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Abstract: Core–shell structured TiO2 is a promising solution to promote the photocatalytic effectiveness
in visible light. Compared to metal or semiconductor materials, polymers are rarely used as the core
materials for fabricating core–shell TiO2 materials. A novel core–shell structured polymer@TiO2

was developed by using phenolic polymer (PP) colloid nanoparticles as the core material. The PP
nanoparticles were synthesized by an enzyme-catalyzed polymerization in water. A subsequent
sol–gel and hydrothermal reaction was utilized to cover the TiO2 shell on the surfaces of PP particles.
The thickness of the TiO2 shell was controlled by the amount of TiO2 precursor. The covalent
connection between PP and TiO2 was established after the hydrothermal reaction. The core–shell
structure allowed the absorption spectra of PP@TiO2 to extend to the visible-light region. Under
visible-light irradiation, the core–shell nanosphere displayed enhanced photocatalytic efficiency
for rhodamine B degradation and good recycle stability. The interfacial C–O–Ti bonds and the
π-conjugated structures in the PP@TiO2 nanosphere played a key role in the quick transfer of the
excited electrons between PP and TiO2, which greatly improved the photocatalytic efficiency in
visible light.
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1. Introduction

Titanium dioxide (TiO2) is one of the most extensively investigated metal oxides due to its
fascinating features, such as low cost, polymorphs, good chemical and thermal stability, and excellent
electronic and optical properties [1–3]. These features render TiO2 highly promising in photocatalysts,
dye-sensitized solar cells, energy storage, and biotechnology [4–8]. However, their performance is
greatly limited by the wide energy band gap of approximately 3.2 eV, rapid electron–hole recombination,
and relatively poor charge transport property [9–11]. To overcome these intrinsic drawbacks, various
efforts were made to modify TiO2 materials. Doping with different elements, coupling with organic
dyes, and composing with various materials were approaches extensively investigated to extend the
active spectrum [12–18].

Recently, core–shell structured nanomaterials attracted considerable attention as they consist
of different functional components integrated into one unit. These nanomaterials show improved
physical and chemical properties, which are unavailable from the isolated components [19–21].
The active interfaces between individual components within a core–shell structure might give rise to
outstanding synergistic functions and new properties. Thus, another promising solution for improving
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TiO2 photocatalyst efficiency under the visible spectrum was developed by assembling them into a
core–shell structure. These structures are usually obtained by depositing TiO2 on a narrow-band-gap
material to facilitate effective charge separation and improve the photostability. Many investigations
focused on coupling TiO2 with metal or semiconductor core [22–28]. Despite the fact that polymers
typically have low cost, easy preparation, and controllable size, research on core–shell structures of
polymer and TiO2 remains quite limited. Polystyrene (PS) nanoparticles are frequently used as the
core due to various synthesis methods, tunable size, and easy functionalization of surface. Imhof
utilized colloidal PS spheres uniformed with poly(vinylpyrrolidone) (PVP) as the core and coated
the spheres with a well-defined layer of amorphous TiO2 [29]. Liu et al. used acrylic acid as the
comonomer to prepare a PS mini-emulsion, and they obtained core–shell PS and TiO2 microspheres
via the strong interaction between TiO2 and carboxyl groups [30]. Wang and co-workers prepared a
core–shell PS@TiO2 photocatalyst via vapor phase hydrolysis. They found that the core–shell catalyst
had relatively better activity in the degradation of methylene blue (MB) than bare TiO2, and the PS core
may have consumed some active radicals, which resulted in bad recycling [31]. Türk et al. prepared
PS colloidal particles with TiO2 coating via a sol–gel process with in situ hydrolysis, and the core–shell
particles revealed good photocatalytic activity for the oxidation of 4-methoxybenzyl alcohol with O2 in
water [32]. Wu’s group prepared PS@TiO2 core–shell particles using a layer-by-layer self-assembly
method. They revealed that the PS@TiO2 materials obtained via this method can be used to degrade
rhodamine B (RB) in HCl solution, and the degradation rate of RB increased with the increase in TiO2

