC) and the mRNA
expression of over 10,000 samples corresponding to more than 30
cancer types from the database of the Genomics of Therapeutics
Response Portal (CTRP), respectively.

Construction of the Classification Model

Classification of tumors and para-cancerous samples was
performed using LASSO regression analysis. When the ratio of
the number of tumors and para-cancerous samples is severely
imbalanced, the accuracy of classification may be affected.
Therefore, when the number of tumor samples exceeded
1.5 times the number of para-cancerous tissue samples, we
randomly sampled the tumor samples according to the

minimum sample size to make sure that the sample sizes of
the two groups were approximately equal and repeated 10 times
to verify the accuracy of classification.

RESULT

Characteristics of the Studied Samples
Transcriptome data were obtained from TCGA and GTEx
databases and included 9,213 tumor tissue samples, 723 para-
cancerous tissue samples, and GTEx 7,008 normal tissue samples.
The tumor types of the samples used in this study, as well as their
corresponding sample sizes, and AJCC pathologic stages, are
described in Table 1 and Supplementary Figure S1. We set out to
identify genes that are consistently differentially expressed in
different tumors as a basis for early tumor diagnosis and the
prediction of drug targets. The analyses performed in the study
were shown as a flowchart diagram in Figure 1A.

Opverall, the most abundant malignancies in men are PRAD,
HNSC, LUSC, and KIRC, while in women, the most common
cancers are BRCA, OV, THCA, CESC, and LUAD (Figure 1B).
The sample sizes of the studied tumors are approximately
consistent with the incidence of the diseases (Siegel et al,
2021). For most malignant tumors, the frequencies of the
studied samples increase with age (Figure 1B), which are
consistent with the statistic that malignant tumor incidence is
low among young people under 40 years of age, but increases
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FIGURE 1| The landscape of distribution of DEGs among all tumors. (A) Workflow depicting a collection of TCGA, GTEx datasets, and processing of bioinformatic
analysis for RNA-seq of pan-cancer. (B) Age and gender distribution of the 28 tumor samples. (C) Distribution of DEGs in all 28 studied cancers and distribution of shared
DEGs in over 80% of studied cancers.

rapidly after 40 years of age, and peaks at over 60 years of age.
Notably, the age distribution is not uniform across different
malignant tumors. The malignant tumors with a younger age
of onset are TGCT, LGG, ACC, and THCA, while the other
tumors are mainly from patients with age >50. Overall, the data
from the study were selected to be representative in terms of
sample size and its distribution among different tumors, and the
findings can reflect the tumor and pan-cancer related patterns to
a certain extent.

Identification of DEGs in Each Tumor and
Shared DEGs in More Than 80% of Tumors

We first explored the unique and common gene expression
dysregulation in different tumors by identifying the DEGs in

each tumor. We identified a total of 25,911 DEGs in 28 tumors. A
histogram shows the occurrence of total DEGs in different tumors
(Figure 1C). The number of DEGs varies in different cancers, and
the mean and median number of DEGs in each tumor are 8,440
and 8,300, respectively.

We further looked for shared DEGs that expressed
differentially in most types of cancers. Among them, a total of
12 genes were found to be differentially expressed in all 28
tumors, of which 6 genes (ASPM, KIF4A, NEIL3, DTL,
UBE2C, and UBE2SP2) were upregulated and 2 genes (PLIN4
and ADH1B) were downregulated in expression. In addition, four
genes were differentially expressed in opposite directions among
28 tumors, ABCA9 was upregulated in LAML and down-
regulated in the remaining 27 tumors, NPPA was upregulated
in GBM and LGG and down-regulated in the remaining 26
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FIGURE 2 | Identified DEGs shared in more than 80% of cancers and pathways significantly associated with these DEGs. (A-C) Overview of identified DEGs (A),
identical up-regulated (B) and down-regulated (C) DEGs shared by over 80% of tumors in 28 tumors. (D-E) Barplot represents the top 30 enriched pathways of identical
up-regulated (D) and identical down-regulated (E) of DEGs that are shared by over 80% of tumors, analysis was performed using KOBAS 3.0.

tumors, while PBK and H2AC11 were down-regulated in TGCT
and up-regulated in the rest 27 tumors.

