Article

Homologation of aryl ketones to long-chain ketones and aldehydes via C-C bond cleavage

Article

Homologation of aryl ketones to long-chain ketones and aldehydes via C-C bond cleavage

Xing Wang, ${ }^{1}$ Ling-Jun Li, ${ }^{1}$ Zhen-Yu Wang, ${ }^{2}$ Hui Xu, ${ }^{1, *}$ and Hui-Xiong Dai ${ }^{1,2,3,4, *}$

Abstract

SUMMARY Transition metal-catalyzed C-C bond cleavage is a powerful tool for the reconstruction of a molecular skeleton. We report herein the multi-carbon homologation of aryl ketones to long-chain ketones and aldehydes via ligand-promoted $\mathrm{Ar}-\mathrm{C}(\mathrm{O})$ bond cleavage and subsequent cross coupling with alkenols. Various (hetero)aryl ketones are compatible in the reaction, affording the corresponding products wtih good to excellent yields with high regioselectivity. Further applications in the late-stage diversification of biologically important molecules demonstrate the synthetic utility of this protocol. Mechanistic studies indicate that the ligand plays an important role in both C-C bond cleavage and the asymmetric migration-insertion process.

INTRODUCTION

Functionalized long-chain ketones and aldehydes are important structural motifs commonly found in bioactive compounds and pharmaceuticals (Figure 1A) (Cao et al., 2005; Ertl and Schuhmann, 2019; Hashimoto et al., 1977; Huang et al., 2016; Itoh et al., 1999; Moser and Bode, 2008; Ngadjui et al., 1991). For example, Prasugrel hydrochloride, developed by Daiichi Sankyo \& Co., is a platelet ADP $\mathrm{P}_{2} \mathrm{Y}_{12}$ receptor antagonist, used for acute coronary syndrome (Aalla et al., 2012; Baker and White, 2009). Meanwhile, long-chain ketones and aldehyde are often employed as versatile building blocks in organic synthesis via transformations of carbonyl group, such as Grignard reactions, Wittig reactions, adol reaction, etc. (Murray, 2015; Vollhardt and Schore, 2018). Thus, the development of an efficient protocol to synthesize the long-chain ketone and aldehyde has gained much attention. Among various synthetic approaches, the Heck-type reaction of aryl reagent with alkenol is one of the most powerful methods (Beletskaya and Cheprakov, 2000; de Meijere and Meyer, 1994; Dounay and Overman, 2003; Mc Cartney and Guiry, 2011). Aryl halides (Heck and Nolley, 1972; Mizoroki et al., 1971), triflate (Cabri et al., 1992; Race et al., 2019), diazonium salts (Kikukawa and Matsuda, 1977; Patel and Sigman, 2015), boron reagents (Chen et al., 2012, 2016; Liu et al., 2019; Mei et al., 2013, 2014), carboxylic acids (Huang et al., 2013a), sulfonolydrazide (Huang et al., 2013b), and sulfinic acid salts (Liao et al., 2015) have been developed as the aryl donors in the past few decades (Figure 1B). C-C bonds constitute the main skeleton of organic compounds. Selective C-C bond cleavage and subsequently cross-coupling with alkenol could rapidly generate diversified libraries of long-chain ketones. Recently, Kakiuchi achieved Rh(III)-catalyzed Hecktype cross couplings of styrene derivatives with allylic alcohol via chelation-assisted $\mathrm{C}-\mathrm{C}$ bond cleavage (Figure 1C) (Onodera et al., 2020).

Aryl ketones are ubiquitous structural motifs found in pharmaceuticals and natural products (Larock, 1999). Homologation of the abundant aryl ketones to long-chain ketones and aldehydes via $\mathrm{Ar}-\mathrm{C}(\mathrm{O})$ bond cleavage would be highly appealing. One-carbon homologation of aryl ketone via insertion of carbenoids into $\mathrm{Ar}-\mathrm{C}(\mathrm{O})$ bond has been well known (Candeias et al., 2016; Sebastian et al., 2021). Very recently, Feng and coworkers elegantly achieved asymmetric one-carbon homologation of acyclic and cyclic aryl ketones with α-diazo esters in the presence of a chiral scandium(III)- N, N^{\prime}-dioxide Lewis acid catalyst (Tan et al., 2021). The low valent metal-catalyzed "Cut and Sew" strategy of $\operatorname{Ar}-\mathrm{C}(\mathrm{O})$ bond with unsaturated $\mathrm{C}-\mathrm{C}$ bonds could achieve the two-carbon homologation (Chen et al., 2017; Juliá-Hernández et al., 2015; Kondo et al., 2000; Okumura et al., 2017; Xia et al., 2019; Xu and Dong, 2012). Both strained and unstrained aryl ketones were employed as the substrates, and diverse two-carbon homologated ring structures were obtained via $\mathrm{Ar}-\mathrm{C}(\mathrm{O})$ bond cleavage and subsequent 1,2- or 2,1-insertion with alkenes and alkynes. An unconventional one-carbon homologation of unstrained aryl ketones was recently reported by Dong and Xia via the Rh-catalyzed intramolecular formal 1,1-insertion process (Huang et al., 2022). However, oxidative
${ }^{1}$ CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
${ }^{2}$ School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing Jiangsu 210023, China
${ }^{3}$ School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
${ }^{4}$ Lead contact
*Correspondence:
xuhui2018@simm.ac.cn (H.X.),
hxdai@simm.ac.cn (H.-X.D.)
https://doi.org/10.1016/j.isci. 2022.104505

A Long-Chain Ketones and Aldehydes in Pharmaceuticals and Natural Products

Prasugel

Etafenone

Penicimarin H

Hoslundal

(-)-Protoemetine

B Heck-type Reaction with Alkenol

$\mathrm{X}=$ Halide, OTf, $\mathrm{N}_{2} \mathrm{BF}_{4}, \mathrm{~B}(\mathrm{OH})_{2}, \mathrm{CO}_{2} \mathrm{H}$, etc.

C Kakiuchi's Work: Directed C-C Bond Cleavage

D This Work: Multi-carbon Homologation of Aryl Ketone

Figure 1. Synthesis of long-chain ketones and aldehydes
(A) Representative natural products and drugs containing long-chain ketones and aldehydes.
(B) Various aryl donors in the Heck-type reaction with alkenol
(C) Directed C-C bond cleavage.
(D) This work: Multi-carbon homologation of aryl ketones to long-chain ketones and aldehydes.
addition of a transition metal into the $\mathrm{Ar}-\mathrm{C}(\mathrm{O})$ bond is thermodynamically unfavorable and often requires a directing group to enhance the reactivity or utilize the ring-strain release to generate stable cyclic metal species (Dong, 2014; Chen et al., 2014; Deng and Dong, 2020; Jun, 2004; Kim et al., 2017; Marek et al., 2015; Murakami and Ishida, 2016; Rybtchinski and Milstein, 1999; Souillart and Cramer, 2015; Xia and Dong, 2020; Yu et al., 2021). We envisioned that the transition metal-catalyzed $\mathrm{Ar}-\mathrm{C}(\mathrm{O})$ bond cleavage and subsequently Heck-type coupling with alkenol could homologate aryl ketones to long-chain ketones. Recently, our group achieved the ligand-promoted C-C bond cleavage of unstrained aryl ketone (Guo et al., 2021; Li et al., 2020; Wang et al., 2021; Xu et al., 2021). In this manuscript, we report the multi-carbon homologation of aryl ketone to long-chain ketone and aldehyde via Heck-type cross coupling of alkenol with ketone-derived oxime esters (Figure 1D). By employing appropriate pyridine oxazoline ligand, the transformations were achieved with high chemo- and regioselectivity. To demonstrate the practicality, the two-carbon homologations of biologically important aryl ketones into long-chain ketones were showcased.

RESULTS AND DISCUSSION

Optimization of reaction conditions

Aryl ketones could be conveniently activated to the oxime ester derivatives that could be employed as building blocks in synthesis of various nitrogen-containing heterocycles (Bao et al., 2017; Blake et al., 2004; Faulkner et al., 2015; Huang et al., 2015;Nishimura and Uemura, 2000; Race et al., 2017; Tan and Hartwig, 2010; Tsutsui et al., 1997; Walton, 2014). Thus, we commenced our investigation by treating oxime ester 1 a and 1 -penten-3-ol (2a) in the presence of $10 \mathrm{~mol} \% \mathrm{PdCl}_{2}, 20 \mathrm{~mol} \%$ ligand $\mathrm{L} 1,2$ equiv of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in DCE at $120^{\circ} \mathrm{C}$ (Table 1). However, no desired product was observed (Entry 1). Considering that cationic palladium complexes are more electrophilic to coordinate with allyl alcohol, we screened various additives to scavenge the chloride ions (Table S 1), including $\mathrm{NaBAr}_{\mathrm{F}}, \mathrm{Ag}_{2} \mathrm{CO}_{3}, \mathrm{AgOAc}, \mathrm{AgOTf}$, and AgNTf_{2} (Entries