colloid shell layer [33].
Recently, the efficient enzymatic polymerization of phenol in aqueous solution was developed in

the presence of templates, such as poly (ethylene oxide) (PEG) [34,35], cyclodextrin derivates [36,37],
or surfactant [38,39]. The polymerization is fast and moderate without toxic formaldehyde. Generally,
the structure of phenolic polymer (PP) prepared via enzymatic polymerization is composed of a
mixture of phenylene and oxyphenylene. Thus, a great number of hydroxyl groups are presented on
the surface of the polymer colloid particles, which grant high reactivity.

In this work, a PP@TiO2 core–shell nanosphere was prepared via the sol–gel method. PP was
synthesized by a horseradish peroxidase-catalyzed phenol polymerization with PEG in water. The PP
colloid particle was used as the core and support substrate of the photocatalyst. The thickness of the TiO2

shell was controlled by the amount of the precursor of TiO2. The chemical structure was investigated
to understand the interaction between the core of PP and the shell of TiO2. The photocatalytic activity
was determined by degradation of rhodamine B (RB) solution under visible- light irradiation.

2. Materials and Methods

2.1. Materials

Horseradish peroxidase (HRP) (RZ = 2.5, activity = 200 U/mg) was purchased from Shanghai
Guoyuan Biotechnology Co., Ltd. (Shanghai, China) and used without further purification.
Poly (ethylene oxide) (PEG) was obtained from Tianjin Guangfu Fine Chemical Research Institute
(Tianjin, China). Tertrabutyl titanate (TBOT) was purchased from Tianjin Kemiou Chemical Reagent
Co., Ltd. (Tianjin, China). Hydrogen peroxide (30%) was obtained from Luoyang Haohua Chemical
Reagent Co., Ltd. (Luoyang, China). All other chemicals employed in this work were obtained from
various commercial suppliers and were of the highest purity available.

2.2. Measurements

1H-NMR spectra were recorded on a Bruker DPX400 spectrometer (Bruker, Zurich, Switzerland).
Fourier-transform infrared (FT-IR) spectra were obtained on an Avatar 360 spectroscope (Bruker,
Ettlingen, Germany). Gel permeation chromatography (GPC) measurements were conducted with
a water 410 GPC (Waters, Milford, PA, USA) equipped with Waters styragel column (HT4 + HT3)
using THF as the eluent; the molecular weights were calibrated with polystyrene standards, and the
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flow rate was set at 1.0 mL/min at 35 ◦C. Dynamic light scattering (DLS) measurement was performed
using Nanotrac Wave II (Microtrac, Montgomeryville, PA, USA), and the scattering angle was fixed
at 180◦. The surface morphology of samples was analyzed on a JSM-7610F (JEOL, Tokyo, Japan)
scanning electron microscope (SEM), and the main elements were measured by energy-dispersive
X-ray spectrometry (EDS) (JEOL, Tokyo, Japan). The samples on the silicon wafers were mounted
rigidly to a copper specimen holder using a conductive adhesive. Transmission electron microscopy
(TEM) studies were performed on a JEM-2100 electron microscope (JOEL, Tokyo, Japan) operating at
an acceleration voltage of 100 kV. The nanoparticle solution was dropped on copper grids and dried at
room temperature. X-ray diffraction (XRD) was recorded on a D8 Advance X-ray diffractometer (Bruker,
Karlsruhe, Germany) with CuKα radiation. X-ray photoelectron spectroscopy (XPS) was performed
using a Thermo EscaLab 250Xi photoelectron spectrometer (Thermo Fisher Scientific, West Sussex,
UK). Electron paramagnetic resonance (EPR) spectra were recorded on a Bruker A300 spectrometer
(Bruker, Karlsruhe, Germany) at ambient temperature. UV–Vis absorption spectra were recorded using
a U4100 spectrophotometer (Hitachi, Shanghai, China).

