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Predictive modeling of battery degradation and
greenhouse gas emissions from U.S. state-level
electric vehicle operation
Fan Yang1, Yuanyuan Xie2, Yelin Deng3 & Chris Yuan 1

Electric vehicles (EVs) are widely promoted as clean alternatives to conventional vehicles for

reducing greenhouse gas (GHG) emissions from ground transportation. However, the battery

undergoes a sophisticated degradation process during EV operations and its effects on EV

energy consumption and GHG emissions are unknown. Here we show on a typical 24 kWh

lithium-manganese-oxide–graphite battery pack that the degradation of EV battery can be

mathematically modeled to predict battery life and to study its effects on energy con-

sumption and GHG emissions from EV operations. We found that under US state-level

average driving conditions, the battery life is ranging between 5.2 years in Florida and 13.3

years in Alaska under 30% battery degradation limit. The battery degradation will cause a

11.5–16.2% increase in energy consumption and GHG emissions per km driven at 30%

capacity loss. This study provides a robust analytical approach and results for supporting

policy making in prioritizing EV deployment in the U.S.
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The fossil fuel combustion in transportation sector generates
25.8% of total greenhouse gases (GHG) emissions in the
U.S.1 To mitigate the impacts of ground transportation on

climate change, the US Environmental Protection Agency along
with the US National Highway Traffic Safety Administration has
set a regulatory standard to reduce the average GHG emissions of
US fleet passenger cars from 139.8 g km−1 in 2016 base level to
88.8 g km−1 in 20252.

Electric vehicles (EVs) are widely promoted as clean alter-
natives to conventional vehicles for reducing GHG emissions
from ground transportation. The US federal and many state
governments are providing a variety of financial and operating
incentives including tax credit, fast lane access, emission test
exemption, etc., to promote EV adoption3, 4. It is expected that
EVs will share 24% of US light-vehicle fleet in 20305.

Current EVs are predominantly powered by lithium ion bat-
teries which undergo a complex degradation process during
actual EV operation, dictating the energy storage and generating
indirect GHG emissions from the consumed electricity.
The electricity consumption and associated GHG emissions from
EV operations are determined by EV operating conditions and
battery charging/discharging processes. In recent years,
some research has been conducted on investigating such
operating factors as travel demand6, 7, electricity mix8–10,
operating pattern10, 11, and ambient temperature12, 13 on
electricity consumption and GHG emissions from EV operation,
while no study has been conducted considering the
battery degradation under EV actual driving conditions in the
analyses of the electricity consumption and GHG emissions.
In current studies on energy and GHG analysis, the EV
batteries are simply assumed to have the same lifetime as the
vehicles6–13, or consider battery replacement at certain cut-off
mileage14, 15. But in actual EV operation, battery degradation
is gradually happening along time under specific driving condi-
tions, and the battery degradation affects the EV electricity con-
sumption and GHG emissions in three ways: decreasing
driving range due to reduced capacity, decreasing charging/dis-
charging efficiency due to increasing resistance, requiring battery
replacement when the capacity is dropped to the battery degra-
dation limit16.

In general, EV battery degradation undergoes two processes:
one is the cycling capacity loss due to the internal solid-electrolyte
interphase (SEI) layer growth, structure degradation of the elec-
trodes and cyclable lithium loss during the battery charging/dis-
charging process, as mainly dictated by the number of battery
charging/discharging cycles; the other is the calendar capacity loss
due to battery self-discharge and side reactions during energy
storage period, as mainly determined by the state of charge, aging
time, and ambient temperature, particularly the high tempera-
tures to which the battery is exposed16–18. Due to the largely
different operating conditions across the U.S., the EV battery
degradation, electricity consumptions, and GHG emissions in
each state are largely different.

A predictive analysis of the battery degradation and its effects
on energy consumption and GHG emissions from US state-level
EV operation is currently unavailable. Here we report a com-
prehensive and robust analytical approach for quantifying the
battery degradation and its effects on energy consumptions and
GHG emissions from a mid-size all-battery EV under the average
driving conditions in each state of US. From this study, we found
that the EV battery degradation is largely different from year to
year in each US state. For the annual battery degradation, the
calendar capacity loss contributes more to the total capacity loss
than the cycling capacity loss. The battery degradation can largely
increase the energy consumption and GHG emissions of EV per
km driven. These findings from this study can be useful in

supporting strategy planning and policy making on sustainable
EV deployment across the U.S. in future.

Results
Electric vehicle battery degradation under actual operation.
The lithium ion battery analyzed in this study is the lithium-
manganese oxide (LMO)–graphite battery which is commonly
used in EVs, such as Nissan Leaf and Chevrolet Volt. Based on
current practice, the average battery cell voltage in this study is set
at 3.7 V and each cell operates between 3.4 and 4.1 V. The battery
pack consists of 192 battery cells and has an initial 24.15 kWh
capacity with 76.7% accessible19. A forced convective air cooling
condition is simulated (h= 25Wm−2 K−1, fitted from the
experimental data of the forced convective air-cooling
system20, 21) for the battery pack cooling in EV operation. To
represent the fresh cell status on a new EV, the initial State of
Charge of the battery LMO cathode and graphite anode are set at
0.99 and 0.01, respectively.

