

Erratum

Chemical characterization and immunomodulatory properties of polysaccharides isolated from probiotic *Lactobacillus casei* LOCK 0919

S Górska, P Hermanova, J Ciekot, M Schwarzer, D Srutkova, E Brzozowska, H Kozakova, and A Gamian

Glycobiology (2016) doi: 10.1093/glycob/cww047

After publication of this article (Górska et al. 2016), we noticed that the original version, unfortunately, contained mistakes. We inadvertently inserted the wrong spectra for Figures 1, 3 and 4 and an incorrect version of Table II. Correct versions are provided below. In addition, in the Results (NMR analysis of L919/B) section of the above-mentioned article, after the statement "The structure of the pentasaccharide repeating unit of L919/B, as determined herein, is shown in Figure 4." we erroneously omitted the following statement: "This structure is virtually identical to that of the polysaccharide L900/3 isolated from *L. rhamnosus* LOCK 0900 (Górska et al. 2014)."

We apologize for the oversight and possible misunderstanding.

References

Górska S, Schwarzer M, Jachymek W, Srutkova D, Brzozowska E, Kozakova H, Gamian A. 2014. Distinct immunomodulation of bone marrow derived dendritic cell responses to Lactobacillus plantarum WCFS1 by two different polysaccharides isolated from Lactobacillus rhamnosus LOCK 0900. Appl Environ Microbiol. 80:6506–6516.

Górska S, Hermanova P, Ciekot J, Schwarzer M, Srutkova D, Brzozowska E, Kozakova H, Gamian A. 2016. Chemical characterization and immunomodulatory properties of polysaccharides isolated from probiotic *Lactobacillus casei* LOCK 0919. Glycobiology. doi:10.1093/glycob/ cww047.

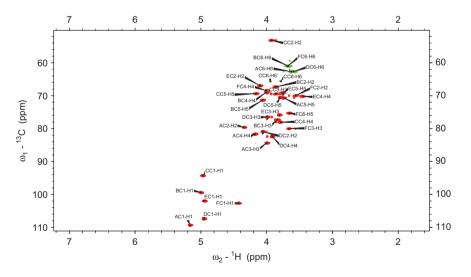
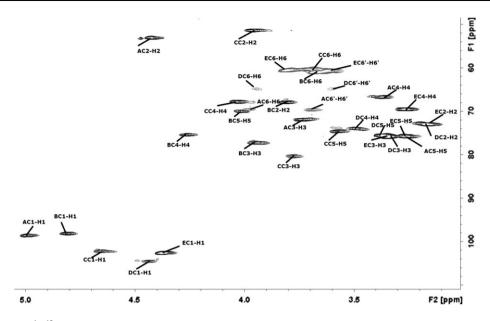



Fig. 1. Selected parts of the ¹H-¹³C HSQC nuclear magnetic resonance (NMR) spectrum of L919/A. This figure is available in black and white in print and in color at *Glycobiology* online.

276 S Górska

 $\textbf{Fig. 3.} \ \, \textbf{Selected parts of the} \ ^{1}\textbf{H-}^{13}\textbf{C} \ \, \textbf{HSQC} \ \, \textbf{nuclear magnetic resonance} \ \, \textbf{(NMR) spectrum of L919/B}.$

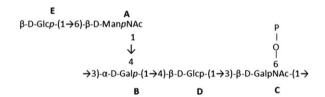


Fig 4. The structure of the pentasaccharide repeating unit of L919/B.

Erratum 277

Table II. ¹H and ¹³C NMR chemical shifts and selected inter-residue connectivities obtained for the anomeric protons of L919/B from *Lactobacillus casei* LOCK 0919

	Sugar residue	Chemical shifts ¹ H, ¹³ C (ppm)							
		H1 C1	H2 C2	H3 C3	H4 C4	H5 C5	H6 C6	H6′	CH ₃ CO
A	→6)-β-D-Man p NA c -(1→	5.019	4.432	3.74 4	3.458	3.261	4.010	3.725	1.932
В	\rightarrow 3,4)- α -D-Gal p -(1 \rightarrow	98.61 4.809 98.22	53.02 3.802 67.86	71.76 3.954 77.39	66.83 4.257 75.55	75.62 4.063 69.91	69.41 3.682 61.03		22.10
С	\rightarrow 3)- β -D-Gal p NA c -(1 \rightarrow	4.651 103.34	3.974 51.51	3.768 80.34	4.021 67.88	3.561 74.68	3.704 60.31		1.947 21.91
D	\rightarrow 4,6)- β -D-Glc p -(1 \rightarrow	4.456 104.61	3.285 72.78	3.362 75.68	3.519 73.80	3.388 75.31	3.952 64.80	3.651	
E	β -D-Glc p -(1 \rightarrow	4.372 102.51	3.261 72.90	3.374 75.52	3.270 69.24	3.377 75.88	3.628 60.61	3.801	
	P 2.6 ppm								
	Selected inter-residue NOESY and ³ J _{H,C} (HMBC) connectivities from the anomeric protons of the isolated								
	Sugar residue	H-1 $\delta_{\rm H}$ (ppm)	Connectivity $\delta_{\rm H}$ (ppm)	Inter-residue atom/residue	Connectivity $\delta_{\rm C}$ (ppm)		Inter-residue atom/ residue		
A	→6)-β-D-Man p NA c -(1→	5.019	4.257	H-4 of B	75.55 53.02			C-4 of B C-2 of A	
В	\rightarrow 3,4)- α -D-Gal p -(1 \rightarrow	4.809	3.519 4.063	H-4 of D H-5 of B	69.91			C-5 of B	

H-6 of B

H-3 of B

H-3 of C

H-6 of A

77.39

80.34

69.41

64.80

C-3 of B

C-3 of C

C-6 of A

C-6 of D

Spectra were obtained for 2H_2O solutions at 25°C, and acetone (δ_H 2.225, δ_C 31.05 ppm) was used as an internal reference.

3.682

3.954

3.768

4.010, 3.722

4.651

4.456

4.372

C

D

E

→3)- β -D-GalpNAc-(1 \rightarrow

 \rightarrow 4,6)- β -D-Glcp-(1 \rightarrow

 $\beta\text{-}\mathrm{D}\text{-}\mathrm{Glc}p\text{-}(1\!\rightarrow\!$