Enzyme-catalyzed Polymerization of phenol

A typical run was as follows: phenol (0.47 g, 5.0 mmol) and PEG (0.22 g, 5.0 mmol of monomer unit)
were dissolved in 45 mL of water. Then, the enzyme solution of HRP (2.0 mg in 5 mL of water) was
added. To this solution, 3.4 mL of 5% hydrogen peroxide aqueous solution was added dropwise for 1 h.
The mixture was stirred at room temperature in air for 30 min. A brown emulsion of phenolic polymer
(PP) was obtained. For characterization, the as-prepared polymer was collected by centrifugation and
washed with water repeatedly, followed by drying in vacuum.

Preparation of the PP@TiO2 core–shell nanosphere

The PP@TiO2 core–shell nanospheres were prepared via a sol–gel and hydrothermal reaction. Typically,
25 µL of TBOT was firstly dissolved in 5 mL of ethanol (solution A). Then, a 1 mL emulsion of PP
was mixed with 10 mL of ethanol (solution B). Then, solution B was added to solution A and kept at
80 ◦C for 1 h with vigorous stirring. After centrifugation and drying, a yellow powdery product was
obtained. Then, 100 mg of powder was mixed with 20 mL of deionized water and transferred to a 100
mL Teflon autoclave. The mixture was heated to 180 ◦C, maintained for 8 h. The reactor was cooled
down to room temperature naturally. The resulting nanosphere was collected by centrifugation and
washed with ethanol and water repeatedly.

Photocatalytic measurement

The visible-light photocatalytic activity of the PP@TiO2 core–shell nanosphere was evaluated by
the degradation rate of rhodamine B (RB) with an initial concentration of 20 mg/L. In a typical
photodegradation experiment, 40 mL of RB solution and the sample photocatalyst containing 20 mg
of TiO2 were placed in a 50 mL breaker. Before irradiation, the suspension was magnetically stirred
in the dark for 2 h to reach the adsorption–desorption equilibrium between dye and photocatalyst.
The light source was a 300 W Xe lamp equipped with an ultraviolet cut-off filter (λ > 400). The average
visible-light intensity measured by the radiometer was 20 mW/cm2. In this experiment, a 20 mg/L
aqueous RB solution was mixed with 0.6 g/L photocatalyst powder. RB concentration was determined
using UV–Vis absorption at defined time intervals. For the purpose of comparison, P25, PP, and pure
TiO2 samples were also used to degrade RB.

3. Results

3.1. Characterizaion of PP

The enzyme-catalyzed polymerization of phenol in water is a typical precipitation polymerization.
During polymerization, the powdery polymer precipitates from solution [34]. Serving as the core
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material, PP is expected to exhibit stability in water and controlled size. Thus, the polymerization
was directly performed in water without solvents or buffer solution. We found that a homogeneous
emulsion was formed by controlling the molecular weight of PEG. Different molecular weights of PEG,
from 400 g/mol to 4000 g/mol, were used in the enzyme-catalyzed polymerization. The as-prepared
emulsions were kept for several weeks, and the emulsion prepared with PEG 2000 showed the
best stability. Thus, PEG 2000 was selected for the preparation of PP@TiO2 core–shell nanosphere.
The morphology and particle size distribution of PP were analyzed by SEM and DLS. The SEM image
is shown in Figure 1a. It was clear that PP particles presented a uniform spherical structure with a
smooth surface and a diameter of about 180 nm. The optical photograph of the PP emulsion was a
little brown and remained stable for several weeks (inset of Figure 1a). The size distribution curve
(Figure 1b) from DLS analysis demonstrates that the PP presented as uniformly dispersed particles
with size ranging from 120 nm to 250 nm, and the average size was 174 nm.
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To investigate the chemical structure of PP, the polymer was separated from the emulsion by
centrifugation. In the FT-IR spectrum (Figure 2a), a broad peak centered at 3400 cm−1 was ascribed
to the vibration of the phenolic O–H bond. The peaks at 1597, 1488, 833, 754, and 692 cm−1 were
characteristic of the various vibration modes of the C–H and C–C bonds of aromatic nuclei/rings.
The peak at 1096 cm−1 corresponded to the symmetric vibration of the ether bond. The strong peak
at 1209 cm−1 was due to the asymmetric stretching vibration of C–O–C and/or C–OH. The 1H-NMR
spectrum (Figure 2b) of PP was measured in DMSO-d6. The single peak at 3.3 ppm was attributed
to CH2CH2O, which means that some PEG still remained in the sample after washing with water.
The broad peak at 6.6–7.4 ppm was attributed to aromatic units. The broad resonance signal at
9.2–9.6 ppm was the signal of hydroxyl groups. These results indicated that the structure of the polymer
was composed of a mixture of phenylene and oxyphenylene (Ph/Ox) units. The ratio of Ph/Ox was
determined by titration of the hydroxyl groups in the polymer, and it was found to be 24/76. The data
of GPC showed that the number-average molecular weight was 1600 and the polymer dispersity index
was 7.27.
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3.2. Characterization of PP@TiO2 Core–Shell Nanosphere