Here we developed a comprehensive battery degradation model
for the LMO–graphite battery, integrating both the cycling and
calendar capacity loss under average driving conditions for a
battery EV in each US State for analyses of electricity
consumption and GHG emissions (see Methods for details).
We developed the cycling capacity loss model based on our
previous multi-physics electrochemical model integrating the
porous electrode theory, transport phenomena, SEI layer
formation, and chemical/electrochemical kinetics22, 23. We
calculated the calendar capacity loss using a modified
Arrhenius-form empirical equation which was established from
experimental data correlation and in our analysis is modified to
correlate from the hourly timescale16, 17. The developed models
are validated with actual data reported in literature24.

In this study, the battery cycling capacity loss and calendar
capacity loss are first calculated separately for the EV under the
average driving conditions in each US state, using a
monthly–hourly timescale of ambient temperature and separated
travel demands for local and highway driving conditions,
respectively. The calculated cycling capacity loss and calendar
capacity loss are then combined to obtain the annual capacity loss
in each state. In the calculation, the driving factors for battery
degradation include the annual charging/discharging cycle
number which is dependent on the annual travel demand and
the driving range of EVs, variations of discharging rates relative
to the power outputs required from the battery pack under
different driving speeds of EV, as well as the varying temperatures
to which the battery is exposed all year round which affects the
battery internal kinetics and battery efficiency significantly.

The monthly–hourly travel demands of vehicles in the U.S. are
calculated based on the monthly traffic volume data of all
registered vehicles in each state, the statistical hourly travel
frequency of all surveyed vehicles in a day, and the driving
pattern on the percentage of highway vs. local driving in each
state (Supplementary Data 3–4). As current EVs are not able to
cover the same travel demand as conventional vehicles, in this
analysis the travel demand of EVs in each state is proportioned
based on the ratio of the vehicle-travel-miles within the driving
range of the EVs to the total vehicle-travel-miles. The initial ratio
is determined at 71.6% in Alaska to 76.8% in Hawaii, falling
between 70.7% and 75.1% in the second year and thereafter
corresponding to the battery capacity fading (Supplementary
Data 2). The value of the ratio is obtained based on the statistical
data compiled by US Federal Highway Administration (FHA)25.

The driving ranges of a mid-sized EV with a 24 kWh
LMO–graphite battery, as reported from 2013 Nissan Leaf on
their actual driving in the U.S., are ranging between 64 and 193
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km under different driving patterns and temperatures (Fig. 1b),
which significantly affect the battery cycling capacity loss
and associated GHG emissions during EV driving based on the
largely different GHG emission factors (CO2,eq kWh−1) across
the U.S. Figure 1 shows the state-level annual travel demand
(Fig. 1a), the temperature-dependent driving range of the
EV (Fig. 1b), and the monthly–hourly temperature (Fig. 1c) of
each US state.

To calculate the cycling capacity loss, the EVs are assumed to
cover all those travel demands within the EVs’ actual driving
range in each state, based on the statistically compiled vehicle-
travel-miles of functional systems in each state25. In this analysis,
the battery charging/discharging cycle numbers are calculated
separately for local and highway driving first, and are then
combined based on the driving pattern of the EV in each state of
U.S. The cycle numbers are calculated using the proportioned
local and highway travel demands of EVs divided by their
corresponding driving ranges under the specific ambient
temperature in each state.

The EV driving ranges under the monthly–hourly ambient
temperatures are modeled and calculated based on the measured
data by Argonne National Lab for highway and local driving of
2013 Nissan Leaf with a 24 kWh LMO–graphite battery pack
(Fig. 1b)26. The EV driving range at 22 °C is 178 and 149 km for
local and highway driving, respectively, which can drop by 57%
and 40% when ambient temperature goes down to −18 °C,
and can drop by 27% and 10% when the temperature goes up to
35 °C26. Based on the actual practice, the battery charging current

density is set at 0.25 C in this analysis. The real-time discharging
rates of the battery pack are determined from the required power
outputs of Nissan Leaf, as measured by Argonne National Lab at
various driving speeds26 and correlated to the typical highway
fuel economy test (HWFET) for highway driving and the urban
dynamometer driving schedule (UDDS) for local city driving27

under different ambient temperatures.
As calculated, the annual cycling capacity losses are between

0.4% in Hawaii and 1.2% in Mississippi in first year, and slightly
going up to a range between 0.7% and 1.9% thereafter
(Supplementary Data 15). The annual calendar capacity losses
for the battery are calculated based on the monthly–hourly
temperature in each state and the aging time during the EV
battery life, ranging between 4.4% in Alaska and 9.6% in Hawaii
in first year, and falling down to a range between 1.0% and 2.2%
thereafter (Supplementary Data 16). The cycling capacity loss is
dictated by the annual travel demand, with Alaska the smallest at
9399 km and Mississippi the largest at 29,871 km, while the
calendar capacity loss is mainly governed by the ambient
temperature, with Alaska the lowest average at −2.7 °C and
Hawaii the highest average at 24 °C all year round.

