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MCT-1 expression and PTEN deficiency synergistically
promote neoplastic multinucleation through the Src/p190B
signaling activation
M-H Wu1, Y-A Chen1, H-H Chen1, K-W Chang2, I-S Chang3, L-H Wang1 and H-L Hsu1

Multinucleation is associated with malignant neoplasms; however, the molecular mechanism underlying the nuclear abnormality
remains unclear. Loss or mutation of PTEN promotes the development of malignant tumors. We now demonstrate that increased
expression of the oncogene MCT-1 (multiple copies in T-cell malignancy 1) antagonizes PTEN gene presentation, PTEN protein
stability and PTEN functional activity, thereby further promoting phosphoinositide 3 kinase/AKT signaling, survival rate and
malignancies of the PTEN-deficient cells. In the PTEN-null cancer cells, MCT-1 interacts with p190B and Src in vivo, supporting that
they are in proximity of the signaling complexes. MCT-1 overexpression and PTEN loss synergistically augments the Src/p190B
signaling function that leads to inhibition of RhoA activity. Under such a condition, the incidence of mitotic catastrophes including
spindle multipolarity and cytokinesis failure is enhanced, driving an Src/p190B/RhoA-dependent neoplastic multinucleation.
Targeting MCT-1 by the short hairpin RNA markedly represses the Src/p190B function, improves nuclear structures and suppresses
xenograft tumorigenicity of the PTEN-null breast cancer cells. Consistent with the oncogenic effects in vitro, clinical evidence has
confirmed that MCT-1 gene stimulation is correlated with p190B gene promotion and PTEN gene suppression in human breast
cancer. Accordingly, MCT-1 gene induction is recognized as a potential biomarker of breast tumor development. Abrogating MCT-1
function may be a promising stratagem for management of breast cancer involving Src hyperactivation and/or PTEN dysfunction.
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INTRODUCTION
Loss-of-function mutations in the catalytic domain of PTEN or the
reduced PTEN expression through loss of heterozygosity has been
identified in human cancers and inherited cancer-predisposition
syndromes.1–5 PTEN inhibits phosphoinositide 3 kinase (PI3K)/AKT
signaling pathway.6 A subtle decrease in PTEN amount (80% of
normal levels) induces tumorigenicity, particularly in breast
cancer.7 PTEN gene is methylated in ductal carcinoma in situ
and in early invasive breast cancer, indicating the epigenetic
inactivation of PTEN during cancer progression.8 NEDD4-1
catalyzes PTEN polyubiquitination and degradation decreasing
the cytoplasmic PTEN in carcinogenesis.9 However, PTEN mono-
ubiquitination enhances its nuclear import and antitumor effect
perhaps by preventing nuclear AKT activity and genomic
instability.10,11

Temporal and spatial distribution of the PI3K regulates
cytokinesis.12 PI3K and PTEN function at spindle poles and
cleavage furrow in mitosis, respectively. Loss of PTEN deregulates
the PI(3,4,5)P3 production increasing the frequency of cytokinesis
failure and multinucleation. The nuclear–cytoplasmic shuttling of
PTEN also modulates cell cycle and apoptosis.13 Cytoplasmic PTEN
dephosphorylates AKT, upregulates p27(kip1) and induces apop-
tosis. Nuclear PTEN reduces cyclin D1 expression and mitogen-
activated protein kinase activity, thus interfering with cell cycle
progression. Nuclear PTEN also maintains chromosomal stability
via induced Rad51 and DNA damage repair.14,15 Under oxidative

stress, PTEN accumulated in the nucleus increases p53 function
that prevents genotoxicity and tumor growth.16

The p190A has been reported to accumulate temporally at the
contracting cleavage furrow and reduce in late mitosis by
ubiquitin–proteasome degradation.17–19 Overexpressing p190A
decreases the active RhoA-GTP levels at cleavage furrow, leading
to cytokinesis failure and multinucleation. The phosphorylated
p190B at tyr1109 residue, which corresponds to an Src consensus
target site on p190A, is potentially required for mitotic
progression.20 Therefore, deregulated p190B expression increases
the events of aneuploidy, chromosome miss-segregation and
apoptosis. The PI3K catalytic subunit (p110delta) stimulates p190A
that inactivates RhoA and PTEN function,21 whereas the inhibition
of p110delta suppresses p190A, resulting in the activation of RhoA
and PTEN. The stability and activity of PTEN are regulated by
phosphorylation at the C-terminal tail (ser380, thr382 and thr383)
such as CK2-induced phosphorylation at the C-terminal position
induces PTEN degradation.22,23 Src-phosphorylated PTEN also
causes PTEN degradation and PI3K/AKT signaling amplification.24

In an inhibitory loop, PTEN dephosphorylates Src at tyr416 residue
to inactivate Src.25 Thus, Src is highly activated in PTEN-
deficient cells.
MCT-1 (multiple copies in T-cell malignancy 1) oncogene

stimulates Ras and AKT signaling function.26–28 Similar to
PTEN,14 MCT-1 relocates from the cytoplasm to the nucleus upon
genotoxicity.29 In support of MCT-1 oncogenic role in genomic
instability, MCT-1 suppresses p53 activity and increases the
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frequency of massive chromosomal aberrations upon DNA
damage.27,29 Depletion of p53 enhances the MCT-1 oncogenic
effect on chromosomal destabilization, mitotic abnormality and
tumor growth,27,28,30 implying an antagonism between p53 and
MCT-1 in the neoplastic progression.
In this study, we identified a novel inhibitor of PTEN and the

interacting protein of Src/p190B, MCT-1, and demonstrated that
PTEN loss and MCT-1 induction synergistically promoted the
acytokinetic division and neoplastic multinucleation via the Src/
p190B signaling activation. Targeting MCT-1 in the PTEN-null
cancer cells improved the mitotic checkpoint and nuclear
integrity, but suppressed tumor growth. The clinical studies
confirm that MCT-1 is frequently overexpressed together with
p190B upregulation and PTEN downregulation in human breast
cancers.