2-6). To our delight, 1-phenylpentan-3-one $3 \mathrm{a}(44 \%)$ and 2-phenylpentan-3-one $4 \mathrm{a}(19 \%)$ could be obtained by employing AgNTf_{2} as the additive (Entry 6). Base, palladium catalysts, and solvents were also screened; however, no better results were obtained (see Tables S2-S4 in supplemental information for details). To improve the yield and regioselectivity, we examined the different type of ligands (see Schemes S3 and S 4 in supplemental information for details). Phosphine ligands were detrimental to the reaction. 2, 2^{\prime} Bipyridine ligand (L2) could effectively improve the yield to 80% with a 3a/4a ratio of 59/21 (Entry 7). Pyridine oxazoline (PyrOx) ligands have been widely employed in the enantioselective redox relay Heck reactions (Chen et al., 2016; Liu et al., 2019; Mei et al., 2013, 2014; Patel and Sigman, 2015). After the screening of various pyridine oxazoline ligands, L3 could significantly improve the regioselectivity of 3a/4a to 43/7, whereas PyrOx ligand with bulky substituent in oxazoline moiety yielded poor results (Entries 8-10). The regioselectivity of the aromatic ring migration onto the deactivated olefin is possibly due to the balance between electronic and steric factors: 1) The subtle electronic differences in alkenyl carbons favor the formation of the linear product 3 ; 2) Migratory insertion of Pd catalyst bearing bulky ligand to the less hindered carbon could relieve steric strain, thus favoring the formation of the branched product 4a (Cabri et al., 1992; Mei et al., 2014). To further evaluate the electronic effects of the substituents in the ligands, modifications in pyridine moiety were investigated (Entries 11-13). To our delight, ligands containing a chloro group in the five-position of the pyridine moiety (L8) gave the desired product 3a with a 64% yield
(Entry 13). Meanwhile, a 10% yield of alkenol isomer 5 a was obtained as the byproduct, which indicated that part of the PdH species was deactivated during migratory-insertion process. Considering the economic viability of the starting material, oxime ester deriving from cheaper alkanoyl and aroyl chlorides were tested, and perfluoriobenzyl oximes afforded the highest yield at $120^{\circ} \mathrm{C}$ under an N_{2} atmosphere (For details, see Scheme S5, Tables S5 and S6 in supplemental information). To further improve the chemo- and regioselectivity, a series of additives and concentration were investigated (Entries 14-17, also see Tables S7 and S8 in supplemental information for details) (Abelman and Overman, 1988; Abelman et al., 1987; Larock and Gong, 1989; Larock et al., 1988). The addition of TsONa could efficiently inhibit the formation of 5 a . Further screening of the reaction concentration could improve the yield of 3 a to 72% with a 68% isolated yield (Entry17). Aryl ketones (including acetophenone, 1-phenylbutan-1-one, 1-phenylpentan1 -one) with different side chain, including methyl, ethyl, n-amyl i-propyl, t-butyl, cyclohexyl, and phenyl group, were also suitable substrates (1a-1-1a-7), giving the desired products 3a with 21-70\% isolated yields (for details, see Table S9).

Substrate scope

Having established the optimal reaction conditions, the scope of aryl ketones was investigated (Scheme 1). Aryl ketones bearing different substituents at the ortho-, meta-, and para-positions provided the corresponding two-carbon homologated products (3a-3ab) in moderate to good yields. A variety of elec-tron-donating or electron-withdrawing groups ($-\mathrm{Me},-\mathrm{OMe},-\mathrm{NHAc},-\mathrm{Sme},-\mathrm{OCF}_{3},-\mathrm{Ph},-\mathrm{F},-\mathrm{Cl},-\mathrm{CN}$, $-\mathrm{NO}_{2},-\mathrm{CF}_{3},-\mathrm{SiMe}_{3},-\mathrm{CO}_{2} \mathrm{Et},-\mathrm{PO}(\mathrm{Oet})_{2}$, and $-\mathrm{SO}_{2} \mathrm{Me}$) could be well accommodated under the optimal reaction conditions. A scale-up experiment with one-pot operation of aryl ketone was carried out by using propiophenone (10 mmol) as the starting material, affording the corresponding product 3 a with a 54% isolated yield. It's worth noting that very sensitive substituent including Bpin and alkenyl could be tolerated, leaving a handle for further transformation. Aryl substrates with disubstituents (3ac-3af, 3ah-3ai), naphthalene (3aj-3al) are also suitable substrates. This protocol shows high compatibility with various heterocycles, including furan (3am), thiophene (3an), pyridine (3ao-3aq), benzofuran (3ar), indole (3as), benzothiophene (3at), quinoline (3au, 3av), diazole (3aw), triazole (3ax), benzoxazole (3ay), and benzothiazole (3az), delivering the desirable β-aryl ketone products with $45-81 \%$ yields.

A series of alkyl substituents in alkenol were investigated (including 3-buten-2-ol, 1-hexen-3-ol, 1-octen-3ol, and other alkenols), providing the corresponding ketone products ($3 \mathrm{ba}-3 \mathrm{bg}$) in moderate to good yields. Heteroatom-contained alkenols were also compatible in the reaction (3bh, 3bi). In addition, the alkenols derived from the natural products Citronellal and Lily aldehyde could furnish the corresponding products with 46 and 81%, respectively ($3 \mathrm{bj}, 3 \mathrm{bk}$). The aryl substituted alkenols with various electrondonating and electron-withdrawing groups ($-\mathrm{OMe},-\mathrm{F},-\mathrm{Cl},-\mathrm{CF}_{3}$, and -CN) provided the desired products $3 \mathrm{bl}-3 \mathrm{bq}$ with $54-68 \%$ yields. Moreover, heteroaryl substrates containing furan (3bs) and thiophene (3bt) were also tolerated, albeit in lower yields. Significantly, the multi-substituted alkenol substrates showed good compatibility (3bu-3bw). When 3-penten-2-ol was employed as the coupling partner, both β - and α-regioselective products were obtained with the ratio of $56 / 26$ (3bv).

Furthermore, aryl ketone could be homologated to long-chain aldehydes when the primary allylic alcohol substrates 6 were used (Scheme 2). When 3-buten-1-ol was employed, both electron-donating and electron-withdrawing substituents ($\mathrm{OMe}, \mathrm{OAc}, \mathrm{Cl}, \mathrm{CF}_{3}, \mathrm{CO}_{2} \mathrm{Et}$) at the ortho-, meta-, and para-positions of aryl ketones delivered the desirable β-aryl aldehyde products with $54-72 \%$ yields. Heteroaryl substrates containing triazole (7 g), pyridine (7 h) were also well tolerated. In addition, the multisubstituted alkenol substrates (crotonyl alcohol and 3-methyl-3-buten-1-ol) showed good compatibility ($7 \mathrm{i}, 7 \mathrm{j}$). To further explored the potential applications of this protocol, more challenging homoallyl alcohol substrates were evaluated. After the re-screening of various ligands (Scheme S6), 2,2'-bipyridine (L2) was employed instead of L8. Aryl and heteroaryl ketone derivatives (7k-7r) proceeded smoothly, albeit with lower regioselectivity. Moreover, the alkyl or aryl substituents at three-position of homoallyl alcohols were well tolerated with high reactivity and excellent regioselectivity (7s, 7t). It is worth noting that the δ-aryl aldehyde product ($7 \mathbf{u}$) could be obtained by using 4-penten-1-ol as the substrate.

Synthetic application

To showcase the potential applications of this protocol, two-carbon homologation of some biologically important molecules was carried out. Vrious aryl ketones derived from medicinal drugs probenecid,
comer,

[^0]comer,

Scheme 2. Homologation of Aryl Ketones to Long-chain Aldehydes ${ }^{\text {a }}$
${ }^{2}$ Reaction conditions: $1 \mathrm{a}(0.1 \mathrm{mmol})$, $2 \mathrm{a}(0.2 \mathrm{mmol}), \mathrm{PdCl}_{2}(10 \mathrm{~mol} \%), \mathrm{L} 8(20 \mathrm{~mol} \%), \mathrm{AgNTf}_{2}(20 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}(0.1 \mathrm{mmol}), \mathrm{TsONa}(0.1 \mathrm{mmol}), \mathrm{DCE}(3 \mathrm{~mL})$,
$120^{\circ} \mathrm{C}, \mathrm{N}_{2}, 12 \mathrm{~h}$.
${ }^{\mathrm{b}} \mathrm{L} 2$. instead of L8.
${ }^{c} 18 \mathrm{~h}$.
adapalene, homosalate, and natural products evodiamine, desoxyestrone proceeded smoothly, furnishing the corresponding products (8a-8e) with good yields (57-81\%) (Figure 2A). Furthermore, derivatizations of product 8 e were performed to introduce various functional groups (Figure 2B). α-Bromination of 8 e gave α-bromoketone 9 with a 76% yield, which is a versatile building block in organic synthesis. Moreover, reductive amination of the carbonyl group was readily achieved to afford the aminated product 10 with a 98% yield. It is valuable to introduce heterocycles into drug molecules. Structurally important heterocycles, including indole (11), quinoline (12), could be efficiently constructed through Fischer indole synthesis and Friedländer annulation reaction. In addition, pyrimidine (13) and diazole (14) could also be introduced into the target molecule with moderate yields (Nguyen et al., 2020; Zhan et al., 2016).