The PP@TiO2 core–shell nanosphere was fabricated via the process shown in Scheme 1. After
the preparation of a PP emulsion, the sol–gel process was utilized to form the PP@TiO2 core–shell
nanosphere precursor. Then, the traditional hydrothermal treatment was selected to obtain crystalline
TiO2 and prevent the core of PP from being damaged at high temperature. The reactive system simply
included the core of PP and the shell of TiO2 without any additive or catalyst.
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Scheme 1. Illustration for the fabrication of the PP@TiO2 core–shell nanosphere.

To investigate the effect of the shell thickness on the photocatalyst activity, PP@TiO2 core–shell
nanospheres were prepared with different amounts of TBOT, i.e., 25 µL, 50 µL, 75 µL, and 100 µL.
Figure 3 presents SEM images of the four nanospheres. After the hydrothermal reaction, a rough layer
aggregated by the dense and uniform nanoparticles was formed on the surface of PP nanoparticles.
The size of the nanoparticles increased as increasing the amount of TiO2 precursor. With 25 µL of TBOT,
the size of the nanospheres was about 220 nm. When more TBOT was introduced into the nanosphere,
the size rapidly increased. A nanosphere with a diameter of 340 nm was observed corresponding to
50 µL of TBOT. The size of the nanospheres reached up to 650 nm diameter when 100 µL of TBOT was