RESULTS
Overexpression of MCT-1 destabilizes PTEN
MCT-1 oncogene induces the AKT phosphorylation (ser473).26 To
investigate if MCT-1 inhibits PTEN to activate AKT, the MCF-10A
cells were starved for 24 h followed by the serum activation for
30min (Supplementary Figure S1a). We observed that the
phosphorylated PTEN (ser380) (2.3-fold) and AKT (ser473) (95.5-
fold) were much enhanced in the ectopic MCT-1-expressing
condition (lane 5) than in the control cells. PTEN is inactivated
upon ser380 phosphorylation,23 suggesting that MCT-1 inhibits
PTEN via the posttranslational modification. Consistent with
wortmannin and LY294002 (LY) suppress PI3K/AKT signaling,31

LY inhibited the MCT-1-induced AKT activation (Supplementary
Figure S1a, lane 6) and wortmannin suppressed the MCT-1-
stimulated AKT in the MCF-7 cells (Supplementary Figure S1b, lane
6). The epidermal growth factor (EGF)-induced AKT phosphoryla-
tion was also markedly suppressed by LY and attenuated by an Src
inhibitor (PP2) in the MCT-1-expressing MCF-10A cells
(Supplementary Figure S1c, lanes 9 and 10), showing the
involvement of Src and PI3K in the MCT-1 pathway.
The steady state of PTEN determines inhibitory effect on PI3K.

PTEN stability was examined by blocking protein biosynthesis with
cyclohexamide in the MCF-10A cells (Figure 1a). At different
intervals, the remaining PTEN amounts were quantified by
densitometry, normalized to glyceraldehyde 3-phosphate dehy-
drogenaseand compared with the initial PTEN level (at time 0).
Results showed that PTEN had a longer half-life (9.5 h) in the
control cells than the MCT-1-increasing cells (2.9 h) (Figure 1b).
Similar results were observed in the MDA-MB-231 cells treated
with cyclohexamide for different periods that MCT-1 expression
promoted PTEN degradation and, therefore, shortening PTEN half-
life (6.2 h) relative to the control cells (7.6 h) (Supplementary
Figures S1d and e). To examine if MCT-1 mediated PTEN reducing
by proteasome, the MCF-10A cells were starved, treated with or
without MG132 and reactivated by the serum (Figure 1c). Taken
together with increased p53 stability, MG132 elevated PTEN level
and stability in the MCT-1-expressing cells (lane 6), suggesting that
MCT-1 destabilized PTEN via a proteasome pathway. The MCT-1-
stimulated AKT phosphorylation was partly suppressed by MG132
treatment, suggesting it was also regulated independently
of PTEN. To further answer if MCT-1 decreases PTEN level through
an ubiquitin–proteasome pathway, an in vivo ubiquitination assay
was studied in doxycycline-inducible H1299/TR cell line (p53-null)
to enhance conditionally MCT-1 expression (Figure 1d).
Subsequently, the cells were transiently transfected with the
vector encoding HA-ubiquitin and treated with or without MG132,
immunoprecipitated (IP) with HA antibody (Ab) and detected by
PTEN Ab. We found that more ubiquitinated PTEN was observed in
the MCT-1-overexpressing cells than the control set, showing that
MCT-1 promotes PTEN degradation via an ubiquitin–proteasome

pathway. Moreover, the relative PTEN mRNA levels expressed in
the MCF-10A cells were examined, we observed that PTEN mRNA
levels in the ectopic MCT-1-expressing cells were reduced to 46%
of that of the control cells (Figure 1e). Therefore, MCT-1 inhibits
PTEN gene expression, protein phosphorylation and stability.
To study whether PTEN deficiency enhances the MCT-1

oncogenic effects, MCF-10A cells without (control) or with
MCT-1 induction (MCT-1) were transfected with the pMKO.1 short
hairpin PTEN (shPTEN) to deplete PTEN protein in both control
(control/− PTEN) and MCT-1-inducing cells (MCT-1/− PTEN). After
starving for 24 h (-activation), the cells were reactivated with
serum for 30min (+activation) and it was observed that the active
AKT (ser473) and EGF receptor (EGFR) (tyr1068) were enhanced in
the MCT-1/− PTEN cells with no detectable change in the
extracellular signal-regulated kinase (thr202/tyr204) activation
(Figure 1f, lane 8). In consistence, under a stringent condition
lacking serum and essential growth factors, the survival rate of
MCT-1/− PTEN cells were highly induced relative to the other
cohorts (control, MCT-1, control/− PTEN) (Figure 1g). The com-
bined effect of PTEN knockdown and MCT-1 induction thus greatly
reduced growth factor dependence for survival.

