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ABSTRACT Salmonella enterica serovar Heidelberg is a multidrug-resistant food-
borne pathogen that originated from poultry and cattle. Bacteriophages isolated for
this pathogen may be used as biocontrol agents in food products or animals for
preventing Salmonella foodborne diseases. Here, we present the complete genome
sequence of Salmonella Heidelberg phage Meda.

Salmonella enterica serovar Heidelberg is a multidrug-resistant foodborne pathogen
that originated from poultry and cattle (1). As antibiotic resistance increases in

foodborne pathogens, phages may be used as biocontrol agents in food or animal
production to combat this rising threat.

Myophage Meda was isolated from the soil of a cattle-harvesting facility in Michigan
in August 2016 by growing Salmonella Heidelberg in the soil extract using tryptic soy
broth (Difco) at 37°C with aeration. Phages were isolated and propagated by the soft
agar overlay method (2). Phage genomic DNA was prepared using a modified Promega
Wizard DNA cleanup kit protocol, as described previously (3). Pooled indexed DNA
libraries were prepared using the Illumina TruSeq Nano low-throughput (LT) kit, and the
sequence was obtained from the Illumina MiSeq platform using the MiSeq V2 500-cycle
reagent kit, following the manufacturer’s instructions, producing 312,918 paired-end
reads for the index containing the phage genome. Reads were quality controlled in
FastQC 0.11.5 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), trimmed
with the FASTX-Toolkit 0.0.14 (http://hannonlab.cshl.edu/fastx_toolkit/), and assembled
using SPAdes 3.5.0 (4). Meda was assembled at 223.7-fold coverage. The assembled
contig completion was confirmed by PCR using primers (5=-TGAGCATGGTTTCCGTTAG
AG-3= and 5=-GTGATTCTAGGCCAGTTGGTAG-3=) facing off the ends of the assembled
contig and Sanger sequencing of the resulting product, with the contig sequence
manually corrected to match the resulting Sanger sequencing read. GLIMMER 3.0 (5)
and MetaGeneAnnotator 1.0 (6) were used to predict protein-coding genes, along with
manual curation. tRNA genes were predicted using ARAGORN 2.36 (7). Protein functions
were predicted using BLASTp 2.2.28 (8) to detect sequence homology. Protein structure
prediction was performed using HHpred 2.1 (9), and conserved domain searches were
conducted using InterProScan 5.15-5.40 (10). All analyses were done with default
settings using the CPT Galaxy (11) (cpt.tamu.edu) and Web Apollo (12) interfaces.

The complete Meda genome is 84,668 bp long, consisting of 131 protein-coding
genes with a coding density of 88.04%. It has a GC content of 38.85%, which is
significantly lower than that of its host, Salmonella Heidelberg (52.08%) (13). Meda
shares the most protein homology with Salmonella bacteriophage Felix O1 (14), with
130 similar proteins at an E value of �0.001 by BLASTp, using the GenBank non-
redundant (nr) database. Like Felix O1, Meda appears not to possess a copy of RNA
polymerase or any proteins homologous to known host RNA polymerase modifiers.
Meda’s lysis genes are distributed across the genome rather than forming a discrete
lysis cassette. While spanins and an endolysin (glycoside hydrolase) were annotated, a
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holin was not identified. The Meda genome contains several HNH endonucleases, one
of which interrupts the large subunit of anaerobic nucleoside diphosphate reductase.
Another intron containing no HNH endonuclease sequence is present in a DNA
polymerase gene. A predicted polynucleotide kinase gene was identified in Meda, but
the protein-coding sequence is split into two reading frames (GenBank accession
numbers AXY86388 and AXY86389) by an intervening stop codon. The presence of this
stop codon was confirmed by Sanger sequencing. It is not clear if this gene is essential
for phage growth or if it is still functional despite this interruption.

Data availability. The genome sequence of phage Meda has been deposited under

GenBank accession number MH586731. The associated BioProject, SRA, and Bio-
Sample accession numbers are PRJNA222858, SRR8787572, and SAMN11259651,
respectively.
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