Mechanistic studies

For a better understanding of the mechanism, some control experiments were carried out (Figure 3). First, the addition of radical scavenger 2, 2, 6, 6-tetra-methylpiperidine-N-oxyl (TEMPO) and butylated hydroxytoluene (BHT) did not inhibit the reaction, indicating that a radical pathway might not be involved in the reaction (Figure 3A). In addition, when oxime ester 1 a- 8 was employed, the β-aryl ketone product 3 a and nitrile compound $3 \mathrm{a}-1$ were obtained with 69 and 84% yields, indicating the Ar-Pd species were generated via the β-aryl elimination process (Figure 3B). Next, the deuteration experiments were performed (Figure 3C). The coupling of oxime ester 1a-2 with [D]-pent-1-en-3-ol under the standard reaction conditions afforded the [D]- β-aryl ketone product 3 a-d with a 71% yield. The deuterium is completely transferred to the α-position of carbonyl group, which indicates that the reaction proceeds via an iterative β-hydride elimination/migratory-insertion sequence (Figure S1). In addition, the intermolecular KIE of 1.1 indicates β-hydride elimination/migratory-insertion might not be involved in the rate-determined step (Figure S2). The moderate enantioselectivity were observed in both β-and α-aryl products when bulkier chiral ligand L5 was used (Figures S3-S6), indicating that the ligand plays an important role in both $\mathrm{C}-\mathrm{C}$ bond cleavage and the asymmetric migration-insertion

A Homologation of Biologically Important Aryl Ketones

B Product Transformations ${ }^{b}$

Figure 2. Synthetic application and product transformations
(A) Homologation of biologically important Aryl ketones. ${ }^{\text {a }}$ Me instead of Et in ketone substrate.
(B) Production transformations ${ }^{b}$. ${ }^{b}$ Reaction conditions: For the synthesis of 8 e , see the SI .
${ }^{\text {a }} 8 \mathrm{e}(0.1 \mathrm{mmol}), \mathrm{Br}_{2}(0.1 \mathrm{mmol}), \mathrm{DCM}(1 \mathrm{~mL}), ~ r . t, 10 \mathrm{~min}$, air.
${ }^{\mathrm{b}} 8 \mathrm{e}(0.1 \mathrm{mmol})$, p-Anisidine (0.11 mmol$), \mathrm{AcOH}(0.1 \mathrm{mmol}), \mathrm{DCM}(1.0 \mathrm{~mL}), \mathrm{NaBH}(\mathrm{OAc})_{3}(0.15 \mathrm{mmol}), \mathrm{r} . \mathrm{t}, 12 \mathrm{~h}, \mathrm{~N}_{2}$.
${ }^{c} 8 \mathrm{e}(0.1 \mathrm{mmol})$, Phenylhydrazine hydrochloride (0.1 mmol), $\mathrm{AcOH}(0.5 \mathrm{~mL}), 120^{\circ} \mathrm{C}, 1 \mathrm{~h}$, air.
${ }^{\mathrm{d}} 8 \mathrm{e}(0.1 \mathrm{mmol})$, 2-Aminobenzophenone (0.1 mmol), $\mathrm{AcOH}(0.5 \mathrm{~mL}), 120^{\circ} \mathrm{C}, 4 \mathrm{~h}$, air.
${ }^{e} 8 \mathrm{e}(0.1 \mathrm{mmol})$, Benzamidine hydrochloride (0.1 mmol), $\mathrm{Cu}(\mathrm{OAc}) 2_{2}(10 \mathrm{~mol} \%), 2,2^{\prime}$-bipyridine ($10 \mathrm{~mol} \%$), 4-HO-TEMPO (0.1 mmol), and $\mathrm{NaOAc}(0.15 \mathrm{mmol})$.
1,2-dichlorobenzene (1.0 mL), $140^{\circ} \mathrm{C}, 24 \mathrm{~h}$, air.
${ }^{f} 8 \mathrm{e}(0.1 \mathrm{mmol}), \mathrm{CuBr}_{2}(25 \mathrm{~mol} \%)$, TEMPO (0.4 mmol$), \mathrm{PhNHNH}_{2}(0.4 \mathrm{mmol})$, acetic acid (0.1 mmol), DMF (1.0 mL), $140^{\circ} \mathrm{C}, 48 \mathrm{~h}$, air.
process (Figure 3D). Based on the previous reports and the control experiments (Nishimura and Uemura, 2000; Patel and Sigman, 2015; Tan and Hartwig, 2010), a possible mechanism was proposed (Figure 3 E). The insertion of $\operatorname{Pd}(0)$ into the $\mathrm{N}-\mathrm{O}$ bond of oxime ester 1 generated the intermediate I^{\prime}, which isomerized to intermediate I. Ligand-promoted β-aryl elimination of I afforded the aryl palladium species II and nitrile product. Migratory insertion of Ar-Pd into pent-1-en-3-ol 2a gave the intermediate III, which underwent β-H elimination to form IV. The re-insertion of PdH into the IV afforded the

A Radical scavenger

B β-C elimination passway

C Deuteration experiments

D Ligand effect

Figure 3. Mechanistic studies
intermediate V , which proceeded β-H elimination to generate the homologated product 3a and regenerate the $\mathrm{Pd}(0)$ species.

Conclusions

In summary, we have developed an efficient palladium-catalyzed ligand-promoted redox-relay Heck reaction of aryl ketones with alkenols, affording the homologated long-chain ketones and aldehydes with a good to excellent yield with good regioselectivity. This protocol shows excellent func-tional-group tolerance and heterocyclic compatibility. Late-stage diversifications of some aryl ketones derived from pharmaceuticals and natural products demonstrate the synthetic practicality of this methodology.

Limitations of the study

Compared with previous well-developed redox-relay Heck work, the reaction afforded moderate site- and enantioselectivity under the optimized reaction conditions. In addition, this reaction is not compatible with unsubstituted pyridine, and the substrate scope limited to ortho-substituted pyridines.

STAR太METHODS

Detailed methods are provided in the online version of this paper and include the following:

- KEY RESOURCES TABLE
- RESOURCE AVAILABILITY

O Lead contact

- Materials availability
- Data and code availability
- METHOD DETAILS

O General information
O Preparation of ketoxime esters (for ketoxime esters used in this work, see Scheme S1)
O Preparation of alkenyl alcohols (for alkenyl alcohols used in this work, see Scheme S2)
O Synthesis of pent-1-en-3-d-3-ol (2a-d) (Vidal et al., 2019)

- General procedure for the preparation of 3 or 8
- General procedure for the preparation of 7
- 10 mmol scale one-pot synthesis
- Synthetic application and transformation

O Deuterium labeling study

- Analytical data

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2022.104505.

ACKNOWLEDGMENTS

We gratefully acknowledge the Shanghai Institute of Materia Medica, the Chinese Academy of Sciences, the National Natural Science Foundation of China (22171276, 21920102003), the Youth Innovation Promotion Association CAS (No. 2014229 and 2018293), Institutes for Drug Discovery and Development, Chinese Academy of Sciences (No. CASIMM0120163006), the Science and Technology Commission of Shanghai Municipality (17JC1405000, 21ZR1475400 and 18431907100), the Program of Shanghai Academic Research Leader (19XD1424600), and the National Science \& Technology Major Project "Key New Drug Creation and Manufacturing Program," China (2018ZX09711002-006).

AUTHOR CONTRIBUTIONS

X.W. equally contributed in the discovery and development of these reactions. L.-J., L., Z.-Y. W., and H.X. helped to perform the experiments of substrates scope and synthetic application. H.-X.D. conceived the concept and directed the project. X.W., H.-X.D., and H.X. prepared this manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.
iScience

Received: February 12, 2022
Revised: April 26, 2022
Accepted: May 27, 2022
Published: July 15, 2022

REFERENCES

Aalla, S., Gilla, G., Metil, D.S., Anumula, R.R., Vummenthala, P.R., and Padi, P.R. (2012). Process improvements of prasugrel hydrochloride: an adenosine diphosphate receptor antagonist. Org. Process Res. Dev. 16, 240-243. https://doi. org/10.1021/op200325u.

Abelman, M.M., and Overman, L.E. (1988). Palladium-catalyzed polyene cyclizations of dienyl aryl iodides. J. Am. Chem. Soc. 110, 2328 2329. https://doi.org/10.1021/ja00215a068.

Abelman, M.M., Oh, T., and Overman, L.E. (1987). Intramolecular alkene arylations for rapid assembly of polycyclic systems containing quaternary centers. A new synthesis of spirooxindoles and other fused and bridged ring systems. J. Org. Chem. 52, 4130-4133. https:// doi.org/10.1021/jo00227a038.

Airoldi, V., Piccolo, O., Roda, G., Appiani, R., Bavo, F., Tassini, R., Paganelli, S., Arnoldi, S., Pallavicini, M., and Bolchi, C. (2020). Efficient onepot reductive aminations of carbonyl compounds with aquivion-Fe as a recyclable catalyst and sodium borohydride. Eur. J. Org. Chem. 2020, 162-168. https://doi.org/10.1002/ejoc. 201901614.

Amani, J., and Molander, G.A. (2017). Direct conversion of carboxylic acids to alkyl ketones. Org. Lett. 19, 3612-3615. https://doi.org/10. 1021/acs.orglett.7b01588.