Overexpressing MCT-1 perturbs the mitotic process in the PTEN-
deficient cells
PTEN regulates chromosomal segregation and cytokinesis.15 To
examine whether MCT-1 further disturbs mitotic progress in the
absence of PTEN protection (Supplementary Figure S2a), the
MCF-10A cells were arrested at prometaphase by nocodazole
treatment for 24 h and then released for 1 h, allowing more cells
entering late mitotic stage. The mitotic spindle asters and
microtubule structure were detected with NuMA (nuclear-mitotic
apparatus) and α-tubulin Abs, respectively; it was observed that
the majority of control cells displayed a regular spindle config-
uration and only a few mitotic cells (4.73%) exhibited a multipolar
spindle structure (Supplementary Figure S2b). Conversely, the
distorted spindle arrays developed from multipolar regions were
more abundantly observed in the MCT-1/− PTEN cells (31.34%)
than in the ectopic MCT-1 cells (11.37%) and the control/− PTEN
cells (12.14%). In support of mitotic deregulation, the p190B (3.5-
fold), NuMA (2.6-fold) and histone H3 phosphorylation (ser10)
(11.6-fold) were highly induced in the MCT-1/− PTEN cells
compared with the other cohorts (control, MCT-1, control/− PTEN)
(Supplementary Figure S2c). Spindle multipolarity increases the
incidence of chromosomal miss-segregation and nuclear aberra-
tion through the subsequent cell division. Time-lapse microscopy
was thus conducted and it was observed that the control/− PTEN
cells entered mitosis (0:00) (h:min), rapidly formed a cleavage
furrow (0:19) and severed the midbody to complete mitosis (2:20)
(Supplementary Figure S2d). Although the MCT-1/− PTEN cells
entered mitosis (0:00) and quickly formed a cleavage furrow (0:20),
the midbody remained connected (2:50) and two daughter
cells still tethered together (4:20). Unexpectedly, the two dividing
cells were fused producing a giant binucleated cell (5:50)
(Supplementary Figure S2d).

MCT-1 promotes multinucleation via the Src/p190B signaling
amplification
The fluorescence time-lapse microscopy of the mitotic progression
was further performed in the PTEN-null MDA-MB-468 cells
(Figure 2). We observed that the control cells entered mitosis
(0:00), divided completely into two daughter cells (6:00) and with
no cytoplasmic fusion occurred during 13 h of observation
(Figure 2a). However, MCT-1 expression delayed mitotic progres-
sion in that the cell (no .1) entered mitosis (0:40) and formed a
cleavage furrow at a later time point (5:40), but the cytoplasmic
membrane fusion occurred promptly (6:19) generating a
giant binucleated cell (7:40) (Figure 2b). In another case, the
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MCT-1-expressing cell (no. 2) entered mitosis (0:40) but formed an
asymmetric cleavage furrow (2:00) where the midbody between
two daughter cells still tethered together producing an abnormal
cell with binuclei of unequal sizes (5:00). The average of mitotic
time length was assessed and it observed no time difference in
early mitosis from prometaphase to anaphase between the
control and MCT-1-expressing cells (Figure 2c). The marked
divergence was recognized in late mitosis from telophase to
cytokinesis, where the ectopic MCT-1 cells took approximately
11.5 h and the control cells spent only 4.2 h, supporting that
MCT-1 mainly disturbed the late mitotic stage in PTEN-null
background.
Reduced p190RhoGAP is essential for the completion of

cytokinesis, which hyperactive p190A and in turn impairs cytokin-
esis in the PTEN-null cancer cells.18 To investigate which
p190RhoGAP was deregulated by MCT-1, the p190A and p190B
mRNA levels were analyzed in the MDA-MB-468 breast cancer cells
(Supplementary Figure S3). The mRNA level of p190B but not
p190A was increased upon MCT-1 overexpression (a), and
conversely, p190B mRNA level was decreased after MCT-1

knockdown (b). Along with mitotic perturbation in ectopic
MCT-1 cells, the levels of active Src (tyr416) and p190B showed
a 3.2-fold increase and a 1.6-fold increase, respectively (Figure 2d).
To examine if Src and p190B interact with MCT-1, the MDA-
MB-468 cells were nocodazole-arrested at prometaphase stage for
24 h and released for 1 h. Immunoprecipitation study identified
not only that p190B protein was enriched but also that the
tyrosine-phosphorylated p190B (p-tyr) and the active Src (tyr416)
were also greatly enhanced upon MCT-1 overexpression
(Figure 2e, lane 4). Intriguingly, p190B bound Src and interacted
with the intrinsic and ectopic MCT-1, proposing the close
proximity interactions between these proteins at the later mitotic
process.
To investigate whether enhanced MCT-1 activation is the main

reason for the nucleation aberration, the microscopic evaluation
was conducted and it was found that there was a 2.5-fold increase
in multinuclear MCT-1-expressing cells and frequently with more
than two nuclei (Figure 3a). However, knockdown of MCT-1
(shMCT-1) reduced the multinucleated effect by half and most of
the control cells were mononuclear. Accompanied with reduced
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multinucleation upon MCT-1 depletion, the RhoA activation was
increased when Src activation (phosphorylation of tyr416) and
p190B expression were reduced markedly (Figure 3b). MCT-1 likely
augments the Src/p190B signaling cascade, which inhibits RhoA
activation (RhoA-GTP) and mediates multinucleation. To answer if
Src mediates p190B/RhoA signaling activation in the context of
MCT-1 induction, an Src inhibitor (PP2) was treated with the MDA-
MB-468 cells. We found that PP2 suppressed the active Src (try416)
and p190B (p-tyr) and, as expected, increased RhoA activation
(RhoA-GTP) in contrast to ectopic MCT-1 expression (Figure 3c,
lanes 2 vs 4). The results suggest that MCT-1 works through Src to
activate p190B and to inhibit RhoA. To answer if Src activity
determines the interaction between MCT-1 and p190B, immuno-
precipitation assay was performed and it identified that p190B still
interacted with MCT-1 despite the Src/p190B signaling inhibited
by PP2 (Figure 3d, lane 12). Under such a condition, multi-
nuclearity was reduced by half in the ectopic MCT-1 cells (20.4% vs
10.1%); however, PP2 had no substantial influence on the control
cells (5.6% vs 4.2%) (Figure 3e). Therefore, MCT-1/p190B interac-
tion is independent of Src activation; however, the interaction may
still have an important role in promoting multinucleation.
We next investigated the necessity of PTEN for protection