Nanomaterials 2020, 10, 467 6 of 13

used. The mapping pattern of PP@TiO2-50 is shown in Figure 3e. The element of C corresponded to
PP, and the elements of O and Ti were due to TiO2. Therefore, it can be deduced that the nanospheres
were successfully constructed from TiO2 and PP.Nanomaterials 2020, 10, x FOR PEER REVIEW 6 of 13 
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TEM was further used to observe the structure of the nanospheres, as shown in Figure 4. In the
sample of PP@TiO2-25, a strong contrast between the dark edges and gray centers indicated the
core–shell structure of the nanosphere. The PP nanoparticles were covered by an aggregation of
TiO2 particles, and the thickness of the shell was about 30 nm. With the increase in TBOT amount,
the thickness of the shell apparently increased and the size of the core of PP greatly reduced.
The nanosphere prepared with 50 µL of TBOT showed a shell thickness of about 80 nm and a core
diameter of about 150 nm. The shell thickness of the nanosphere prepared with 75 µL of TBOT was
about 200 nm, and the core diameter was below 120 nm. With 100 µL of TBOT, the size of the core
reduced to 50 nm with a shell of 280 nm. The results indicated that TBOT permeated into the core
region when the amount of TBOT was high.
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The X-ray diffraction (XRD) total pattern in Figure 5 was used to study the microstructure of
the PP@TiO2 nanospheres. The typical X-ray diffraction spectrum of amorphous polymer is shown
at 2θ = 20◦. The XRD patterns of the PP@TiO2 nanospheres showed apparent diffraction peaks at
the 2θ values of 24.9◦, 37.5◦, 47.5◦, 54.1◦, and 62.4◦ that were indexed to the (101), (004), (200), (105),
(211), and (204) planes, matching well with the anatase TiO2 JCPDS card (no. 21-1272) [40]. A pure
TiO2 sample was prepared via the same sol–gel and hydrothermal process as PP@TiO2. Comparing
the diffraction peak of PP@TiO2-25 to pure TiO2, it was obvious that the peaks became narrow and
the intensities increased. This indicates that PP can improve the crystallinity of TiO2, which is very
beneficial for an improvement in the catalytic activity. However, the effect was gradually weakened
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when the TBOT amount increased. As the TBOT amount was increased to 100 µL, the pattern resembled
that of pure TiO2.Nanomaterials 2020, 10, x FOR PEER REVIEW 7 of 13 
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Figure 5. XRD spectra of PP, TiO2, and PP@TiO2 nanospheres.

More detailed information regarding the chemical structure of the PP@TiO2 nanospheres was
obtained through characterization by FT-IR, XPS, and EPR. Figure 6a shows the FT-IR spectra of the
pure TiO2 and PP@TiO2 samples before and after the hydrothermal reaction. For pure TiO2, the peaks
at 3422 cm−1 and 1630 cm−1 corresponded to the stretching and bending vibration of OH bonds, which
resulted from the physically absorbed water and surface hydroxyl groups. Compared with pure TiO2,
the PP@TiO2 particle before hydrothermal reaction provided the characteristic peaks of PP and TiO2,
which indicated that the nanospheres were composed of PP and TiO2. After the hydrothermal reaction,
the peak at 1632 cm−1 strengthened due to the intramolecular hydrogen bonding between PP and
TiO2, and a new band at 1210 cm−1 indicated the formation of new bonds. Some research reported
the formation of covalent C–O–Ti bonds between polymers with hydroxyls and TiO2 [41,42]. Thus,
the stronger peak suggested that PP had a covalent contact with TiO2. The result was confirmed by XPS.
The high-resolution C 1s XPS spectrum and the fitting curves are shown in Figure 6b. The major peak
with a binding energy of 284.5 eV was attributed to the C–C and C–H bonds of PP. The peak at 285.6
eV was ascribed to the C–O–Ti bond. The broad peak centered at 288.4 eV was attributed to the –C=O
bond, while the peaks around 292.3 eV belonged to π–π* bonds. The Ti 2p peaks at 485.4 eV and 464.1
eV in Figure 6c were attributed to the Ti 2p1/2 and Ti 2p3/2 spin orbit splitting, while the peaks at 460.0
eV were ascribed to the C–O–Ti bond [9]. The O 1s spectrum in Figure 6d displays two peaks at 529.7
eV and 532.2 eV, which corresponded to the Ti–O–Ti and C–O–Ti bonds, respectively [43]. Figure 6e
demonstrates two bonds located at the binding energies of the EPR spectrum of the PP@TiO2 core–shell
nanosphere, which was measured to confirm the unpaired electrons in this core–shell structure which
play an important role in photocatalysis. As shown in Figure 6c, the lines for the pure TiO2 and PP
presented a negligible signal peak, while PP@TiO2 showed a very strong EPR signal centered on the
magnetic field strength of 580 G. The result indicated the formation of π-conjugated structures on the
interface of the TiO2 shell, which were attributed to the delocalized π–π* electrons formed in the PP
core (the inset in Figure 6c).
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Figure 6. (a) Fourier-transform infrared (FT-IR) spectra of pure TiO2 and PP@TiO2; X-ray photoelectron
spectroscopy (XPS) spectra of (b) C 1s, (c) Ti 2p, and (d) O 1s; (e) electron paramagnetic resonance (EPR)
spectrum of PP@TiO2 nanosphere.