The annual battery capacity losses, combining both cycling and
calendar capacity loss each year under the actual driving
conditions for each state during the first 5 years, are presented
in Fig. 2. The battery capacity losses of EVs in each state are
different from year to year. The total capacity loss in first year is
larger than those in the following years mainly because of the
exponential nature of calendar capacity loss resulting from the
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Fig. 1 Average state-level operating conditions and initial driving ranges for electric vehicles in the US. a Annual travel demand of each state ranging from
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range equations are shown in Eqs. (3) and (4) in Methods section. c Monthly–hourly average temperature in each US state during 1981–2010 period,
ranging between −15 and 35 °C39
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formation of SEI layer and the reduction of cyclable lithium ion
concentrations in the first year of battery operation16–18. As
calculated, the 1st year total capacity loss of the battery is between
4.9% in Alaska and 10.1% in Hawaii. From the 2nd year, the
cycling capacity loss takes an increasing share in the total capacity
loss because the calendar capacity loss is decreasing while the
cycling capacity loss is relatively stable. As the EV battery
degradation limit is currently agreed upon 30%28, 29, the EV

battery life is calculated ranging between 5.2 years in Florida and
13.3 years in Alaska under current EV driving conditions in each
state (Supplementary Figure 3). One battery replacement will be
needed for the EV operation in most states, except Alaska and
Montana in which a single battery pack can power the EV during
the designed 10-year service life.

To validate the developed models and results, the calculated
capacity loss values are benchmarked with the measured data on

100%
a b

dc

e

AK

AK

MT

MT

SD

SD

SD

GA

GA

MTSD
GA

LA

LA

TX

TX

HI

HI

FL

FL

ND

ND

IA

IA

TX

HI FL

LA
NDIA

AK
MT
SD
GA
LA TX

HI
FL
ND
IA

130%

125%

120%

115%

110%

105%

100%

0.24

0.22

0.2

0.18

0.16

0.14

0.12

0.1

0.24

2.0E + 04

300

200

100

–100

–200

–300

–400

–500

–600

–700

–800

01.6E + 04

1.2E + 04

8.0E + 03

4.0E + 03

0.0E + 00

0.22

U
ni

t e
ne

rg
y 

co
ns

um
pt

io
n,

 lo
ca

l d
riv

in
g

(k
W

h/
km

)

U
ni

t e
ne

rg
y 

co
ns

um
pt

io
n,

 h
ig

hw
ay

(k
W

h/
km

)
U

ni
t e

ne
rg

y 
in

cr
ea

se

C
ha

rg
in

g–
D

is
ch

ar
gi

ng
 e

ffi
ci

en
cy

0.2

0.18

0.16

0.14

0.12

0.1
0 20,000 40,000 60,000

GHG emissions from a mid-size EV battery

To
ta

l G
H

G
 e

m
is

si
on

s 
(k

g 
C

O
2 

eq
.)

U
ni

t G
H

G
 e

m
is

si
on

s 
(g

 C
O

2 
eq

./k
m

)

80,000

Year 1
Year 5
Year 9
Year 13

Year 2
Year 6
Year 10
Year 14

Year 3
Year 7
Year 11

Year 4
Year 8
Year 12

GHG emissions per km

0 20,000 40,000 60,000 80,000 100,000

Total driving distance (km) Total driving distance (km)

95%

90%

85%

80%

75%
0 1 2 3 4 5 6 7

Year

8 9 10 11 1312 14 0 1 2 3 4 5 6 7

Year

8 9 10 11 1312 14

A
L

A
K

A
R

C
A

C
T

D
E F
L

G
A H
I

IA ID IL K
Y LA M
A

M
D

M
E M
I

M
N

M
O

M
S

M
T

N
C

N
D

N
E

N
H

N
M N
V

N
Y

O
H

O
K

O
R PA S
C

S
D

T
N T
X

U
T

V
A

V
T

W
A W
I

W
V

W
YR
I

N
JIN K
S

C
OA
Z

MS

HI

MN ND
ME

FL

AK

HI

VT

LA
AL Avg.