against multinucleation, the MDA-MB-468 cells were reintroduced
into the PTEN gene. Significantly, re-expressing PTEN reduced
active phosphorylation of Src and p190B but increased the active
RhoA-GTP level in the ectopic MCT-1 cells (Figure 3f, lane 4).
Consistently, we observed a lower incidence of multinucleation

through gain-of-function PTEN in MCT-1-expressing cells (MCT-1/
+PTEN) than the relative control cells (control/+PTEN) (Figure 3g).
Concurrent with significant activation of Src (tyr416) and p190B
(p-tyr) in the MCF-10A cells (Supplementary Figure S4a, lane 4),
the active RhoA-GTP level was also reduced markedly in the
MCT-1/− PTEN condition, indicating that Src/p190B signaling was
synergistically promoted by MCT-1 expression and PTEN defi-
ciency. Through abortive cytokinesis and cytoplasmic membrane
fusion following cell plate formation (Supplementary Figure S2d),
we noticed a high rate of multinucleation in MCT-1/− PTEN cells
comparative to the other groups (control, MCT-1, control/− PTEN)
(Supplementary Figure S4b). These data confirm that MCT-1
expression and PTEN loss cooperatively interfere with mitotic
completion, but PTEN restoration suppresses the MCT-1-induced
multinucleation.
To evaluate if MCT-1 mediates the Src/p190B interaction and

signaling activation, MDA-MB-468 cells were starved and reacti-
vated with serum followed by p190B immunoprecipitation
(Figure 4a). We found that the levels of total Src and active Src
(tyr416) associated with p190B were increased markedly only
when MCT-1 was present (lanes 9 and 11), and such interaction
was much decreased through MCT-1 depletion (shMCT-1) (lanes
10 and 12). Knockdown of MCT-1 abolished the Src-p190B
activation and suppressed the interaction of active Src and
p190B, suggesting that the MCT-1-enhanced interaction facilitated
Src activation of p190B. The role of p190B in multinucleation was
next assessed by the interference of p190B gene expression
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(p190B siRNA nos. 1 and 2) (Figure 4b). Unlike RhoA activation,
multinuclear frequencies were significantly reduced upon p190B
depletion in the MCT-1-expressing cells (Figure 4c). We further
elucidated if RhoA activity was indeed implicated in the multi-
nucleated effect; the MDA-MB-468 cells were introduced with
wild-type RhoA (wtRhoA), constitutive-active RhoA (caRhoA) or
dominant-negative RhoA (dnRhoA) (Figure 4d). We found that
RhoA activation (RhoA-GTP) was completely suppressed by
dnRhoA, but it was enhanced by wtRhoA and greater promoted
by caRhoA. Significantly, both wtRhoA and caRhoA prevented the
MCT-1-induced multinucleation, whereas dnRhoA advanced multi-
nuclearity (Figure 4e). Putting together, we have identified a novel
mechanism of multinuclearity under MCT-1 oncogenic stress via
the Src/p190B/RhoA signaling cascade in the PTEN-null back-
ground (Figure 4f).

Targeting MCT-1 reduces chromosomal polyploidy and tumor
growth of the PTEN-null breast cancer cells
Mitotic checkpoint ensures the accuracy of cell division. Using flow
cytometry analysis, we observed that 59.2% of the MDA-MB-468

cells were arrested at G2/M transition upon nocodazole treatment
for 24 h (Supplementary Figure S5a). However, the MCT-1-
overexpressing cells were less responsive to the G2/M arrest
and, therefore, up to 44% of the cells were still retained at G1
stage. Similar effect was noticed in the MCT-1-overexpressing cells
with taxol treatment for 24 h where fewer cells (47.7%) were
arrested at G2/M stage compared with that of the control cells
(60.6%). The decreased G2/G1 ratio in the ectopic MCT-1 cells
suggested that MCT-1 perturbs the G2/M checkpoint in the PTEN-
null context (Supplementary Figure S5b). Furthermore, to identify
specifically the cell populations with chromosome condensation
during mitosis, the flow cytometry results confirmed that more
phospho-histone H3 (ser28)-positive cells were detected because
of MCT-1 induction (17.9% and 29.6%) after microtubule disrup-
tion by nocodazole and taxol, respectively (Figure 5a). In support
of mitotic promotion following the treatment of microtubule
toxins, we observed that the mitotic markers, NuMA and the
phospho-histone H3 (ser10), were highly induced by MCT-1
overexpressing (Figure 5b), confirming that MCT-1 enhances the
mitotic progression.
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Mitotic abnormality induces polyploidization. CENP-A is a
centromeric protein required for kinetochore assembly and
stability.32 Supernumerary CENP-A foci correspond to amplifica-
tion of chromosomal copy number in the cell. The numbers of
CENP-A foci (red) (upper panel) were examined at interphase
stage by immunofluorescence microscopy (Figure 5c). Compared
with the control MDA-MB-468 cells, the average CENP-A foci
showed a 2.2-fold increase in the multinucleated MCT-1-
overexpressing cells (Figure 5d). The amplification of CENP-A foci
rationally explains high incidence of cytokinesis failure causing
multinucleation and polyploidization under the MCT-1 oncogenic
stress. Consistently, the data of mitotic chromosome spread
identified a higher percentage of the MCT-1/− PTEN cells (17.3%)
with amplified chromosome copy number (>50) than the other
MCF-10A cellular contexts (control, MCT-1, control/− PTEN)
(Figure 5e), supporting that MCT-1 promotes chromosome
abnormalities in the absence of PTEN protection.
Furthermore, we assessed if MCT-1 depletion can renovate the