Most of these DEGs have been reported to have potential as
diagnostic and prognostic biomarkers in a specific tumor or class
of tumors (Xu et al., 2019; Zhao et al., 2021; Luo et al., 2022), while
a few have been reported to have such potential in no less than 10
tumors (Jiang et al., 2021; Pan et al., 2021). For example, ASPM
(Assembly Factor for Spindle Microtubules) facilitates the
homologous recombination-mediated repair of DNA double-
strand break (Xu et al, 2021), is essential for mitotic spindle
function during cell replication, and plays a pivotal role in the

invasiveness of bladder cancer and serves as a potential
prognostic biomarker for them (Xu et al, 2019). The UBE2C
(Ubiquitin Conjugating Enzyme E2 C) is a conjugating enzyme,
that plays a crucial role in cancer progression and its upregulation
has been found in various cancers, a recent study demonstrated
that overexpression of UBE2C was associated with TMB,
microsatellite instability, immune cell infiltration, and diverse
drug sensitivities (Jiang et al., 2021).

In addition, there are 47 genes differentially expressed in 27
types of cancers, while 677 are differentially expressed in >80% of
tumor types (Supplementary Tables S1, S2). The distribution of
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genes that were consistently up- or downregulated in more than
80% of tumors was shown in Figure 1C.

Functional Annotation of Shared DEGs

We explored similarities in expression using DEGs that were
identified in more than 80% of tumors for clustering, and up- and
downregulated genes were used separately (Figures 2A-C).
Among these studied tumors, some of them with similar
expression dysregulation features clustered together, such as
COAD and READ were clustered together, probably because
they both belonged to colorectal cancer (CRC) (The Lancet
Oncology, 2017), while UCS, OV, and UCEC, which are
uterine and ovarian cancers, clustered together.

Furthermore, we examined the shared dysregulated pathways of
DEGs by KEGG pathway enrichment analysis and found that the
shared up-regulated genes among 28 tumors are functionally
associated with pathways that are related to oncogenesis and
cell cycle (Figure 2D), such as cell cycle, cellular senescence,
p53 signaling pathway, human T-cell leukemia virus 1 infection,
microRNAs in cancer, transcriptional dysregulation in cancer (Liu
et al., 2020; Hirons et al., 2021; Lee and Dutta, 2009). In contrast,
the differentially down-regulated expressed genes shared by 28
tumors are mainly involved in nutrient metabolism-related
pathways (Figure 2E), such as protein digestion and absorption,
regulation of lipolysis in adipocytes, alpha-linolenic acid
metabolism, linoleic acid metabolism, tyrosine metabolism, and
fatty acid biosynthesis (Burak et al., 2019; Yang and Mottillo, 2020).

Networks Analysis and Hub Genes

Screening

Systematic exploration of the relationships between genes can
help to explain the relationship between genotype and phenotype
(Kuzmin et al., 2018). We performed protein-protein interaction
(PPI) network analysis of the shared DEGs that existed in more
than 80% of the tumors using the STRING database and screened
the up- and downregulated hub genes using Cytoscape plugin
cytoHubba, respectively, based on the amount of connectivity
(Figures 3A,B). The highly connected genes in a network are hub
genes, and the 10 upregulated hub genes interact much more
intensively with each other compared to downregulated hub
genes (Figures 3C,D), suggesting that the majority of DEGs in
cancers are upregulated, and these hub genes are closely
coordinated and interact tremendously to participate in certain
oncogenic pathways leading to carcinogenesis.

Next, we mapped the expression levels of the hub genes among
these overlapping expression genes in all the studied tumors and
presented them as bubble plots (Figures 3E,F) to visualize the
differential expression of these genes in specific tumors and para-
cancerous tissues. The results showed that NCAPG was
significantly overexpressed in almost all tumors except TGCT,
while CDC45, TTK, BUB1B, and TOP2A were overexpressed in all
tumors other than PCPG and TGCT.