VT
Avg. TX

FLLA

MS

ND ME
MN

AK

AK

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04826-0 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:2429 | DOI: 10.1038/s41467-018-04826-0 |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Nissan Leaf for both the calendar capacity loss and total capacity
loss, respectively. As shown in Supplementary Table 3, our
calculated results for the battery calendar loss after 5 years match
the published battery calendar loss very well in Minneapolis,
Houston and Phoenix, as reported by National Renewable Energy
Laboratory30, only with 0.9–1.4% difference. The total capacity
loss data as calculated in our study is validated with the actually
collected “Plug in America Survey Data” on Nissan Leaf operating
under three average high temperatures24 (Supplementary Fig-
ure 2). The actually reported Nissan Leaf capacity loss data and
our calculated total capacity loss values match reasonably well,
with the maximum deviations only between 2.9–6.2%, which
could be attributed to the differences of battery performance
between the averaged and actual operating conditions of the EV,
including travel demand, ambient temperature, driving pattern,
and travel frequency.

Energy consumption and GHG emissions. The battery capacity
loss determines battery life and correspondingly affects the energy
consumption of battery pack during electric vehicle driving,
which dictates the amount of GHG emissions with state-level
variations. In this study, the amount of EV energy consumption is
calculated as the amount of electricity drawn from the wall
charger for powering the EV to meet the annual travel demand
under the average driving conditions in each US state based on
the driving range model established on the basis of experimental
data from Argonne National Lab26 and Fleetcarma31 (Fig. 1b).
The amount of electricity consumption is calculated with Eq. (7),
which considers: actual amount of energy stored in the battery
after the annual capacity loss, energy loss on the battery resistance
during charging and discharging process, and energy loss from
the charger & EV Supply Equipment (EVSE). In this analysis, the
charger and EVSE efficiency is set at 85.3% based on Argonne
testing data19. The battery charging and discharging efficiency,
resulting from the battery degradation due to the increasing
battery resistance32, is calculated using the battery resistance
models published in ref. 33. The calculated initial
charging–discharging efficiency of the EV battery is 98% which
decreases at different rates annually in different states. The
charging–discharging efficiency drops to 80% in Hawaii in 5th
year and 79% in Maine in 9th year (Fig. 3a, Supplementary
Data 8).

The battery degradation affects the energy consumption and
GHG emissions from EV operations significantly. The unit
energy consumption is different from state to state because of the
different driving conditions, and is increasing from year to year
in each state due to the battery degradation (Fig. 3b). In this
analysis, the unit energy consumptions of the EV during highway
and local driving are separately calculated (Fig. 3c, d), and
then combined together based on the driving pattern of the
vehicle in each state. As calculated, the initial energy

consumption of the EV operation is ranging between 120.3
kWh km−1 in Hawaii and 176.5 kWh km−1 in Alaska, corre-
sponding to 80.7 and 87.2 g km−1 CO2,eq emissions, based on the
GHG emission factors determined by the electricity fuel mix and
the imports of electricity in each state using the model from ref.
34. At 30% capacity loss, the energy consumption will be
increased to 150.2 kWh km−1 in Hawaii and 214.8 kWh km−1 in
Alaska, corresponding to 100.8 and 106.2 g km−1 CO2,eq

emissions. In general, the energy consumption and GHG
emissions from EV operations in the U.S. are increasing by
11.5–16.2% at the recommended 30% battery degradation limit
(Supplementary Data 18 and 19). If the EV continues to operate
after 30% capacity loss, the energy consumptions and GHG
emissions will be largely increased, for instance, by 28% in
Mississippi after 10 years driving.

To support strategy planning and policy making on sustainable
deployment of EVs, the averaged unit GHG emissions over a
single battery life (within 30% capacity loss) and the annual total
GHG emissions from the EV driven in each US state are provided
in Fig. 3e. On average, the unit GHG emissions from the EV
range from 0.6 g km−1 in Vermont to 167.1 g km−1 in Wyoming,
while the annual total GHG emissions are between 8.5 kg in
Vermont and 2570.9 kg in Indiana.

Discussion
In this paper, we report a comprehensive analytical approach for
determining battery degradation and its effects on energy con-
sumption and GHG emissions from a mid-size battery EV under
the average driving conditions in each state of U.S., using a novel
battery degradation model validated with measured data on a
24 kWh LMO–graphite battery pack, to support strategy planning
and policy making for sustainable EV deployment in the U.S. It is
found that the battery life in each state is quite different
under current EV driving conditions, ranging from 5.2 years in
Florida to 13.3 years in Alaska. The annual battery degradation of
EVs is mainly dependent on the annual travel demand and the
ambient high temperature the battery is exposed to. In general,
those states with a high annual travel demand above 18,000 km
and a high ambient temperature above 28 °C in summer
have more severe capacity losses. The temperature-induced
calendar loss is dominating the battery degradation, particularly
in first year.