G2/M and polyploidy checkpoint control in the MDA-MB-468 cells
(Figure 5f). The flow cytometry data showed that 12.79% of the
MOCK control cells contained intrinsic polyploidization with DNA

content of more than 4N. Polyploidy was accumulated progres-
sively when the cells were continually exposed to nocodazole for
24 h (19.98%) to 48 h (37.55%). Surprisingly, the polyploidy
populations were reduced by half upon MCT-1 depletion
(shMCT-1 no. 1). A larger number of the MCT-1 knockdown cells
were arrested at the G2/M phase (68.57%) than the MOCK control
cells (44.19%) after microtubule damage for 24 h. Therefore,
targeting MCT-1 can prevent the PTEN-null cancer cells from
bypassing the polyploidy and G2/M checkpoints.
Array-based comparative genomic hybridization was again

investigated chromosome copy number variation (CNV) caused
by MCT-1 in a genome-wide screening (Figure 5g and
Supplementary Figure S6). The Cy3-labeled DNA probes from
MCT-1-overexpressing cells and Cy5-labeled DNA probes from
control MCF-10A cells were simultaneously hybridized with the
chromosome array to identify whether the chromosomal aberra-
tions occurred specifically via overexpressing MCT-1 that inhibited
PTEN expression. The copy number changed in any region within
a chromosome is indicated by a segmentation chart along the
chromosome regions and by the log2 ratio of fluorescent signals
obtained from the two scanning channels. A ratio of + 0.2 or − 0.2
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is set as a cutoff value for defining the significant variations. Under
these criteria, we observed the aberrations on chromosomes 5, 7
and 18 (Supplementary Figure S6). The segments of chromosome
amplification are highlighted in green, and the regions of
chromosome loss are underlined in red on the cytoband region
of chromosomes 5 (Supplementary Figure S6a), 7 (Supplementary
Figure S6b) and 18 (Supplementary Figure S6c). Detailed
information for chromosome gain or loss, the number of genes
located in these regions and the percentage of copy number
variations are listed in Figure 5g. The incidences of amplifications
(marked in green) were identified in the chromosome 5q region,
in the chromosome 7q21.3–q36.3 regions and in a large segment
of chromosome 18 covered from 18p11.32 to 18q23 region.
Moreover, the results of chromosome deletions (marked in red)
were identified at regions of 5p15.33–p13.3, 5p13.3–p11 and
7q21.3–q22.1. The genes located on these mutated chromosomes
may contribute to the MCT-1 oncogenic potential.

To assess the tumorigenic role of MCT-1, the MDA-MB-468 cells
without (MOCK) or with MCT-1 knockdown (shMCT-1 nos. 1,
2 and 3) were subcutaneously injected into the BALB/c nude mice
(n= 6). Tumor development was monitored weekly and an
obvious difference in tumor volume was recognized after 4 weeks
(Figure 6a). At the end point of 13 weeks, we observed a
significant difference in tumor masses between MCT-1 knockdown
and MOCK sample (Figure 6b). The tumor incidence dropped to
20% owing to MCT-1 knockdown (shMCT-1 no. 1) and no
significant tumor development in two other cohorts (shMCT-1
nos. 2 and 3) (Figure 6c). Tumor burdens of the xenograft cancer
cells with MCT-1 reduction (shMCT-1 no. 1) were also markedly
reduced to 6.7% of that identified in the control xenografts
(MOCK). Immunohistochemistry analysis confirmed that MCT-1
deficiency suppressed the expression levels of p190B and active
Src (tyr416) in the tumors (Figure 6d). Accordingly, reduced MCT-1
activity in the PTEN-null cancer cells substantially abolishes
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tumorigenic growth and inhibits the Src/p190B signaling activa-
tion in vivo.

Relationship of MCT-1 with PTEN and p190B expression in human
breast cancer
The clinical relevance of MCT-1 gene activation in relation with
PTEN and p190B gene expression was studied using the
TissueScan breast cancer tissue qPCR array (OriGene Technologies,
Inc., Rockville, MD, USA). MCT-1 mRNA expressed in different
stages of human breast carcinomas (n= 120) and normal breast
tissues (n= 7) were analyzed. A twofold increase over the mean of
MCT-1 mRNA level in normal breast tissues were recognized as
MCT-1 high expression in the cancer. In this criteria, the expression
of MCT-1 mRNA was induced in stage I (72.7%; P= 0.001), stage II
(87.5%; Po0.0001) and stages III–IV (83.3%; Po0.0001) of the
cancer patients (Figure 7a). Overall, 83.3% of the breast cancer
patients showed increase in MCT-1 mRNA level compared with the
normal tissues (Po0.0001), revealing MCT-1 overexpression in
most breast cancers. MCT-1 expression induces p190B gene
activation (Supplementary Figure S3a). Because p190B mRNA
levels in normal breast tissues were relatively higher than that of
MCT-1 gene, therefore, we defined p190B upregulation as its
expression with a 1.5-fold increase over that of average normal
breast tissues. Accordingly, p190B gene activation was observed in
stage I (81.8%; Po0.001), stage II (71.4%; Po0.001) and stages
III–IV (81%; Po0.0001) of breast cancers (Figure 7b). Of the 120
cancer samples, there were 76.7% of them showed p190B gene
stimulation relative to normal breast tissues (Po0.0001). More-
over, PTEN mRNA levels in these tumor biopsies were also studied
(Figure 7c). As compared with the mean of PTEN mRNA expression
in normal breast tissues, the PTEN mRNA levels with a twofold
reduction in different stages of human breast carcinomas were
defined as PTEN low expression. Under such a criteria, PTEN
reduction was observed in stage I (54.5%; Po0.05), stage II (50%;