Non-structural maintenance of chromosomes condensin I
complex subunit G (NCAPG) is responsible for the
condensation and stabilization of chromosomes during mitosis

Frontiers in Pharmacology | www.frontiersin.org

May 2022 | Volume 13 | Article 870660


https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Zhu et al. Potential Biomarkers for Pan-Cancer
A 1.0 B BLCA: AUC = 0.830
==BRCA: AUC = 0.776
CHOL: AUC = 0.996
0.8 = CESC: AUC = 0.870
Q - Q COAD: AUC = 0.946
E AUC=0.894 § ESCA: AUC = 0.952
o 0.6 [0} == STAD: AUC = 0.795
2 . HCC: AUC = 0.979
‘® ‘@ = KIRC: AUC = 0.995
o] o _
& 044 S == LUAD: AUC = 0.792
) o) ~—PAAD: AUC = 0.813
2 = —THCA: AUC = 0.905
= k= ~PRAD: AUC = 0.914
0.2+ SKCM: AUC = 0.806
0
0 02 04 06 08 10 0 025 05 075 1.0
False positive rate False positive rate
TTK T 1] I:‘:| Hspe7|  [] O O ]
cDC45 | CTRC Eb
NCAPG HEW E= CTRB2
© AURKB O =N . [l '°91g(HR) © PLA2GTB | |°910(HR)
S BUB1B EH_jEE H 08 G ADHIB (] gl
O TOP2A O [ o0 O acTn3 | ] 00
cDC20 oM 210 ACTA1 O B33
CCNB1 O T H cPB1 o O O
CDK1 HOE EE MYBPC3 | | |
CCNA2 O 1 O crat1 O O
R T O O N R UR 2 QS S PO ONO A TP SRR VC"’ OO RS
STFRBBRSB SRR SHHIPIBAN FIAGEOES
Tumor Tumor
CCNB1{0 0 0 ooo PLA2G1B|© © coooo0o0
CcDC20{0 000 CTRC{0© -
FDR CTRB2{0 © H <=0.05
TTK/000@000 - 00000000000000000000000| 7 cPA1 >0.05
g i "
o TOP2AI0@0000000000000000000000000000 H>0-05 $ ACTN3 o 002000 ‘;’[’g'g"""
= ) (D 2
& NCAPG 00000000000 0000000000000000000 :orrglgnon HSFB? soos-000e00 ¥ o
-0. MYBPC3 c0-c0:0 oc:-00 i
CDK1 000000000000000000000000000
soe 0.0 ADH1B|5 040000000050+ +0:0000000-0000 2
€bC451000000000000000000000000000000 L, CPB1]000 > 00000000000000000000000000
CCNA2/0@0000000000000000000000000000 ACTA1/10@0000000000000000000000000000
X 3 Qe
AURKBI0O0Q000000000000000000000000000 qu\\igci* %é%w“{“f;§‘°¢%«g§“”°°@° %\:m,\w& \oi\i\%:@w”
\’\q NN St B ORI ST RS TSN SR %{Lm"% q, Ao 5° R 9"?«2? R Y be B e
¢?Y~\e/\g,6\go+eaw-<>°_,qé,m,« ++\ (,o N .
«@*\&%\« <<’\ o“ <<, AR ?g& %\;\Qq 06« @ ° "o ‘5,\07‘ o \‘\ 0@@(@
5 &
pr
Drug Drug ©
FIGURE 4 | Performance of classification model, prognostic assessment and drug sensitivity evaluation based on hub genes. (A-B) Area under the ROC curve
(AUC) plots of the training dataset (A) and external datasets (B). (C-D) Survival analysis of hub genes in identical up- (C) and down-regulated (D) DEGs in various
cancers. (E-F) The bubble plots showed the correlations of mRNA expression levels of hub genes with GDSC (E) and CTRP (F) drug sensitivities.