The battery degradation causes gradual increasing of battery
internal resistance and decreasing of battery charging/discharging
efficiency, which results in increasing of unit energy consumption
and GHG emissions during EV operations. The energy con-
sumption and GHG emissions can be increased by 11.5–16.2% at
the recommended 30% degradation limit for battery replacement,
and up to 28% after 10 years driving in the U.S. As EVs are widely
promoted as clean alternatives to replace conventional vehicles to
reduce GHG emissions from ground transportation sector, the

Fig. 3 Energy consumption and greenhouse gas emissions from a mid-size electric vehicle battery. a Top five and bottom five states on the decreasing rate
of battery charging–discharging efficiency, ranging from 98 to 77% during the battery life. b Top five and bottom five states on the increasing rate of unit
energy consumption, ranging from 100 to 127% upon 30% capacity loss. c Top five and bottom five states on unit energy consumption of local driving,
ranging between 140 kWh km−1 in Hawaii and 207 kWh km−1 in Alaska. d Top five and bottom five states on energy consumption per km highway driving,
ranging between 154 kWh km−1 in Hawaii and 205 kWh km−1 in Alaska. e Unit GHG emissions per km driven and annual total GHG emissions from EV
operations in each state, with the unit GHG emissions ranging between 0.6 g CO2,eq km−1 in Vermont and 167 g CO2,eq km−1 in Wyoming, and the annual
total GHG emissions ranging between 8.5 kg in Vermont and 2570.9 kg in Indiana. AL: Alabama, AK: Alaska, AZ: Arizona, AR: Arkansas, CA: California,
CO: Colorado, CT: Connecticut, DE: Delaware, FL: Florida, GA: Georgia, HI: Hawaii, ID: Idaho, IL: Illinois, IN: Indiana, IA: Iowa, KS: Kansas, KY: Kentucky, LA:
Louisiana, ME: Maine, MD: Maryland, MA: Massachusetts, MI: Michigan, MN: Minnesota, MS: Mississippi, MO: Missouri, MT: Montana, NE: Nebraska,
NV: Nevada, NH: New Hampshire, NJ: New Jersey, NM: New Mexico, NY: New York, NC: North Carolina, ND: North Dakota, OH: Ohio, OK: Oklahoma, OR:
Oregon, PA: Pennsylvania, RI: Rhode Island, SC: South Carolina, SD: South Dakota, TN: Tennessee, TX: Texas, UT: Utah, VT: Vermont, VA: Virginia, WA:
Washington, WV: West Virginia, WI: Wisconsin, WY: Wyoming
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increasing of energy consumption and GHG emissions from
battery degradation needs to be considered in the strategy plan-
ning and policy making on EV incentives and promotions. Those
states with large GHG emission reductions should be provided
with enhanced incentives for promoting more EV deployment,
while those states with small or no GHG emission reductions
should be provided with less or no incentives for EV deployment.
Besides, the battery degradation will also lead to required battery
replacement, which will add 88.9 GJ equivalent of energy and
5760 kg CO2,eq GHG emissions (Supplementary Figures 4, 5)
based on a cradle-to-gate analysis of a 24 kWh LMO–graphite
battery pack35–37.

A sensitivity analysis is performed on the following four fac-
tors: travel demand, electricity fuel mix, battery degradation
limit for replacement, and battery capacity accessible ratio
(Supplementary Figure 6). The sensitivity analysis reveals that
unit GHG emissions per battery are insensitive to annual
travel demand and battery capacity accessible ratio. The
increasing of annual travel demand from 80 to 120% and battery
capacity accessible ratio from 60 to 80% cause only 1% fluctua-
tions in all the states. The increase of battery accessible ratio from
60 to 80% can change the GHG emissions from 97 to 103% of the
baseline scenario. On the other hand, reducing the
electricity GHG emission factors by adopting clean electricity
generation technologies could decrease the unit GHG emissions
proportionally.

These results provide fundamental insights how the battery
degradation affects the energy consumption and GHG emissions
from electric vehicles in different states, adding to the regularities
that have previously been identified that the energy use and
environmental performance of electric vehicles have significantly
regional variability. The modeling approach and results in this
paper could be applied by the EV battery designers to evaluate
and improve the EV battery performance under different
operation conditions by optimizing such battery parameters as
total battery capacity, accessible ratio of capacity, rate and depth
of charge and discharge, etc. Furthermore, the EV battery
manufacturers can apply vehicle-specific strategies and technol-
ogies to extend the battery life and improve the vehicle perfor-
mance. For instance, the battery life can be largely extended if a
temperature control system can be applied during the non-
operating period of EV, particularly where the ambient tem-
perature is above 28 °C, in such states as Hawaii and Florida.
Moreover, the study can enhance the technical services of EV
battery manufacturers in such aspects as optimizing the sche-
duling of battery replacement, inventory planning and control of
the battery supply, by providing the accurate degradation data
from actual EV operations. From policy perspective, this study
provides an accurate modeling approach and results on the
battery life, energy consumption and GHG emissions from EVs
in each state of U.S., which can be directly used in the US
national statistics of energy consumption and GHG emissions
from transportation sector. These data and results could be used
to support policy making in the electric vehicle incentives to
reduce the energy consumption and GHG emissions from the
transportation sector more efficiently with specific electric
vehicle technologies and the varying state-level operation
conditions.