Po0.05) and stages III–IV (54.8%; Po0.05) of the patients. Overall,
52.5% of the tumor cases exhibited a PTEN suppression compared
with normal breast tissues (Po0.01).
To study the clinical relationship of MCT-1 with p190B and PTEN

expression, we used the expression levels in normal tissues to
define the threshold. For a given gene, we dichotomize its
expression level in each sample into ‘low’ and ‘high’, respectively;
it is ‘high’ if and only if its level is larger than the expression in any
of the normal tissues. Figure 7d shows the dichotomized data for
the 127 samples, from which the expression levels of MCT-1 and
p190B are significantly and positively correlated with Pearson's
correlation of 0.35 and P-value 6.39 × 10− 5. Similar results are
observed in the tumors (n= 63) with twofold PTEN expression
lower than that of the normal breast tissues (Figure 7e),
from which we also identify a significant positive correlation
between the expression levels of MCT-1 and p190B, with
Pearson's correlation of 0.49 and P-value of 1.94 × 10− 5.
As assessed further, the association between MCT-1 and PTEN
among the samples having low-level PTEN (Figure 7f), MCT-1 and
PTEN are negatively correlated with Pearson's correlation of − 0.26
and P-value 3.14 × 10− 2. Taken together, MCT-1 is induced
abundantly in human breast cancers with p190B stimulation and
with PTEN suppression.

DISCUSSION
PI3K/AKT signaling pathway regulates cell growth, proliferation
and survival.33 Hyperactive PI3K/AKT has been identified in breast,
ovarian and many other cancers.34–36 Deletion or mutation of the
PTEN gene and under the oncogenic stress, which highly
augments the PI3K/AKT activation, contribute to neoplastic
transformation or metastatic potential in a wide spectrum of
human cancers.37–39 MCT-1 prevents PTEN function through a
decrease in PTEN protein stability and gene activation (Figure 1).
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Figure 6. Knockdown of MCT-1 inhibits tumorigenicity. (a) MDA-MB-468 cells were subcutaneously (s.c.) injected into the nude mice. Tumor
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active Src (tyr416) in the tumors emerged from the MCT-1 knockdown cells.
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MCT-1 stimulates both Src and PI3K pathways (Supplementary
Figures S1a and c). In the context of PTEN deficiency or ablation
(Figures 1f and 3f), MCT-1 overexpression further stimulates the
activation of AKT, EGFR and Src, thereby enhancing cell survival.
Genetic mutations increase tumor predisposition. Defects in

chromosomal segregation, cell cycle checkpoint and DNA damage
repair cannot protect against the reproduction of abnormal cells
with genomic aberrations that potentially induce the malignant
progression.40–42 The activation of oncogene contributes to tumor
development not only by inducing proliferation but also by
destabilizing genomic structure and reprogramming stem cells.43

For example, c-Myc-overexpressing cells progress to intraepithelial
neoplasia and adenocarcinoma lesions with marked heterogeneity
in loss of PTEN and p53 genes.44 Loss of p53 combined with c-Myc
overexpression in astrocytes induces the expression of stem cell
makers, which also promotes glioma pathogenesis.45 Similarly,
MCT-1 oncogenic activation may have selective pressure to trigger
the loss of tumor suppressor such as PTEN and p53, and thus
promoting tumorigenesis. PTEN physically and genetically inter-
acts with p53, the guardian of genome structure.5 Losses of PTEN
and p53 cooperatively converge on c-Myc to enhance cell
proliferation, self-renewal and tumorigenic potential.46 We now
demonstrate that MCT-1 promotes PTEN degradation through an
ubiquitin–proteasome pathway in a p53-independent manner,
and also discover a novel oncogenic role of MCT-1 in enhancing
mitotic catastrophe, checkpoint failure and neoplastic

multinucleation, leading to genomic aberrations particularly in
PTEN-deficient context. It is still unknown whether MCT-1 and Myc
oncogenes have crosstalk in the tumorigenic process.
MCT-1 expression and PTEN loss synergistically promote cyto-

kinesis failure and multinucleation (Supplementary Figures S2d
and S4b). Likewise, enhanced MCT-1 activation in the p53-
deficient cells impairs mitotic development, G2/M checkpoint
and genomic stability upon microtubule disruption or DNA
damage.27,28 Genetic mutations are thus accumulated progres-
sively as a consequence of the MCT-1 oncogenic activation and
the tumor suppressor dysfunction. Following spindle multipolarity
and cytokinesis failure, cell–cell fusion is induced by expressing
MCT-1 in the PTEN-deficient cells (Supplementary Figures S2 and
S4b). Catastrophic mitosis is also promoted significantly while
increasing MCT-1 in the PTEN-null cancer cells (Figure 2b).
Targeting MCT-1 improves the mitotic regulation and prevents
polyploidization in the PTEN-null cancer cells (Figure 5f), suggest-
ing that the mitotic progression and polyploidy checkpoint may
work most efficiently when PTEN and MCT-1 are in functional
balance.
The tyrosine-1109 residue of p190B is homologous with the

tyrosine-1105 residue on p190A that is phosphorylated and
activated by Src.47 We speculate that MCT-1 enhances p190B
activity possibly through Src phosphorylation of p190B at the
tyrosine-1109. The enhanced tyrosine phosphorylation of p190B
regulates chromosomal segregation in the PTEN-null cancer
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aThe p190B mRNA level showed a ≥1.5-fold
increase in the tumors compared to average normal
breast tissues was defined as p190B high-expression.
bLess than a 1.5-fold increase was recognized as
p190B low-expression.

aPTEN mRNA level showed a ≥2-fold reduction
in the tumors compared to average normal breast
tissues was considered as PTEN low-expression.
bLess than a 2-fold reduction was set as PTEN
high-expression.