and meiosis (Murphy and Sarge, 2008). The previous study
suggests that the overexpression of NCAPG is significantly
associated with unfavorable survival in diverse human
malignancies. And the high expression of NCAPG may play
an essential role in tumorigenesis and progression (Xiao et al.,
2020), serving as a promising molecular target for cancer
treatment and prognostic biomarkers for hepatocellular
carcinoma (HCC) (Wang et al., 2019b; Xiao et al., 2020).
Cytokinesis cycle protein 45 (CDC45) was thought to be
associated with tumorigenesis, and its low proteomic levels
were associated with poor prognosis in HCC patients,
suggesting that CDC45 may be a novel prognostic marker for
HCC (Yang et al,, 2021). In addition, knockdown of CDC45
expression inhibited the proliferation of non-small cell lung
cancer (NSCLCQC) cells in vitro and in vivo and arrested cells in
the G2/M phase of the cell cycle, which could be a novel
therapeutic target for NSCLC (Huang et al, 2019). A
component of the Spindle Assembly Checkpoint, TTK protein
kinase whose inhibition could be a novel therapeutic target for the
treatment of triple-negative breast cancer (TNBC) (Maia et al.,

2015) and pancreatic ductal adenocarcinoma (PDAC) (Kaistha
et al., 2014), is overexpressed in several cancers. BUB1 Mitotic
Checkpoint Serine/Threonine Kinase B (BUB1B) is an essential
component of the mitotic checkpoint, and its high expression is
thought to be associated with the progression and recurrence of
several cancers (Dong et al, 2019). Topoisomerase II alpha
(TOP2A), highly expressed in various human cancers, is a
potential prognostic and predictive marker as well as a
therapeutic target in combating HCC (Panvichian et al., 2015;
Wang et al,, 2022).

Hub Genes as Potential Diagnostic Markers

for Cancers

We used these identified hub genes as features to construct a
pan-cancer diagnostic model, and the receiver operating
characteristic (ROC) curve illustrated the diagnostic ability
and the area under the curve (AUC) showed the performance
of a classification model. Based on the Lasso regression, the
classifier performed excellently with an AUC value close to
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89.4% (Figure 4A) using the top 10 upregulated hub genes
(CCNA2, CDK1, CCNBI, CDC20, TOP2A, BUBIB, AURKB,
NCAPG, CDC45, and TTK). We replicated these hub genes as
features for tumor and para-cancerous tissues classification
using transcriptomic data from 14 additional datasets for
different tumors, all with good accuracy and an AUC of at
least 77.6% (Figure 4B). These datasets include BLCA
(GSE13507), BRCA (GSE27562), CESC (GSE63514), CHOL
(GSE76297), COAD (GSE39582), ESCA (GSE23400), STAD
(GSE27342), HCC (GSE14520), KIRC (GSE40435), LUAD
(GSE31547), PAAD (GSE62452), PRAD (GSE46602), SKCM
(GSE15605), and PATC (GSE33630) (Supplementary
Table S3).

Survival Analysis and Drug Sensitivity
Prediction of Hub DEGs

Given that most of the hub genes have been reported to be
associated with a variety of tumorigenesis and prognosis, to
further explore the role of these genes in the prognosis of all
studied tumors, we performed a survival analysis based on these
hub genes (Figures 4C,D). We found that 10 up-regulated hub
genes were significantly associated with survival in most tumors.
For instance, CDC45 plays a key role in DNA replication was
significantly associated with survival in 9 tumors, and AURKB
was significantly associated with survival in 8 tumors
(Figure 4C). We further investigated the expression of CDC45
in tumors at different stages and found that in all 28 studied
tumors, CDC45 was highly expressed in most tumors compared
to normal controls, and its expression level gradually increased
with progressive tumor stage (Supplementary Figure S2).
Together with the previous finding that CDC45 affected the
survival of most tumors, we speculated that the upregulation
of these specific DEGs may have an impact on patients’ survival.