It must be noted that this study is limited to an EV with a 24
kWh LMO–graphite battery pack. Different sizes and chemis-
tries of the battery pack may affect the final results of the study,
which could be investigated in future using a modified version of
this modeling approach. Also, this study is conducted based on
the average state-level data of U.S. Although the uncertainty
analysis and the sensitivity analysis investigated the viability of
this study to some degree, the possible impacts due to extreme

conditions could be significant and needs to be investigated in
more details in future. Besides, some assumptions made in this
study may also affect the final results. In this study, the driving
pattern of the EV on the highway and local operations are
modeled based on the US EPA’s HWFET and UDDS driving
data. As the driving speeds dictate the discharging profile of
battery pack during EV operations, a fast-changing driving
pattern could induce more degradations in the battery pack and
cause more energy consumption and GHG emissions from the
EV on a unit driving distance. The GHG emission factor of
marginal electricity mix can also vary at different charging time
which needs to be taken into accounts in future studies. The
advancement of battery and vehicle technologies may affect the
results of the study as well. The increasing of energy density and
power density of the battery pack will reduce the energy con-
sumption and GHG emissions from the EV on a unit driving
distance. A more-efficient electrified powertrain system will also
reduce the unit energy consumption and GHG emissions from
the EV. However, fast-charging technologies could induce extra
degradation in the battery pack which will increase the unit
energy consumption and GHG emissions from the EV if being
used on a regular basis.

Methods
State-level travel demand of EV in the US. The annual travel demand is the
mileage traveled per vehicle in a year. To obtain the EV annual travel demand, we
proportioned the traditional vehicle annual travel distance and driving patterns in
each state to simulate EV driving in the U.S. These data can be referred to the
Highway Statistics Series published by FHA25 and have been listed in Supple-
mentary Data 1. In this study, our research target is mid-size EVs, thus we
introduce an EV travel demand ratio (nr) to cover those travels within the driving
range of EV battery pack: nr ¼ mr=Mr , where mr stands for the sum of mileages
for all trips within the EV driving range (per charge), which is calculated annually
by summarizing the covered one-way trips within the actual EV driving range, with
battery degradation and ambient temperature effects considered; Mr is the sum of
the mileages of all trips traveled by conventional vehicle. It should be noted here
that EV travel demand ratio may also be affected by the fast charging
capacity of EV batteries, for instance, the Tesla’s super charger technologies,
which could extend the actual driving distance of EV during its service life.
The travel demand and driving pattern data in the US are the latest National
household travel survey (NHTS) data25, 38. The calculated detailed nr of each
state is listed in Supplementary Data 2. Based on the state-level temperature var-
iation and driving condition change3, the monthly average travel demand of EV,
Dm;r , is calculated by

Dm;r ¼
Vm;r

nv
´ nr ð1Þ

where Vm;r is the monthly average travel volume (km), nv is the number of
registered vehicles, and nr is the EV travel demand ratio, subscript r represents
driving pattern (local vs. highway), subscript m represents month.

Travel frequency of EVs in the US. The daily travel frequency of vehicle is the
data reported by NHTS38. We employ the statistical travel time and duration data
in the US, and divide them by the total vehicle traveling time to obtain the hourly
travel frequency, as illustrated in Supplementary Figure 1. Using this 24 h travel
frequency (fh) of US vehicles, the monthly hourly travel demand (Dm,h,r, subscript h
stands for hour) of EVs is obtained by

Dm;h;r ¼

nrV1;r

nv

..

.

nrVm;r

nv

..

.

nrV12;r

nv

2
66666666664

3
77777777775

f1 � � � fh � � � f24½ � ð2Þ

The obtained travel demand of EV is provided in Supplementary Data 3 and 4.

EV driving range and energy consumption in the US. The driving range of EVs
in the US is largely dependent on the EV driving conditions. In this study, the
actual testing data of Nissan Leaf from Argonne National Lab26 (as shown in
Fig. 1b) is fitted to calculate the EV driving range on local and highway under
various temperatures, which matches well with the actual driving range data of
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2013 and 2014 Nissan Leaf models collected by FleetCarma31 under best and
average conditions.

Rlocal ¼ �1:1826 ´ 10�4 ´T4 þ 3:75428 ´ 10�5 ´T3

þ0:0870367 ´T2 þ 2:83858 ´T þ 111:542
ð3Þ

Rhighway ¼ �1:68942 ´ 10�5 ´T4 � 4:50513 ´ 10�4 ´T3

�0:0330376 ´T2 þ 1:95879 ´T þ 116:135
ð4Þ

where Rlocal and Rhighway are the driving range of the Nissan Leaf under local and
highway driving conditions, respectively. T is temperature (°C).