Figure 7. Clinical relevance of MCT-1, p190B and PTEN expression in human breast cancers. TissueScan breast cancer tissue cDNA arrays (BCRT
I, III and IV) were analyzed by quantitative real-time polymerase chain reaction. (a) Relative MCT-1 expression levels in human breast cancers
were studied. The MCT-1 mRNA level identified in each tumor sample was normalized to β-actin mRNA and calibrated to the overall mean of
MCT-1 mRNA level in normal breast tissues. (b) Relative p190B expression levels in human breast cancers were studied. The p190B mRNA level
detected in each tumor biopsy was normalized to β-actin mRNA and compared with the mean of p190B mRNA level in normal breast tissues.
(c) Relative PTEN expression levels in human breast cancers were analyzed. The PTEN mRNA level identified in each tumor sample was
normalized to β-actin mRNA and calibrated to the overall mean of PTEN mRNA level in normal breast tissues. The comparison between normal
breast tissues and different stages of breast tumors were analyzed by the Χ2 test (a–c). A P-value of o0.05 is considered to be statistically
significant. (d) The correlation between the expression of MCT-1 and p190B was evaluated. If and only if MCT-1 or p190B expression in each
sample is larger than the expression in any of the normal tissues is defined as ‘high’. Based on this definition of ‘high’ and ‘low’ expression, the
dichotomized data for the 127 samples, MCT-1 and p190B expression are positively correlated (P-value 6.39 × 10− 5). (e) The PTEN expression
levels in breast tumors showing a twofold lower than average of the normal breast tissues were analyzed (n= 63). A significant positive
correlation between the MCT-1 and p190B expression was identified (P-value 1.94 × 10− 5). (f) A negative correlation between the MCT-1 and
PTEN expression was identified in the PTEN-low tumors (n= 63) (P-value 3.14 × 10−2). The Pearson's correlation coefficient is used to measure
the relationship between two indicated genes (d–f).
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cells.20 The hyperactive p190A perturbs cytokinesis.19 Similarly, the
highly activating p190B by MCT-1 may cause disproportional
contraction of the mitotic furrow site, resulting in asymmetrical
cell division, chromosomal miss-segregation and cytokinesis
failure. Resembling the dynamic distribution of p190B during
mitosis,20 MCT-1 is temporarily located at centrosome and
midbody,28 where MCT-1 may encounter and cooperate with
p190B to regulate mitotic progression. The Src activity-
independent p190B/MCT-1 interaction (Figure 3d) and a direct
involvement of MCT-1 in the signaling activation of Src/p190B
(Figures 3b and 4a) imply the proximity complex of MCT-1/p190B/
Src facilitating Src phosphorylation and activation of p190B.
Reduced MCT-1 activity effectively suppresses Src/p190B signaling
to prevent neoplastic multinucleation in the PTEN-null cancer
cells, showing an underlying mechanism of multinucleation
induced by the oncogene.
PTEN activity inhibits cell invasion and migration.48 The ectopic

MCT-1 expression increases the functionally inactive PTEN (ser380)
(Supplementary Figure S1a). PTEN may antagonize MCT-1 function
in the Src/p190B signaling pathway, thereby ensuring proper
mitotic division and maintaining the integral nuclear/chromoso-
mal structure. More detailed investigation is necessary to fully
understand whether MCT-1 overexpression alongside PTEN loss
indeed promotes the Src/p190B signaling in the development of
tumor. Results from analysis of clinical specimens offer that MCT-1
gene activation may be recognized as a novel biomarker for early
diagnosis of breast tumor development. Significant correlation
between MCT-1 overexpression with PTEN suppression and p190B
induction in human breast cancers is firstly demonstrated
(Figure 7). MCT-1 and p190B genes are concurrently stimulated,
supporting their collaborations in the development of mammary
tumor. The xenograft tumor studies have indicated that targeting
MCT-1 decreases the active phosphorylated Src and p190B in vivo
(Figure 6d), suggesting that MCT-1 controls cancer cell propaga-
tion and tumor progression via Src/p190B signaling amplification.
Src activates AKT via inhibition of PTEN in breast cancer.24

Herceptin is a chemotherapeutic agent for HER2-positive meta-
static breast cancer.49 The herceptin-resistant breast cancers are
often identified with Src activation because the PTEN loss cannot
dephosphorylate and inactivate Src.25 Src pathway is, therefore,
recognized as an ideal therapeutic target for administration of
breast cancer with PTEN mutation. MCT-1 facilitates Src activation;
therefore, elucidating their molecular interaction will help identify
new and effective therapeutic strategies for cancer(s) with Src
hyperactivation and/or PTEN deficiency.

MATERIALS AND METHODS
Antibodies
See Supplementary Materials.