Lastly, to explore the potential of the screened hub genes for
clinical application, we calculated the correlation between the hub
gene expression and drug sensitivity associated expression
profiles from the GSCA database, which merged GDSC and
CTRP databases and screened for potential anti-cancer drugs
that interacted with it. The result showed that overexpression of
these hub genes is positively correlated with the resistance of
some drugs, vice verse (Figures 4E,F), implying that these drugs
may be able to reduce the expression level of these genes and act
as an anti-tumor agent. And some drugs are already used in
clinical, such as RDEA119, trametinib, selumetinib, PD-0325901,
17-AAG, and FT1-277 (Figures 4E,F). RDEA119/BAY 869766 is
highly potent in inhibiting cell proliferation in several tumor cell
lines in vitro. It has also shown potent activity in xenograft
models of melanoma, colon, and epidermoid carcinoma in
vivo (Iverson et al., 2009). Trametinib (GSK1120212) is an
oral mitogen-activated protein kinase (MEK) inhibitor that is
selective for MEK1 and MEK2. It has been approved by the FDA
in combination for the treatment of metastatic melanoma with
BRAF inhibitors (Zeiser et al., 2018). Selumetinib is a mitogen-
activated protein kinase 1 and 2 (MEK1/2) inhibitor, used to treat
neurofibromatosis and various cancers. It can also be used as
adjuvant therapy for thyroid cancer and the treatment of type 1

Potential Biomarkers for Pan-Cancer

neurofibromas (Markham and Keam, 2020). In a word, our
analysis and predictions will hopefully be informative for the
clinical management of these cancers.

The Prediction of Imnmunotherapy
Sensitivity

Higher TMB and somatic mutation rates were associated with better
anti-cancer immune responses (Castle et al., 2019). We calculated
the TMB (Figure 5A) and somatic mutation counts (Figure 5B) for
all tumor samples based on mutect2 results for 33 tumors in the
TCGA. In contrast, patients affected by several tumors with high
TMB and mutation counts, such as SKCM, LUSC, and LUAD, may
have a higher sensitivity to immunotherapy.

We also collected 47 ICGs reported in the previous study
(Huang et al, 2021), and these ICGs are mainly involved in
ligand-receptor interactions and have different effects on
immune activity, including inhibition, stimulation, or a
combination of both. We investigated the expression profiles of
ICGs in all tumor tissues of the TCGA cohort (Figure 5C), as well
as the differential expression of these genes in 28 tumors and para-
cancerous tissues (Figure 5D). Significant differential expression of
ICGs was observed in tumors (Figure 5C), and these ICGs had a
distinct cancer-specific profile compared to normal controls
(Figure 5D). We found that the expression of most ICGs was
up-regulated in KIRC, KIRP, ESCA, SKCM, and HNSC compared
to para-cancerous tissues, suggesting a potential response to
immunotherapy in the corresponding tumors (Zhang et al., 2022).

In addition, we found the ICGs expression was higher in
tumors with high TMB and having more mutations such as
LUSC, LUAD, ESCA, and STAD (Figure 5C), reinforcing the
point that these tumors may have surprising efficacious against
prevailing ICIs (Liu et al., 2017; Tung et al., 2021; Xie et al., 2021;
Zhang et al., 2021).

DISCUSSION

Integrating transcriptomic data from a large variety of cancers to
study cancer characteristics is an important and valuable
direction of research in cancer biology. A substantial number
of studies have shown similarities between different cancers, such
as key driver mutations (Martincorena and Campbell, 2015),
immune (Desrichard et al, 2016), and microbial signatures
(Poore et al, 2020), suggesting the possibility of common
features of different cancers for tumor diagnosis and clinical
recommendations. However, cancer cell heterogeneity is a
challenging concept in cancer biology. Therefore, we herein
sought to find potential biomarkers by selecting dysregulated
genes in most types of cancer from a large cohort and validating
these biomarkers in additional independent datasets to reduce the
impact of heterogeneity across cancers.

In this study, we analyzed a large amount of transcriptomic
data from public databases of tumor and para-cancerous tissues
and obtained DEGs that were differentially expressed in most of
the studied tumors compared to para-cancerous tissues, some of
which have been reported can be used as diagnostic or prognostic
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markers for specific cancer (Kaistha et al., 2014; Maia et al., 2015;
Wang et al., 2019b; Xu et al., 2019; Xiao et al., 2020; Zhao et al.,
2021; Luo et al., 2022) and partly as biomarkers for pan-cancer
diagnosis (Dong et al., 2019; Jiang et al., 2021; Pan et al., 2021).
We performed PPI network analysis on genes that differentially
expressed in more than 80% of the studied cancers and obtained
20 up- and downregulated hub genes. We further explored the
possibility of using the ten upregulated hub genes as features to
distinguish tumors from para-cancerous tissues, which achieved
high accuracy and sensitivity. Furthermore, we found that some
hub genes have the potential for the prognostic assessment of
cancer patients. Additionally, we examined the drug sensitivity of
some broad-spectrum anti-cancer drugs based on 20 hub genes
and obtained a handful of drugs such as RDEA119, trametinib,
and selumetinib possibly exert anti-tumor effects in pan-cancers
with corresponding DEGs.