The state-level monthly hourly EV charge–discharge cycles (listed in
Supplementary Data 5 and 6) then are calculated using the National Oceanic and
Atmospheric Administration (NOAA) data on the US monthly hourly local
temperature distribution39:

Cm;h;r ¼
Dm;h;r

RrðTÞ
; T ¼

T1;1 � � � T1;12

..

. ..
.

T24;1 � � � Tm;h

2
664

3
775 ð5Þ

where RrðTÞ is the temperature dependent EV driving range, which represents
different load conditions needed by EV sub-systems (e.g., HVAC, radio, etc.) and
vehicle internal losses (e.g., alteration of battery and transmission efficiency caused
by temperature), and RrðTÞ ¼ RlocalðTÞ or RhighwayðTÞ as given in Fig. 1b,
T is monthly hourly temperature (°C). The low driving range of the EV under
a low temperature is mainly due to the heater use which is improving over time.

The annual EV charge–discharge cycle numbers (C) and energy
consumption (Et) are calculated by

C ¼
X12

m¼1

X24

h¼1

X
r
Cm;h;r ; r ¼ local; highway ð6Þ

Et ¼
C ´Ec
ζ ´ β

ð7Þ

where Ec is the energy consumption per charge19 (kWh), ζ is the charger and EVSE
efficiency19, and β is the battery charging-discharging efficiency due to the increase
of battery resistance32, 33 as calculated by

β ¼ 3
2
� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Rin;cP

φ2
ocv

s !
´

1
2
þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4Rin;dP

φ2
ocv

s !
ð8Þ

where Rin; c and Rin; d are the charging and discharging internal resistance, P is the
battery power, and φocv is the open circuit voltage. All these calculated data are
provided and listed in Supplementary information (Supplementary Data 7–9).
Supplementary Data 10 lists the annual energy consumption from EVs in each
state during the battery life period in each state.

EV operating temperature in the US. In this study, the state-level ambient
temperature is the average monthly hourly temperature data from the NOAA’s
report which is collected from 1981 to 2010 in the U.S.39. The detailed temperature
data has been summarized and listed in the supplementary Data 11–14.

EV battery life model. The lithium ion batteries on board of EVs undergo both
cycling capacity loss40 and calendar capacity loss17. In order to precisely calculate
the battery life in each state of the US, a comprehensive battery capacity loss model
is developed as shown below:

(1) Cycling capacity loss: Cycling capacity loss takes place during the EV
charge–discharge cycles. In a LMO–graphite battery, the cycling capacity loss is
mainly induced by SEI film growth, electrolyte decomposition and active materials
loss. Based on the battery structure: two working electrodes and a separator layer
with electrolyte, a pseudo two-dimensional battery capacity fading model is
developed and published in our previous work, in which the charge transport
process in the battery is formulated by classical Bulter–Volmer equation23, 41

iF ¼ i0j FSj expðzαF
RT

ηjÞ � expð� zαF
RT

ηjÞ
� �

; j ¼ neg; pos ð9Þ

where i0j is the exchange current density, F is Faraday’s constant, Sj is the specific
active interfacial area, z is the transferred electron number, α is the charge transfer
coefficient, R is the ideal gas constant, T is the ambient temperature, ηj is the
overpotential42, neg,pos represent negative carbon electrode and positive LMO
electrode respectively.

Considering the impacts of side reactions, the total current transferred can be
expressed by

itotj ¼ iF þ isj ; j ¼ neg; pos ð10Þ

where isj is the side reaction current, isj ¼ �i0s expðzαFηs=RTÞ. Meanwhile, the
resistance rising induced by excessive SEI growth in negative carbon electrode can
be formulated by23

Rf ¼ Rf ;ini þ Rf ðtÞ; Rf ðtÞ ¼ LðtÞ=κp;
∂LðtÞ
∂t

¼ � isnegMp

SnegρpF
ð11Þ

where Rf is the total SEI film resistance, t is the time, Rf ;ini is the initially formed
SEI layer resistance, Rf ðtÞ is the produced film resistance in the cycling, LðtÞ is the
SEI film thickness, κp is the film conductivity, and Mp and ρp are the SEI molecular
weight and the density respectively. In the positive electrode, side reactions can also
result in severe active materials loss, where the volume fraction change of solid
phase (LMO) and the specific area variation can be formulated by42

∂ϕpos
∂t

¼ �reSposV0; Spos ¼
3ϕpos
Rp;pos

ð12Þ

where ϕpos is the volume fraction of active LMO, Spos is the specific area in positive
electrode, V0 is the molar volume of LMO, Rp;pos is the radius of the spherical
electrode particles, and re is the kinetic rate battery electrolyte decomposition,
re ¼ kec

2
H2O

cLiþ
43.