Baker, W.L., and White, C.M. (2009). Role of prasugrel, a novel P2Y 12 receptor antagonist, in the management of acute coronary syndromes. Am. J. Cardiovasc. Drugs 9, 213-229. https://doi. org/10.2165/1131209-000000000-00000.

Bao, X., Wang, Q., and Zhu, J. (2017). Palladiumcatalyzed enantioselective Narasaka-Heck reaction/direct $\mathrm{C}-\mathrm{H}$ alkylation of arenes: iminoarylation of alkenes. Angew. Chem. Int. Ed. 56, 9577-9581. https://doi.org/10.1002/anie. 201705641.

Bay, A.V., Fitzpatrick, K.P., Betori, R.C., and Scheidt, K.A. (2020). Combined photoredox and carbene catalysis for the synthesis of ketones from carboxylic acids. Angew. Chem. Int. Ed. 59, 9143-9148. https://doi.org/10.1002/anie. 202001824.

Beletskaya, I.P., and Cheprakov, A.V. (2000). The Heck reaction as a sharpening stone of palladium catalysis. Chem. Rev. 100, 3009-3066. https://doi. org/10.1021/cr9903048.

Blake, J.A., Pratt, D.A., Lin, S. Q., Walton, J.C., Mulder, P., and Ingold, K.U. (2004). Thermolyses of O-phenyl oxime ethers. a new source of iminyl radicals and a new source of aryloxyl radicals.
J. Org. Chem. 69, 3112-3120. https://doi.org/10. 1021/j0049927y.

Brandt, D., Bellosta, V., and Cossy, J. (2012). Stereoselective synthesis of conjugated trienols from allylic alcohols and 1-lodo-1, 3-dienes. Org.

Lett. 14, 5594-5597. https://doi.org/10.1021/ ol302719e.

Bräuer, T.M., Zhang, Q., and Tiefenbacher, K. (2017). Iminium catalysis inside a self-assembled supramolecular capsule: scope and mechanistic studies. J. Am. Chem. Soc. 139, 17500-17507. https://doi.org/10.1021/jacs.7b08976.

Cabri, W., Candiani, I., Bedeschi, A., and Santi, R. (1992). Palladium-catalyzed arylation of unsymmetrical olefins. Bidentate phosphine ligand controlled regioselectivity. J. Org. Chem. 57, 3558-3563. https://doi.org/10.1021/ jo00039a011.

Candeias, N.R., Paterna, R., and Gois, P.M.P. (2016). Homologation reaction of ketones with diazo compounds. Chem. Rev. 116, 2937-2981. https://doi.org/10.1021/acs.chemrev.5b00381.

Cao, S., Foster, C., Lazo, J.S., and Kingston, D.G.I. (2005). Four diterpenoid inhibitors of Cdc25B phosphatase from a marine anemone. Bioorg. Med. Chem. 13, 5830-5834. https://doi.org/10. 1016/j.bmc.2005.05.057.

Chen, F., Wang, T., and Jiao, N. (2014). Recent advances in transition-metal-catalyzed functionalization of unstrained carbon-carbon bonds. Chem. Rev. 114, 8613-8661. https://doi. org/10.1021/cr400628s.

Chen, M., Wang, J., Chai, Z., You, C., and Lei, A. (2012). C-X (X=Br, I) Bond-tolerant aerobic oxidative cross-coupling: a strategy to selectively construct β-aryl ketones and aldehydes. Adv. Synth. Catal. 354, 341-346. https://doi.org/10. 1002/adsc. 201100782.

Chen, P.h., Billett, B.A., Tsukamoto, T., and Dong, G. (2017). "Cut and Sew" transformations via transition-metal-catalyzed carbon-carbon bond activation. ACS Catal. 7, 1340-1360. https://doi. org/10.1021/acscatal.6b03210.

Chen, Z.-M., Hilton, M.J., and Sigman, M.S. (2016). Palladium-catalyzed enantioselective redox-relay Heck arylation of 1, 1-disubstituted homoallylic alcohols. J. Am. Chem. Soc. 138, 11461-11464. https://doi.org/10.1021/jacs. 6b06994.

Christensen, S.H., Olsen, E.P.K., Rosenbaum, J., and Madsen, R. (2015). Hydroformylation of olefins and reductive carbonylation of aryl halides with syngas formed ex situ from dehydrogenative decarbonylation of hexane-1, 6-diol. Org. Biomol. Chem. 13, 938-945. https://doi.org/10. 1039/c4ob01958j.

Clifton, J.E., Collins, I., Hallett, P., Hartley, D., Lunts, L.H.C., and Wicks, P.D. (1982). Arylethanolamines derived from salicylamide with .alpha.- and .beta.-adrenoceptor blocking activities. Preparation of labetalol, its enantiomers and related salicylamides. J. Med. Chem. 25, 670-679. https://doi.org/10.1021/ jm00348a013.

Das, J., Vellakkaran, M., and Banerjee, D. (2019). Nickel-catalyzed alkylation of ketone enolates: synthesis of monoselective linear ketones. J. Org. Chem. 84, 769-779. https://doi.org/10.1021/acs. joc.8b02609.
de Meijere, A., and Meyer, F.E. (1994). Fine feathers make fine birds: the heck reaction in modern garb. Angew. Chem. Int. Ed. 33, 23792411. https://doi.org/10.1002/anie. 199423791.

Deng, L., and Dong, G. (2020). Carbon-Carbon bond activation of ketones. Trends Chem. 2, 183-198. https://doi.org/10.1016/j.trechm. 2019 12.002.

Deng, Z., Wei, J., Liao, L., Huang, H., and Zhao, X. (2015). Organoselenium-catalyzed, hydroxycontrolled regio- and stereoselective amination of terminal alkenes: efficient synthesis of 3-amino allylic alcohols. Org. Lett. 17, 1834-1837. https:// doi.org/10.1021/acs.orglett.5b00213.

Dong, G. (2014). C-C bond activation. In Topics in Current Chemistry (Springer-Verlag).

Dounay, A.B., and Overman, L.E. (2003). The asymmetric intramolecular Heck reaction in natural product total synthesis. Chem. Rev. 103, 2945-2963. https://doi.org/10.1021/cr020039h.

Ertl, P., and Schuhmann, T. (2019). A systematic cheminformatics analysis of functional groups occurring in natural products. J. Nat. Prod. 82, 1258-1263. https://doi.org/10.1021/acs.jnatprod. 8b01022.

Faulkner, A., Scott, J.S., and Bower, J.F. (2015). An umpolung approach to alkene carboamination: palladium catalyzed 1, 2-amino-acylation, -carboxylation, -arylation, -vinylation, and -alkynylation. J. Am. Chem. Soc. 137, 7224-7230. https://doi.org/10.1021/jacs.5b03732.

Funabiki, K., Komeda, T., Kubota, Y., and Matsui, M. (2009). Brönsted acid ionic liquid-catalyzed direct benzylation, allylation and propargylation of 1,3-dicarbonyl compounds with alcohols as well as one-pot synthesis of 4 H -chromenes Tetrahedron 65, 7457-7463. https://doi.org/10. 1016/j.tet.2009.07.012.

George, S.R.D., Frith, T.D.H., Thomas, D.S., and Harper, J.B. (2015). Putting corannulene in its place. Reactivity studies comparing corannulene with other aromatic hydrocarbons. Org. Biomol. Chem. 13, 9035-9041. https://doi.org/10.1039/ c5ob01215e.

Grissom, J.W., and Klingberg, D. (1993). Aryl radical additions to aldehydes and oxime ethers: the tandem enediyne-radical cyclization. J. Org. Chem. 58, 6559-6564. https://doi.org/10.1021/ jo00076a011.

Guo, Z.-Q., Xu, H., Wang, X., Wang, Z.-Y., Ma, B., and Dai, H.-X. (2021). C3-arylation of indoles with aryl ketones via $\mathrm{C}-\mathrm{C} / \mathrm{C}-\mathrm{H}$ activations. Chem.

Commun. 57, 9716-9719. https://doi.org/10. 1039/d1cc03954g.

Hashimoto, K., Nakagawa, Y., Nabata, H., and Imai, S. (1977). Ca-antagonistic effects of etafenone. Jpn. J. Pharmacol. 27, 110. https://doi. org/10.1016/s0021-5198(19)66531-5.

Heck, R.F., and Nolley, J.P. (1972). Palladiumcatalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. J. Org. Chem. 37, 2320-2322. https://doi.org/10.1021/ jo00979a024.

Hon, Y.-S., Wong, Y.-C., Chang, C.-P., and Hsieh, C.-H. (2007). Tishchenko reactions of aldehydes promoted by diisobutylaluminum hydride and its application to the macrocyclic lactone formation. Tetrahedron 63, 11325-11340. https://doi.org/10. 1016/j.tet.2007.08.074.

Huang, G.-L., Zhou, X.-M., Bai, M., Liu, Y.-X., Zhao, Y.-L., Luo, Y.-P., Niu, Y.-Y., Zheng, C.-J., and Chen, G.-Y. (2016). Dihydroisocoumarins from the mangrove-derived fungus penicillium citrinum. Mar. Drugs 14, 177-184. https://doi.org/10.3390/ md14100177.