Finally, we found that some tumors such as SKCM, LUSC,
LUAD, KIRC, KIRP, ESCA, HNSC, and STAD might be more

suitable for immunotherapy by comparing the TMB, mutation
count levels as well as the expression levels of ICGs in different
tumors. Interestingly, from the rank of TMB and somatic mutation
counts, TGCT may be unsuitable for immunotherapy. However,
regarding the expression of ICGs, TGCT is possibly sensitive to ICIs,
which needs to be explored in further studies (Kalavska et al., 2020).
In addition, ICGs such as CD276 and CD70 are upregulated in most
tumors, and gene expression profiles show that CD276 is highly
expressed in tumors such as SKCM, HNSC, ESCA, and LUSC, while
CD70 is highly expressed in the majority of tumors. High expression
of the CD276 gene is thought to be associated with the development
and metastasis of several cancers (Yuan et al.,, 2011; Boland et al.,
2013; Mao et al., 2015), and CD70 is involved in the survival of
tumor cells and regulatory T cells through interaction with its ligand
CD27 (Jacobs et al., 2015). A previous study showed that tandem
CAR-T cells targeting CD70 and CD276 exhibited potent preclinical
activity against a variety of solid tumors (Yang et al, 2020),
suggesting that these two genes could be candidate targets for
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immunotherapy. However, this may be influenced by resistance to
anti-cancer immunotherapy, the development of which involves
complex and diverse factors. Thus pre-treatment testing of oncology
patients and assessment of possible resistance development would
be beneficial in guiding the choice of anti-cancer immunotherapy.
In addition, combinations of ICIs, or combinations of strategies
(cancer immunotherapies with targeted mutagenic drugs) may be
considered  to the resistance to anti-cancer
immunotherapy and improve efficacy (Sharma et al., 2017).

Despite the compelling results found in our study, there are
still some limitations to be noted. First, cancer is a highly
heterogeneous disease with great variation between tumors.
Although the hub genes we identified hereby can predict
patient survival to some extent, the survival of specific cancer
patients is influenced by many factors. Except for these genetic
background factors, whether the patient can be diagnosed at an
early stage, the status of mainstream treatment modalities, and
the accessibility of new treatments (especially immunotherapy)
will lead to differences in survival outcomes.

Second, although our work suggests several biomarkers that
may be useful for pan-cancer diagnosis and broad-spectrum anti-
cancer drug selection, it should be noted that the present study is
a retrospective study without validation in independent wet-lab
laboratory experiments, and the limited sample size for some
cancers could potentially lead to inaccurate or false-positive
results. Besides, ICG expression was quantified at the
transcriptomic level, while proteins such as mutation-derived
neoantigens are the components directly involved in tumor
immunity, and the protein expression does not exactly match
the RNA expression (Dybas et al., 2019), so the performance of
RNA expression-based biomarker may be influenced by the
inconsistency between the RNA expression and protein
expression. We believe that further persuasive wet-lab
experiments and clinical studies are still needed to validate
these biomarkers and confirm their specificity and sensitivity.

Third, we mainly explored the DEGs between tumor and para-
cancerous tissues but did not address the discrepancies among
different tumors. Future studies on specific markers for different
tumors can be considered, which are expected to distinguish
metastatic tumors that cannot be determined from the primary
lesions and achieve early diagnosis and precision medicine for
indistinguishable tumors.

In summary, the hub genes identified in this study may serve as
biomarkers to construct a pan-cancer diagnostic model that could

overcome
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