Knockdown of PTEN and modification of MCT-1
MDA-MB-468, MDA-MB-231 and MCF-7 cells were virally transfected with
pLXSN or pLXSN/MCT-1 (V5-tagged) as described previously.29 The stable
transfectants (control and MCT-1) were cultured in RPMI 1640 medium
with 10% fetal bovine serum, 100 U/ml penicillin, 100 μg/ml streptomycin
and 350 μg/ml G418. MCF-10A cells transfected with pLXSN/MCT-1 or
pLXSN vector were subsequently introduced pMKO.1 or pMKO.1 shPTEN
shRNA (Addgene, Cambridge, MA, USA) using Lipofectamine 2000
(Invitrogen, Grand Island, NY, USA). Cells were subcultured in Dulbecco's
modified Eagle's medium/F12 complete medium supplemented with
0.5 μg/ml puromycin for 2 weeks. All the transfectants were maintained in
Dulbecco's modified Eagle's medium/F12 medium containing 5% horse
serum, 100 U/ml penicillin, 100 μg/ml streptomycin, 20 ng/ml EGF, 0.5 μg/
ml hydrocortisone, 10 μg/ml insulin, 100 ng/ml cholera toxin and the
selection antibiotics (100 μg/ml G418 and 0.5 μg/ml puromycin). The knock-
down of MCT-1 using SureSilencing pGeneClip MCT-1 shRNA and MOCK
shRNA plasmids (SuperArray Biosciences Corporation, Valencia, CA, USA)

were stably transfected into MDA-MB-468 cells and cultured with 0.5 μg/ml
puromycin.

In vivo ubiquitination assay
The H1299TR/control- and H1299TR/MCT-1-inducible cell lines were
transiently transfected with pCR3.1-HA-ubiquitin expression plasmid
(Addgene) for 24 h. The ectopic MCT-1 cells were induced by 1 μg/ml
doxycycline for 12 h, treated by 50 μM MG132 for 12 h and then extracted
by RIPA buffer. One microgram of cell extracts was IP with anti-HA Ab
(Roche Diagnostics Corporation, Indianapolis, IN, USA) as described. The
polyubiquitinated PTEN was detected with PTEN Ab (Cell Signaling,
Danvers, MA, USA).

Inhibition of protein kinase and proteasome activity
See Supplementary Materials.

Quantitative real-time polymerase chain reaction
Total RNA was extracted using the Trizol reagent (Invitrogen). Two
micrograms of total RNA were digested with DNase I and synthesized
cDNA using oligo(dT)12–18 primer and SuperScript II reverse trans-
criptase (Invitrogen). The specific probes for MCT-1 (human MCT-1,
Hs00273837_m1), p190B (human ARHGAP5, Hs00869394_s1,
Hs00750732_s1) and PTEN (human PTEN, Hs00829813_s1) genes were
purchased from Applied Biosystems (Grand Island, NY, USA). Quantitative
real-time polymerase chain reaction was performed as described
previously.50

TissueScan qPCR array panel I (BCRT101), III (BCRT103) and IV (BCRT104)
(OriGene Technologies, Inc.) were analyzed the mRNA level for each target
gene in human breast cancer using quantitative real-time polymerase
chain reaction. The clinical information of each sample was retrieved
from OriGene (http://www.origene.com/qPCR/Tissue-qPCR-Arrays.aspx).
The pathological significances between tumor stages and gene expression
were analyzed.

MTT assay
See Supplementary Materials.

Immunofluorescence and fluorescence time-lapse microscopy
See Supplementary Materials.

Immunoblotting analysis
See Supplementary Materials.

Immunoprecipitation assay
See Supplementary Materials.

Flow cytometry analysis
See Supplementary Materials.

RhoA activity assay
See Supplementary Materials.

Multinucleation analysis
MDA-MB-468 cells were seeded on 6-well plates at 50% confluence
and cultured for 18–24 h. The control and p190B siRNAs (sip190B no. 1:
5′-GCUGAUACAACCACAAUUA-3′ and sip190B no. 2: 5′-GGAAUCAGUUAA
ACACAAU-3′) were purchased (Thermo Scientific Dharmacon, Pittsburgh,
PA, USA). Cells were transfected with the scramble control siRNA or the
p190B siRNA using the Lipofectamine RNAiMAX reagent (Invitrogen). The
siRNA/reagent complexes were incubated with cells for 4 h before
incubating in fresh medium for 3 days.
The pHEF wtRhoA plasmid was used as a template to generate the

caRhoA (pHEF caRhoA) according to the manufacturer’s protocol of
the QuickChange Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA,
USA).51 To construct the dnRhoA, the primers used for the site-directed
mutagenesis were shown as follows: RhoAQ63L forward (5′-GTGGGACA
CAGCTGGGCTGGAAGATTATGATCGC-3′) and RhoAQ63L reverse (5′-GCGAT
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CATAATCTTCCAGCCCAGCTGTGTCCCAC-3′). The cells were fixed with
70% methanol for 15min, stained with 4′,6-diamidino-2-phenylindole
(100 ng/ml) and quantified the multinucleated populations via fluores-
cence microscopy.

Immunofluorescent detection of phosphorylated histone H3
See Supplementary Materials.

Cytogenetic study
See Supplementary Materials.

Array comparative genomic hybridization study and data analysis
See Supplementary Materials.

Xenograft tumorigenicity and immunohistochemistry study
The 8-week-old female nude mice (BALB/cAnN.Cg-Foxnlnu/CrlNarl) were
subcutaneously injected with MDA-MB-468 cells (1.3 × 106). Tumor growth
was analyzed weekly with caliper measurements. Tumor volumes were
calculated by the formula: tumor volume=1/2 (length ×width2). After
cultivation for 13 weeks, the mice were killed to examine tumor incidences
and burdens. Immunohistochemistry study of the tumors were performed
as described previously.50
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