Huang, H., Ji, X., Wu, W., and Jiang, H. (2015). Transition metal-catalyzed $\mathrm{C}-\mathrm{H}$ functionalization of N -oxyenamine internal oxidants. Chem. Soc. Rev. 44, 1155-1171. https://doi.org/10.1039/ c4cs00288a.

Huang, H., Yu, C., Zhang, Y., Zhang, Y., Mariano, P.S., and Wang, W. (2017). Chemo- and regioselective organo-photoredox catalyzed hydroformylation of styrenes via a radical pathway. J. Am. Chem. Soc. 139, 9799-9802. https://doi.org/10.1021/jacs.7b05082.

Huang, J., Zhang, R., Wu, X., Dong, G., and Xia, Y. (2022). Intramolecular one-carbon homologation of unstrained ketones via C-C activation-enabled 1, 1-insertion of alkenes. Org. Lett. 24, 2436-2440. https://doi.org/10.1021/acs.orglett.2c00716.

Huang, L., Qi, J., Wu, X., Huang, K., and Jiang, H. (2013a). Highly selective β-hydride elimination in Pd-catalyzed decarboxylative Heck-type reaction. Org. Lett. 15, 2330-2333. https://doi. org/10.1021/ol400818v.

Huang, L., Qi, J., Wu, X., Wu, W., and Jiang, H. (2013b). Aerobic oxidative coupling between carbon nucleophiles and allylic alcohols: a strategy to construct β-(hetero)aryl ketones and aldehydes through hydrogen migration. Chem. Eur J. 19, 15462-15466. https://doi.org/10.1002/ chem. 201302962.

Itoh, A., Ikuta, Y., Baba, Y., Tanahashi, T., and Nagakura, N. (1999). Ipecac alkaloids from cephaelis acuminata. Phytochemistry 52, 11691176. https://doi.org/10.1016/s0031-9422(99) 00361-1.

Itooka, R., Iguchi, Y., and Miyaura, N. (2003). Rhodium-catalyzed 1, 4-addition of arylboronic acids to α, β-unsaturated carbonyl compounds: large accelerating effects of bases and ligands. J. Org. Chem. 68, 6000-6004. https://doi.org/10. 1021/j00207067.

Jana, R., and Tunge, J.A. (2009). A homogeneous, recyclable rhodium(I)-catalyst for the
hydroarylation of Michael acceptors. Org. Lett.
11, 971-974. https://doi.org/10.1021/ol802927v.

Juliá-Hernández, F., Ziadi, A., Nishimura, A., and Martin, R. (2015). Nickel-catalyzed chemo-regioand diastereoselective bond formation through proximal $\mathrm{C}-\mathrm{C}$ cleavage of
benzocyclobutenones. Angew. Chem. Int. Ed. 54, 9537-9541. https://doi.org/10.1002/anie. 201503461.

Jun, C.-H. (2004). Transition metal-catalyzed carbon-carbon bond activation. Chem. Soc. Rev. 33, 610-618. https://doi.org/10.1039/b308864m.

Kaku, H., Imai, T., Kondo, R., Mamba, S., Watanabe, Y., Inai, M., Nishii, T., Horikawa, M., and Tsunoda, T. (2013). A method to prepare optically active acyclic α-benzyl ketones by thermodynamically controlled deracemization. Eur. J. Org Chem. 2013, 8208-8213. https://doi. org/10.1002/ejoc. 201300936.

Kikukawa, K., and Matsuda, T. (1977). Reaction of diazonium salts with transition metals. I. arylation of olefins with arenediazonium salts catalyzed by zero valent palladium. Chem. Lett. 6, 159-162. https://doi.org/10.1246/cl.1977.159.

Kim, D.-S., Park, W.-J., and Jun, C.-H. (2017). Metal-organic cooperative catalysis in $\mathrm{C}-\mathrm{H}$ and C-C bond activation. Chem. Rev. 117, 89779015. https://doi.org/10.1021/acs.chemrev. 6b00554.

Kondo, T., Nakamura, A., Okada, T., Suzuki, N., Wada, K., and Mitsudo, T.a. (2000). Rutheniumcatalyzed reconstructive synthesis of cyclopentenones by unusual coupling of cyclobutenediones with alkenes involving carbon-carbon bond cleavage. J. Am. Chem. Soc. 122, 6319-6320. https://doi.org/10.1021/ ja000238n.

Kotani, S., Osakama, K., Sugiura, M., and Nakajima, M. (2011). A tertiary amine as a hydride donor: trichlorosilyl triflate-mediated conjugate reduction of unsaturated ketones. Org. Lett. 13, 3968-3971. https://doi.org/10.1021/ol2014895.

Krishnamurty, H.G., and Prasad, J.S. (1975). New and simple syntheses of olivetol. Tetrahedron Lett. 16, 2511-2512. https://doi.org/10.1016/ 0040-4039(75)80052-9.

Kumar, G.S., Chand, T., Singh, D., and Kapur, M. (2018). Ruthenium-catalyzed C-H functionalization of benzoic acids with allyl alcohols: a controlled reactivity switch between $\mathrm{C}-\mathrm{H}$ alkenylation and $\mathrm{C}-\mathrm{H}$ alkylation pathways. Org. Lett. 20, 4934-4937. https://doi.org/10. 1021/acs.orglett.8b02064.

Labeeuw, O., Phansavath, P., and Genêt, J.P. (2004). Synthesis of modified Weinreb amides: N-tert-butoxy- N -methylamides as effective acylating agents. Tetrahedron Lett. 45, 7107-7110. https://doi.org/10.1016/j. tetlet.2004.07.106.

Lafrance, M., Roggen, M., and Carreira, E.M. (2012). Direct, enantioselective iridium-catalyzed allylic amination of racemic allylic alcohols. Angew. Chem. Int. Ed. 51, 3470-3473. https://doi. org/10.1002/anie. 201108287.

Larionov, E., Lin, L.Q., Guénée, L., Guénée, L., and Mazet, C. (2014). Scope and mechanism in palladium-catalyzed isomerizations of highly substituted allylic, homoallylic, and alkenyl alcohols. J. Am. Chem. Soc. 136, 16882-16894. https://doi.org/10.1021/ja508736u.

Larock, R.C. (1999). Comprehensive Organic Transformations (John Wiley \& Sons).

Larock, R.C., and Gong, W.H. (1989). Palladiumcatalyzed intermolecular vinylation of cyclic alkenes. J. Org. Chem. 54, 2047-2050. https:// doi.org/10.1021/jo00270a011.

Larock, R.C., Song, H., Baker, B.E., and Gong, W.H. (1988). Synthesis of bicyclic and polycyclic alkenes via palladium-catalyzed intramolecular arylation and vinylation. Tetrahedron Lett. 29, 2919-2922. https://doi.org/10.1016/0040-4039(88)85047-0.

Latham, D.E., Polidano, K., Williams, J.M.J., and Morrill, L.C. (2019). One-pot conversion of allylic alcohols to α-methyl ketones via iron-catalyzed isomerization-methylation. Org. Lett. 21, 79147918. https://doi.org/10.1021/acs.orglett. $9 b 02900$.

Li, H., Ma, B., Liu, Q.-S., Wang, M.-L., Wang, Z.-Y., Xu, H., Li, L.-J., Wang, X., and Dai, H.-X. (2020). Transformations of aryl ketones via ligandpromoted $\mathrm{C}-\mathrm{C}$ bond activation. Angew. Chem. Int. Ed. 59, 14388-14393. https://doi.org/10.1002/ anie. 202006740.

Li, Z., Parr, B.T., and Davies, H.M.L. (2012). Highly stereoselective $\mathrm{C}-\mathrm{C}$ bond formation by rhodium-catalyzed tandem ylide formation/2, 3 -sigmatropic rearrangement between donor/ acceptor carbenoids and chiral allylic alcohols. J. Am. Chem. Soc. 134, 10942-10946. https://doi. org/10.1021/ja303023n.

Liao, J., Zhang, Z., Tang, X., Wu, W., Guo, W., and Jiang, H. (2015). Palladium-catalyzed desulfitative oxidative coupling between arenesulfinic acid salts and allylic alcohols: a strategy for the selective construction of β-aryl ketones and aldehydes. J. Org. Chem. 80, 8903-8909. https:// doi.org/10.1021/acs.joc.5b01463.

Liu, J., Yuan, Q., Toste, F.D., and Sigman, M.S. (2019). Enantioselective construction of remote tertiary carbon-fluorine bonds. Nat. Chem. 11, 710-715. https://doi.org/10.1038/s41557-019-0289-7.

Liu, X., Deaton, T.M., Haeffner, F., and Morken, J.P. (2017). A boron alkylidene-alkene cycloaddition reaction: application to the synthesis of aphanamal. Angew. Chem. Int. Ed. 56, 11485-11489. https://doi.org/10.1002/anie. 201705720.

Lu, Z., and Guo, J. (2019). Chiral Geminal Disilyl Alkane Compound, Synthesis Method and Applications Thereof (CN109111333, A).

Marek, I., Masarwa, A., Delaye, P.O., and Leibeling, M. (2015). Selective carbon-carbon bond cleavage for the stereoselective synthesis of acyclic systems. Angew. Chem. Int. Ed. 54, 414-429. https://doi.org/10.1002/anie. 201405067.