3.3. Photocatalytic Efficiency

The optical absorption of PP@TiO2 nanospheres was characterized by UV–visible spectra, as shown
in Figure 7a. PP had a broad absorbance from 400 nm to 800 nm. Meanwhile, pure TiO2 showed a
narrow absorption edge located at 389 nm with a band gap of 3.19 eV, which is consistent with the
intrinsic bandgap absorption of anatase TiO2. When PP was composed with TiO2, it was obvious
that all the samples extended their absorbance edges to the visible-light region, and the TiO2 amount
significantly affected the optical property of visible-light absorption. PP@TiO2-25 had the strongest and
longest absorbance edge of 520 nm, corresponding to a band gap of 2.38 eV. The curve of PP@TiO2-25
was similar to that of PP from 400 nm to 800 nm. This indicated that the shell of PP@TiO2-25 had no
apparent hindrance of the visible-light absorption of PP. However, the absorbance of visible light of
PP@TiO2 nanospheres gradually decreased with increased amount of TiO2. The absorbance edge of
PP@TiO2-100 reduced to 400 nm, and its band gap rebounded to 3.1 eV. This result demonstrated that
the TiO2 shell blocked the visible-light absorption of the nanosphere when the thickness exceeded
some threshold value. The obvious decrease in the bandgap of PP@TiO2 may be attributed to the
chemical bonding between TiO2 and PP with the formation of C–O–Ti bonds. The narrow band gap
and long absorbance edge were beneficial for improving the visible-light photocatalytic efficiency.
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To evaluate the photocatalytic efficiency of the as-prepared core–shell nanospheres,
the photocatalytic degradation of RB aqueous solution under visible-light irradiation (λ > 400 nm)
was investigated. All samples were suspended in the treated RB solution and stirred for 120 min
without light to achieve the adsorption–desorption equilibrium. The normalized concentration (C/C0)
of RB is shown in Figure 7b. C0 denotes the initial RB concentration of 20 mg/L. As PP was used as
the photocatalyst, the concentration of RB was unchanged, suggesting that PP had no visible-light
photocatalytic activity. Pure TiO2 had the similar effect to the commercial TiO2 material P25. Their
degradation rates reached 50% after 4 h of visible-light irradiation. Compared to pure TiO2 and P25,
all samples of PP@TiO2 nanospheres showed apparent adsorption of RB in the dark. The concentration
of RB with PP@TiO2-25 decreased the most in comparison with the others. According to those results
of SEM and TEM analysis, PP@TiO2-25 had the toughest surface and largest PP core, which endowed it
with high adsorption capacity. After stirring for 120 min in the dark, there was 36%, 71%, 75%, and 82%
RB remaining in the PP@TiO2-25, PP@TiO2-50, PP@TiO2-75, and PP@TiO2-100 samples, respectively.
In spite of the absorption occurring in the first 30 min, the dark reaction lasted 120 min in order to
eliminate the effect of absorption on the photodegradation. Under visible- light irradiation, all PP@TiO2

nanospheres were photocatalytically active. The removal yield presented great dependence on the
amount of TiO2. PP@TiO2-25 obtained the best yield of 95% after 4 h of irradiation. Upon increasing
the amount of TiO2, the removal yield gradually reduced. The removal yield of PP@TiO2-100 decreased
to 63%.