In addition to these side reactions, the LMO/carbon battery also includes
complicated transport processes. According to ref. 44, the charge transport, mass
transfer, and energy transport processes in the battery can be formulated by

Charge : ∇� �σeffj ∇ϕ1;j
� �

¼ itotj ;

∇� �κeffj ∇ϕ2;j
� �

þ 2RT 1�t0þð Þ
F ∇ �κeffj ∇ðln cjÞ

� �
¼ itotj

ð13Þ

Mass :
∂cj
∂t ¼ Ds

j
1
r2

∂
∂r r2

∂cj
∂r

� �
;

εj
∂cj
∂t ¼ ∂

∂x Deff
j

∂cj
∂x

� �
þ 1�t0þð Þitotj

F

ð14Þ

Energy : ρcp
∂T
∂t

þ ∇� �λ∇Tð Þ ¼ Qi; Qi ¼ Qrxn þ Qrev þ Qohm ð15Þ

where σeffj and κeffj are the effective conductivities in solid phase and liquid phase
respectively, ϕ1;j , ϕ2;j are the electrode and electrolyte potentials respectively, t0þis
the transference number of lithium-ion, cj is the lithium-ion concentration, Ds

j is its
diffusion coefficient in solid materials, εj is the electrode porosity, Deff

j is the
effective diffusion coefficient23, cp is the specific heat capacity, λ is the heat
conductivity, Qi is the heat source term

43, which is composed of total reaction heat
generation Qrxn, total reversible heat production Qrev , and total Ohmic heat
production Qohm. The supplementary formula and expressions can be referred to
our previous study on LMO–graphite battery23.

The developed mathematical models are solved using finite element package
COMSOL Multiphysics and MATLAB software. Two model geometries are
applied: a one-dimensional lithium ion battery model and a two-dimensional
electrode solid phase model. Two sub-models are coherently coupled in such that
the concentration of lithium ions obtained in the 2D solid phase model is projected
to the 1D battery model, while the mass flux from 1D battery model is extracted to
the 2D solid phase model boundaries. The applied boundary conditions and the
associated model parameters are summarized in Supplementary Table 1 and
Table 2.

The cycling capacity loss (CLa;cyc) then can be calculated by

CLa;cyc ¼
PC

m¼1 Iðtm � tmþ1Þ
I ´ t1

ð16Þ

where C is the needed charge–discharge cycle number of EV battery in one year to
meet the travel demand, I is the average charging current density, and tm is the
time needed to get the EV battery fully charged in mth cycle.

(2) Calendar capacity loss: The calendar capacity loss takes place during battery
energy storage, and mainly caused by battery self-discharge and side reactions.
According to ref. 17, the battery calendar capacity loss follows Arrhenius-form
kinetics, and an empirical expression based on the experimental data is formulated
as

Cla;cal ¼ 14; 876 ´ exp
�Ea
RT

� �
ψd thð Þ0:5 ð17Þ

where Cla;cal is the percentage of calendar capacity loss, Ea is the activation energy,
Ea ¼ 24:5kJ, R is the gas constant, Ψd(x) is the time adjustment function, th stands
for hour. The Supplementary Note 1, Supplementary Table 3–4, and
Supplementary Figure 2 provide a detailed validation of the above battery capacity
loss models.

EV GHG emission. The EV GHG emission from vehicle operation is calculated
based on the energy consumptions of EV operation as described in Eq. (7) above
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and the electricity GHG emission factor in each state of US, as expressed below:

GHGt;1

h
� � � GHGt;s � � � GHGt;50

i
¼ Et;1

h
� � � Et;s � � � Et;50

i
� UG;1

h
� � � UG;s � � � UG;50

i
ð18Þ

where GHGt,s is the GHG emissions from vehicle transport energy consumption,
Et;s is the transport energy consumption (kWh), subscript s stands for state, UG;s is
the unit electricity GHG emission factor (CO2,eq g km−1), which is determined
from the electricity fuel mix data from the eGRID2012 report published in 201534

and the imports of electricity from other states45, as provided in Supplementary
Data 17.

Sensitivity analysis. A sensitivity analysis is conducted to evaluate the viability
and robustness of the results relative to the change of the important factors
including EV travel demand, electricity GHG emission factor, battery degradation
limit for replacement, and capacity accessible ratio. The baseline scenario is with all
the current data and results as reported in the paper. The evaluated factors are
changed within a reasonable range of their baseline value, and the corresponding
changes of the unit GHG emissions (CO2,eq g km−1) to the change of each factor is
quantified and benchmarked with the baseline scenario, as shown in Supplemen-
tary Figure 6a–d and Supplementary Note 2.

Data availability. All data generated or analyzed during this study are included in
this published article as Supplementary Data.
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