Mc Cartney, D., and Guiry, P.J. (2011). The asymmetric Heck and related reactions. Chem. Soc. Rev. 40, 5122-5150. https://doi.org/10.1039/ c1cs15101k.

Mei, T.-S., Patel, H.H., and Sigman, M.S. (2014). Enantioselective construction of remote quaternary stereocentres. Nature 508, 340-344. https://doi.org/10.1038/nature13231.

Mei, T.-S., Werner, E.W., Burckle, A.J., and Sigman, M.S. (2013). Enantioselective redox-relay oxidative Heck arylations of acyclic alkenyl alcohols using boronic acids. J. Am. Chem. Soc. 135, 6830-6833. https://doi.org/10.1021/ ja402916z.

Méndez-Sánchez, D., Mangas-Sánchez, J., Busto, E., Gotor, V., and Gotor-Fernández, V. (2016). Dynamic reductive kinetic resolution of benzyl ketones using alcohol dehydrogenases and anion exchange resins. Adv. Synth. Catal. 358, 122-131 https://doi.org/10.1002/adsc. 201500801.

Mizoroki, T., Mori, K., and Ozaki, A. (1971).
Arylation of olefin with aryl iodide catalyzed by palladium. Bull. Chem. Soc. Jpn. 44, 581. https:// doi.org/10.1246/bcsj.44.581.

Molander, G.A., and Petrillo, D.E. (2008). SuzukiMiyaura cross-coupling of potassium trifluoroboratohomoenolates. Org. Lett. 10, 1795-1798. https://doi.org/10.1021/ol800357c.

Moser, M., and Bode, C. (2008). Anticoagulation in acute coronary syndrome an update.
Hamostaseologie 28, 62-65.
Murakami, M., and Ishida, N. (2016). Potential of metal-catalyzed C-C single bond cleavage for organic synthesis. J. Am. Chem. Soc. 138, 1375913769. https://doi.org/10.1021/jacs.6b01656.

Murray, B.A. (2015). Reactions of aldehydes and ketones and their derivatives. In Organic Reaction Mechanisms (John Wiley \& Sons Ltd).

Nahm, S., and Weinreb, S.M. (1981). N-methoxyN -methylamides as effective acylating agents. Tetrahedron Lett. 22, 3815-3818. https://doi.org/ 10.1016/s0040-4039(01)91316-4.

Nambara, T., Honma, S., and Akiyama, S. (1970). Studies on steroid conjugates. III. new syntheses of 2-Methoxyestrogens. Chem. Pharm. Bull. 18, 474-480. https://doi.org/10.1248/cpb.18.474.

Ngadjui, B.T., Ayafor, J.F., Sondengam, B.L., Connolly, J.D., and Rycroft, D.S. (1991).
Hoslundin, hoslundal, and hoslunddiol: three new flavonoids from the twigs of hoslundia opposita (lamiaceae). Tetrahedron 47, 3555-3564. https:// doi.org/10.1016/s0040-4020(01)80869-3.

Nguyen, T.T., Le, H.V., Pham, T.L.D., Nguyen, T.M., Tran, K.A., Dang, H.V., and Phan, N.T.S. (2020). Copper-promoted coupling of propiophenones and arylhydrazines for the synthesis of 1, 3-diarylpyrazoles. Synlett 31, 801-804. https://doi.org/10.1055/s-00391690835.

Nicholson, K., Langer, T., and Thomas, S.P. (2021). Borane-catalyzed, chemoselective reduction and hydrofunctionalization of enones enabled by B-O transborylation. Org. Lett. 23, 2498-2504. https://doi.org/10.1021/acs.orglett. 1 c00446.

Nicolaou, K.C., Reingruber, R., Sarlah, D., and Bräse, S. (2009). Enantioselective intramolecular Friedel-Crafts-type α-arylation of aldehydes. J. Am. Chem. Soc. 131, 2086-2087. https://doi. org/10.1021/ja809405c.

Nishimura, T., and Uemura, S. (2000).
Palladium(0)-catalyzed ring cleavage of cyclobutanone oximes leading to nitriles via β-carbon elimination. J. Am. Chem. Soc. 122, 12049-12050. https://doi.org/10.1021/ja005558|.

Niu, T., Wang, K.-H., Huang, D., Xu, C., Su, Y., Hu, Y., and Fu, Y. (2014). One-Pot transition-metalfree synthesis of Weinreb amides directly from carboxylic acids. Synthesis 46, 320-330. https:// doi.org/10.1055/s-0033-1340317.

Oi, S., Moro, M., Ito, H., Honma, Y., Miyano, S., and Inoue, Y. (2002). Rhodium-catalyzed conjugate addition of aryl- and alkenyl-stannanes to α, β-unsaturated carbonyl compounds. Tetrahedron 58, 91-97. https://doi.org/10.1016/ s0040-4020(01)01128-0.

Okumura, S., Sun, F., Ishida, N., and Murakami, M. (2017). Palladium-catalyzed intermolecular exchange between $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{Si} \sigma$-bonds. J. Am. Chem. Soc. 139, 12414-12417. https://doi. org/10.1021/jacs.7b07667.

Onodera, S., Togashi, R., Ishikawa, S., Kochi, T., and Kakiuchi, F. (2020). Catalytic, directed C-C bond functionalization of styrenes. J. Am. Chem. Soc. 142, 7345-7349. https://doi.org/10.1021/ jacs.0c02232.

Patel, H.H., and Sigman, M.S. (2015). Palladiumcatalyzed enantioselective Heck alkenylation of acyclic alkenols using a redox-relay strategy. J. Am. Chem. Soc. 137, 3462-3465. https://doi. org/10.1021/ja5130836.

Race, N.J., Hazelden, I.R., Faulkner, A., and Bower, J.F. (2017). Recent developments in the use of aza-Heck cyclizations for the synthesis of chiral N-heterocycles. Chem. Sci. 8, 5248-5260. https://doi.org/10.1039/c7sc01480e.

Race, N.J., Yuan, Q., and Sigman, M.S. (2019). Enantioselective C2-alkylation of indoles through a redox-relay heck reaction of 2-indole triflates. Chem. Eur J. 25, 512-515. https://doi.org/10. 1002/chem. 201805416.

Ren, W., Chang, W., Dai, J., Shi, Y., Li, J., and Shi, Y. (2016). An effective Pd-catalyzed regioselective hydroformylation of olefins with formic acid. J. Am. Chem. Soc. 138, 14864-14867. https://doi. org/10.1021/jacs.6b10297.

Rybtchinski, B., and Milstein, D. (1999). Metal insertion into $\mathrm{C}-\mathrm{C}$ bonds in solution. Angew. Chem. Int. Ed. 38, 870-883. https://doi.org/10. 1002/(sici)1521-3773(19990401)38:7<870::aid-anie870>3.0.co;2-3.

Sakaguchi, K., Kubota, S., Akagi, W., Ikeda, N., Higashino, M., Ariyoshi, S., Shinada, T., Ohfune, Y., and Nishimura, T. (2019). Acid-catalyzed chirality-transferring intramolecular FriedelCrafts cyclization of α-hydroxy- α-alkenylsilanes. Chem. Commun. 55, 8635-8638. https://doi.org/ 10.1039/c9cc03509e.

Schlosser, M., and Michel, D. (1996). About the "physiological size" of fluorine substituents: comparison of sensorially active compounds with fluorine and methyl substituted analogues. Tetrahedron 52, 99-108. https://doi.org/10.1016/ 0040-4020(95)00886-d.

Sebastian, S., Monika, Khatana, A.K., Yadav, E., Gupta, M.K., and Gupta, M.K. (2021). Recent approaches towards one-carbon homologationfunctionalization of aldehydes. Org. Biomol. Chem. 19, 3055-3074. https://doi.org/10.1039/ d1ob00135c.

Shen, Z.-L., Lai, Y.-C., Wong, C.H.A., Goh, K.K.K., Yang, Y.-S., Cheong, H.-L., and Loh, T.-P. (2011).

Palladium-catalyzed cross-coupling of indium homoenolate with aryl halide with wide functional group compatibility. Org. Lett. 13, 422-425. https://doi.org/10.1021/ol102755q.

Shu, C., Mega, R.S., Andreassen, B.J., Noble, A., and Aggarwal, V.K. (2018). Synthesis of functionalized cyclopropanes from carboxylic acids by a radical addition-polar cyclization cascade. Angew. Chem. Int. Ed. 57, 15430-15434. https://doi.org/10.1002/anie.201808598.

Soni, R., Hall, T.H., Morris, D.J., Clarkson, G.J., Owen, M.R., and Wills, M. (2015). NFunctionalised TsDPEN catalysts for asymmetric transfer hydrogenation; synthesis and applications. Tetrahedron Lett. 56, 6397-6401. https:// doi.org/10.1016/j.tetlet.2015.09.135.

Souillart, L., and Cramer, N. (2015). Catalytic C-C bond activations via oxidative addition to transition metals. Chem. Rev. 115, 9410-9464. https://doi.org/10.1021/acs.chemrev.5b00138.

Stockwell, B.R., and Welsch, M. (2017). Multivalent Ras Binding Compounds. Patent: WO2017096045, (A1).