The removal of RB clearly included adsorption and photodegradation. Removing the effect of
adsorption during the darkness aspect, the Langmuir–Hinshelwood model was used to investigate the
photocatalytic efficiency of PP@TiO2 nanospheres. The RB removal on these materials followed the
pseudo-first order kinetic model shown in Figure 7c. The photocatalytic reaction can be interpreted by
ln(C/C0) = −kt where k is the apparent rate constant with respect to the irradiation time t, and C and C0
are the concentrations of RB at t and t = 0 (time of irradiation), respectively [44,45]. The photocatalytic
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rate constant k of PP, P25, pure TiO2, and the samples PP@TiO2-25, -50, -75, and -100 were 0.12, 2.26,
2.46, 3.35, 3.10, 2.63, and 2.62 × 10−3 min−1, respectively. It was found that all core–shell nanospheres
had a higher rate constant k than pure TiO2, especially PP@TiO2-25, with a thin TiO2 shell of 30 nm,
which obtained the highest photocatalytic efficiency. This result can be attributed to the formation of
the effective interface between the PP core and TiO2 shell in favor of efficient charge carrier separation.

To estimate the stability of the as-prepared photocatalyst, a five-cycle recycling experiment of
PP@TiO2-25 was performed under visible-light irradiation, as shown in Figure 7d. The removal
efficiency of RB on PP@TiO2-25 was 95.5% in the first cycle, followed by 96.7%, 95.4%, 94.5%, and
97.8% for the last four cycles. Thus, the photocatalyst did not exhibit any loss in removal activity in
five cycles. This indicated that the PP@TiO2 nanosphere exhibited good cycle stability under visible-
light irradiation.

On the basis of the above discussion, the fabrication of core–shell structured PP@TiO2 nanospheres
enhanced the photocatalytic efficiency of TiO2 under visible-light irradiation. The mechanism of the
electron transfer process between PP and TiO2 in the core–shell nanosphere is illustrated in Scheme 2.
As the PP polymer is composed of phenylene and oxyphenylene units, there are a great number of
hydroxyl and aromatic nuclei/rings on the surface of PP particles. During the hydrothermal process,
the hydroxyl groups on the surface of the PP react with the hydroxyl groups of TiO2 to form C–O–Ti
bonds. For TiO2, under visible-light irradiation, most of the photo-excited electrons and holes tend to
rapidly recombine, and only a small number of them participate in the photocatalytic reaction, which
results in a relatively low photocatalytic activity. On the other hand, for the core–shell-structured
PP@TiO2 nanospheres with a thin TiO2 shell, the surface of the PP nanoparticles is covered by TiO2,
which leads to the formation of a Z-scheme photocatalytic system between TiO2 and PP [46,47]. Under
visible-light irradiation, the photo-generated holes tend to keep on the valence band (VB) of TiO2, while
the electrons transfer to the VB of PP from the conduction band (CB) of TiO2 through the interfacial
pathway of C–O–Ti bonds. The electrons in the VB of PP are further excited to its CB. This results in an
efficient space separation of the photo-induced charge carriers. Then, the electrons stored in the CB of
PP are trapped by O2 near the surface of PP, forming reactive superoxide radical ions O2

−, while the
holes in the VB of TiO2 react with adsorbed water molecules near the surface of TiO2, forming hydroxyl
radicals ·OH. The subsequent oxidative and reductive reactions lead to the degradation of RB.
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Scheme 2. Photocatalytic mechanism of core–shell PP@TiO2 nanosphere.

4. Conclusions

A novel polymer@TiO2 nanosphere, PP@TiO2, was prepared via the sol–gel method. Firstly,
a stable PP emulsion was prepared through the enzyme-catalyzed polymerization of phenol in water
in the presence of PEG. After the sol–gel and hydrothermal process, the core of PP was connected
with the shell of TiO2 via C–O–Ti covalent bonds. The removal of RB under visible-light radiation
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showed that the photocatalytic efficiency of PP@TiO2 nanospheres is much better than that of pure
TiO2 and commercial P25. The removal rate of RB increased upon decreasing the amount of TiO2.
For PP@TiO2-25, with the lowest amount of TiO2, the removal rate of RB reached 95% within 240 min.
Furthermore, the novel core–shell TiO2 nanosphere was shown to have good recycling properties.
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