Tamaru, Y., Yamada, Y., and Yoshida, Z.I. (1979).
The palladium catalyzed thienylation of allylic alcohols with 2 - and 3-bromothiophenes and their derivatives. Tetrahedron 35, 329-340. https://doi.org/10.1016/0040-4020(79)80071-X.

Tan, F., Pu, M., He, J., Li, J., Yang, J., Dong, S., Liu, X., Wu, Y.-D., and Feng, X. (2021). Catalytic asymmetric homologation of ketones with α-Alkyl- α-diazoesters. J. Am. Chem. Soc. 143, 2394-2402. https://doi.org/10.1021/jacs. 0c12683.

Tan, Y., and Hartwig, J.F. (2010). Palladiumcatalyzed amination of aromatic $\mathrm{C}-\mathrm{H}$ bonds with oxime esters. J. Am. Chem. Soc. 132, 3676-3677. https://doi.org/10.1021/ja100676r.

Tsutsui, H., Hayashi, Y., and Narasaka, K. (1997). Preparation of primary amines by the copper(l) catalyzed reaction of 4, 4'-bis(trifluoromethyl) benzophenone O-methylsulfonyloxime and alkyl Grignard reagents. Chem. Lett. 26, 317-318. https://doi.org/10.1246/cl.1997.317.

Vidal, C., Tomás-Gamasa, M., GutiérrezGonzález, A., and Mascareñas, J.L. (2019). Ruthenium-catalyzed redox isomerizations inside living cells. J. Am. Chem. Soc. 141, 5125-5129. https://doi.org/10.1021/jacs.9b00837.

Vollhardt, K.P.C., and Schore, N.E. (2018).
Organic Chemistry: Structure and Function (W.H. Freeman and Company).

Walton, J.C. (2014). The oxime portmanteau motif: released heteroradicals undergo incisive EPR interrogation and deliver diverse heterocycles. Accounts Acc. Chem. Res. 47, 1406-1416. https://doi.org/10.1021/ar500017f.

Wang, M.-L., Xu, H., Li, H.-Y., Ma, B., Wang, Z.-Y., Wang, X., and Dai, H.-X. (2021). Mizoroki-heck reaction of unstrained aryl ketones via ligandpromoted C-C bond olefination. Org. Lett. 23, 2147-2152. https://doi.org/10.1021/acs.orglett. 1 c 00296.

Watanabe, E., Kaiho, A., Kusama, H., and Iwasawa, N. (2013). Cobalt-salen complex-catalyzed oxidative generation of alkyl radicals from
aldehydes for the preparation of hydroperoxides. J. Am. Chem. Soc. 135, 11744-11747. https://doi. org/10.1021/ja406028c.

Xia, Y., and Dong, G. (2020). Temporary or removable directing groups enable activation of unstrained C-C bonds. Nat. Rev. Chem 4, 600-614. https://doi.org/10.1038/s41570-020-0218-8.

Xia, Y., Ochi, S., and Dong, G. (2019). Two-carbon ring expansion of 1-indanones via insertion of ethylene into carbon-carbon bonds. J. Am. Chem. Soc. 141, 13038-13042. https://doi.org/10. 1021/jacs.9b07445.

Xu, H., Ma, B., Fu, Z.Y., Li, H.-Y., Wang, X., Wang, Z.-Y., Li, L.-J., Cheng, T.-J., Zheng, M., and Dai, H.-X. (2021). Ligand-promoted alkynylation of aryl ketones: a practical tool for structural diversity in drugs and natural
products. ACS Catal. 11, 1758-1764. https:// doi.org/10.1021/acscatal.0c05372.

Xu, T., and Dong, G. (2012). Rhodiumcatalyzed regioselective carboacylation of olefins: a C-C bond activation approach for accessing fused-ring systems. Angew. Chem. Int. Ed. 51, 7567-7571. https://doi.org/10. 1002/anie. 201202771.

You, C., Li, S., Li, X., Lan, J., Yang, Y., Chung, L.W., Lv, H., and Zhang, X. (2018). Design and application of hybrid phosphorus ligands for enantioselective Rh-catalyzed anti-Markovnikov hydroformylation of unfunctionalized 1,
1-disubstituted alkenes. J. Am. Chem. Soc. 140, 4977-4981. https://doi.org/10.1021/jacs. 8b00275.

Yu, X.-Y., Chen, J.-R., and Xiao, W.-J. (2021).
Visible light-driven radical-mediated $\mathrm{C}-\mathrm{C}$ bond cleavage/functionalization in organic synthesis.

Chem. Rev. 121, 506-561. https://doi.org/10. 1021/acs.chemrev.0c00030.

Zhan, J.-L., Wu, M.-W., Chen, F., and Han, B. (2016). Cu-catalyzed [3+3] annulation for the synthesis of pyrimidines via $\beta-\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ functionalization of saturated ketones. J. Org. Chem. 81, 11994-12000. https://doi.org/10.1021/ acs.joc.6b02181.

Zhang, G., Wu, J., Zeng, H., Zhang, S., Yin, Z., and Zheng, S. (2017). Cobalt-catalyzed α-alkylation of ketones with primary alcohols. Org. Lett. 19, 1080-1083. https://doi.org/10.1021/acs.orglett. $7 b 00106$.

Zhang, L., Xie, X., Fu, L., and Zhang, Z. (2013). $\mathrm{RuCl}_{2}(\mathrm{p}$-cymene)-catalyzed conjugate addition of arylboronic acids to α, β-unsaturated ketones under ligand-free and neutral conditions. J. Org. Chem. 78, 3434-3437. https://doi.org/10.1021/ jo4001367.
iScience
OPEN ACCESS

STAR太METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Chemicals, peptides, and recombinant proteins		
Hydroxylammonium chloride	Sinopharm Chemical Reagent Co. LTD	Cas: 5470-11-1
Vinylmagnesium bromide	Energy Chemical	Cas: 1826-67-1
2,3,4,5,6-Pentafluorobenzoylchloride	Sigma-Aldrich	Cas: 2251-50-5
Pyridine	Sinopharm Chemical Reagent Co. LTD	Cas: 110-86-1
PdCl_{2}	J\&K Scientific	Cas: 7647-10-1
AgNTf_{2}	J\&K Scientific	Cas: 189114-61-2
$\mathrm{K}_{2} \mathrm{CO}_{3}$	Sinopharm Chemical Reagent Co. LTD	Cas: 584-08-7
TsONa	Sinopharm Chemical Reagent Co. LTD	Cas: 657-84-1
1,2-Dichloroethane	J\&K Scientific	Cas: 107-06-2
Acetophenone	Energy Chemical	Cas: 98-86-2
1-Phenylbutan-1-one	Energy Chemical	Cas: 495-40-9
1-Phenylpentan-1-one	bidepharm	Cas: 1009-14-9
3-Buten-2-ol	J\&K Scientific	Cas: 598-32-3
1-Penten-3-ol	J\&K Scientific	Cas: 616-25-1
1-Hexen-3-ol	bidepharm	Cas: 4798-44-1
1-Octen-3-ol	J\&K Scientific	Cas: 3391-86-4
Crotonyl alcohol	Macklin	Cas: 6117-91-5
3-Buten-1-ol	bidepharm	Cas: 627-27-0
3-Methyl-3-buten-1-ol	J\&K Scientific	Cas: 763-32-6
NaBD_{4}	Energy Chemical	Cas: 15681-89-7
$\mathrm{CeCl}_{3} \bullet 7 \mathrm{H}_{2} \mathrm{O}$	Energy Chemical	Cas: 18618-55-8
BHT	Energy Chemical	Cas: 128-37-0
TEMPO	Energy Chemical	Cas: 2564-83-2
Br_{2}	Sinopharm Chemical Reagent Co. LTD	Cas: 7726-95-6
$\mathrm{NaBH}(\mathrm{OAc})_{3}$	Energy Chemical	Cas: 56553-60-7
p -Anisidine	Energy Chemical	Cas: 104-94-9
AcOH	Sinopharm Chemical Reagent Co. LTD	Cas: 64-19-7
Phenylhydrazine hydrochloride	Energy Chemical	Cas: 59-88-1
2-Aminobenzophenone	Energy Chemical	Cas: 2835-77-0
Benzamidine hydrochloride	Energy Chemical	Cas: 1670-14-0
$\mathrm{Cu}(\mathrm{OAc})_{2}$	TCl	Cas: 6046-93-1
2,2'-Bipyridine	bidepharm	Cas: 366-18-7
4-OH-TMEPO	Energy Chemical	Cas: 2226-96-2
NaOAc	Sinopharm Chemical Reagent Co. LTD	Cas: 127-09-3
1,2-Dichlorobenzene	Energy Chemical	Cas: 95-50-1
CuBr_{2}	Alfa Aesar	Cas: 7789-45-9
Phenylhydrazine	Sinopharm Chemical Reagent Co. LTD	Cas: 100-63-0

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Hui-Xiong Dai (hxdai@simm.ac.cn).

Materials availability

All materials generated in this study are available within the article and the supplemental information or from the lead contact upon reasonable request.

Data and code availability

- All data reported in this paper will be available from the lead contact upon request.
- This paper does not report original code.
- Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

General information

All chemicals were used as received without further purification. Solvents were purified prior to use according to conventional procedures. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AVANCE III 400, Bruker AVANCE III 500 and Bruker AVANCE III 600 instruments. All chemical shifts (δ) are reported in parts per million (ppm) and coupling constants (J) are reported in Hz . High resolution mass spectra (HRMS) of the substrates, intermediate and products were obtained using UHPLC-QTOF spectrometer and Thermo DFS spectrometer. Melting points were measured by SGWX-4A micro melting point apparatus. All reactions were monitored by thin-layer chromatography (TLC) through GF254 silica gel-coated plates. The aryl ketones were commercially available or readily prepared according to the known method (Xu et al., 2021; Nahm and Weinreb, 1981; Niu et al., 2014; Labeeuw et al., 2004; Nambara et al., 1970; George et al., 2015).

Preparation of ketoxime esters (for ketoxime esters used in this work, see Scheme S1)

To a mixture of hydroxylammonium chloride ($278 \mathrm{mg}, 4 \mathrm{mmol}$), $\mathrm{NaOAc}(640 \mathrm{mg}, 8 \mathrm{mmol}), \mathrm{EtOH}(10 \mathrm{~mL})$ was added aryl ketone (2 mmol), and the mixture was stirred at r .t. for overnight or at $90^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was cooled down to room temperature, and then EtOH was removed under reduced pressure. The resulting mixture was extracted with EtOAc . The organic layer was then washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum to give oxime ($>99 \%$ yield), not further purified.

To a mixture of oxime (2 mmol) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was slowly added 2,3,4,5,6-Pentafluorobenzoylchloride ($552 \mathrm{mg}, 2.4 \mathrm{mmol}$), pyridine ($221.2 \mathrm{mg}, 2.8 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After completion, aq. $\mathrm{HCl}(1.0 \mathrm{M})$ was added to the above solution, and the aqueous phase was discarded. The organic portion was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was isolated by column chromatography (petroleum ether/ethyl acetate 20:1-5:1) or recrystallization to give ketoxime esters 1.

Preparation of alkenyl alcohols (for alkenyl alcohols used in this work, see Scheme S2)

Procedure (A) (Lafrance et al., 2012): To a stirred solution of aldehyde (5.0 mmol) in dry THF (20 mL) was added vinylmagnesium bromide (1.0 M in THF, $5.5 \mathrm{~mL}, 5.5 \mathrm{mmol}$) dropwise through a syringe at $0^{\circ} \mathrm{C}$. After stirring for 20 min the reaction mixture could warm to room temperature. The resulting mixture was stirred for additional 4 h and then quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(20 \mathrm{~mL})$. The organic phase was extracted with ethyl acetate ($30 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuum to afford the crude product. It was further purified by flash silica gel column chromatography.

Procedure (B) (Li et al., 2012): To a solution of aldehyde ($5.0 \mathrm{mmol}, 1.0$ equiv) in dry THF (20 mL) was slowly added alkyl magnesium bromide ($5.5 \mathrm{mmol}, 1.1$ equiv) at $0^{\circ} \mathrm{C}$. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 4 h and then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The resultant layers were separated and the aqueous was extracted with diethyl ether. The combined organic fractions were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by distillation.

Synthesis of pent-1-en-3-d-3-ol (2a-d) (Vidal et al., 2019)
$\mathrm{NaBD}_{4}(420 \mathrm{mg}, 10 \mathrm{mmol}, 1.0 \mathrm{eq}$.), was added to a mixture of pent-1-en-3-one ($840 \mathrm{mg}, 10 \mathrm{mmol}$) and $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(5.0 \mathrm{~g}, 13 \mathrm{mmol}, 1.3$ eq. $)$ in $\mathrm{MeOH}(30 \mathrm{~mL}, 0.3 \mathrm{M})$ over a period of 30 min . After 2 h , then
quenched by water (50 mL). The organic phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL} \times 3)$. The organic phase was washed with brine $(100 \mathrm{~mL} \times 3)$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by distillation to afford $2 \mathrm{a}-\mathrm{d}$ in 34% yield, $95 \% \mathrm{D}$.

General procedure for the preparation of 3 or 8

To a 25 mL sealed tube was added ketoxime esters $1(0.1 \mathrm{mmol})$, alkenyl alcohols $2(0.2 \mathrm{mmol}), \mathrm{PdCl}_{2}(10$ $\mathrm{mol} \%, 1.8 \mathrm{mg}), \mathrm{K}_{2} \mathrm{CO}_{3}(1.0 \mathrm{eq}, 13.8 \mathrm{mg}), \mathrm{TsONa}(1.0 \mathrm{eq}, 19.4 \mathrm{mg}), \mathrm{L} 8(20 \mathrm{~mol} \%, 3.6 \mathrm{mg}), \mathrm{AgNTf}_{2}(20 \mathrm{~mol} \%$, 7.8 mg) and 1,2-dichloroethane (3 mL), then the reaction mixture was stirred at $120^{\circ} \mathrm{C}$ for 12 h under N_{2} atmosphere. After completion, the mixture and then filtered through Celite. The filtrate was evaporated to give the crude product which was then purified by flash column chromatography on silica gel with a gradient eluent of hexane/ethyl acetate to give the product 3 or 8 .

General procedure for the preparation of 7

To a 25 mL sealed tube was added ketoxime esters 1 (0.1 mmol), alkenyl alcohols 6 (0.2 mmol), PdCl_{2} (10 $\mathrm{mol} \%, 1.8 \mathrm{mg}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(1.0 \mathrm{eq}, 13.8 \mathrm{mg})$, $\mathrm{TsONa}(1.0 \mathrm{eq}, 19.4 \mathrm{mg}) \mathrm{L} 8$ or $\mathrm{L} 1(20 \mathrm{~mol} \%), \mathrm{AgNTf}_{2}(20 \mathrm{~mol} \%$, 7.8 mg) and 1,2-dichloroethane (3 mL), then the reaction mixture was stirred at $120^{\circ} \mathrm{C}$ for $12-18 \mathrm{~h}$ under N_{2} atmosphere. After completion, the mixture and then filtered through Celite. The filtrate was evaporated to give the crude product which was then purified by flash column chromatography on silica gel with a gradient eluent of hexane/ethyl acetate to give the product 7 .

10 mmol scale one-pot synthesis

Propiophenone ($1.34 \mathrm{~g}, 10 \mathrm{mmol}$) was added to the solution of $\mathrm{NH}_{3} \mathrm{OCOAr}_{F} \mathrm{OTf}(3.9 \mathrm{~g}, 10.5 \mathrm{mmol})$ in EtOH $(30.0 \mathrm{~mL})$ at r.t. After the mixture stirred for special time (monitored by TLC$), \mathrm{K}_{2} \mathrm{CO}_{3}\left(1.5 \mathrm{~g}\right.$ in $20.0 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2}$) was added dropwise. Then EtOH was removed under reduced pressure, and the resulting mixture was extracted with EtOAc . The organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum to give the corresponding oxime ester 1a-2 without further purification. Under N_{2} atmosphere, a mixture of $1 \mathrm{a}-2, \mathrm{PdCl}_{2}(10 \mathrm{~mol} \%, 180 \mathrm{mg}), \mathrm{K}_{2} \mathrm{CO}_{3}(10 \mathrm{mmol}, 1.38 \mathrm{~g}), \mathrm{TsONa}(10 \mathrm{mmol}$, $1.94 \mathrm{~g}) \mathrm{L} 8(364 \mathrm{mg}, 20 \mathrm{~mol} \%), \mathrm{AgNTf}_{2}(20 \mathrm{~mol} \%, 780 \mathrm{mg})$, DCE (200 mL), and 1-Pentene-3-ol (2a) $\left(20 \mathrm{mmol}, 2.1 \mathrm{~mL}\right.$) was stirred at $120^{\circ} \mathrm{C}$ in oil bath for 12 h . After completion, the mixture and then filtered through Celite. The filtrate was evaporated to give the crude product which was then purified by flash column chromatography on silica gel with a gradient eluent of hexane/ethyl acetate (50:1-20:1) to give the product 3 a (886 mg) in 54% yield.

Synthetic application and transformation

Synthesis of product 9: To a 15 mL sealed tube was added substrates $8 \mathrm{e}(36.8 \mathrm{mg}, 0.1 \mathrm{mmol})$, DCM (1 mL), $\mathrm{Br}_{2}(0.1 \mathrm{~mL}, 1.0 \mathrm{~mol} / \mathrm{L}$ in DCM$)$ was added to the solution via a syringe. The reaction mixture was stirred at room temperature for 10 min under air. Upon completion, solvent and other volatile components were removed on a rotary evaporator under reduced pressure, and the residue was purified by flash column chromatography on silica gel with a gradient eluent of hexane and ethyl acetate (hexane/ethyl acetate 20:1-10:1) to give product 9 in 76% yield.

Synthesis of product 10

To a 15 mL sealed tube was added substrates $8 \mathrm{e}(36.8 \mathrm{mg}, 0.1 \mathrm{mmol})$, p -Anisidine ($13.5 \mathrm{mg}, 0.11 \mathrm{mmol}$), $\mathrm{AcOH}(6 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{DCM}(1 \mathrm{~mL})$, then $\mathrm{NaBH}(\mathrm{OAc})_{3}(32 \mathrm{mg}, 0.15 \mathrm{mmol})$ was added to the solution. The reaction mixture was stirred at room temperature for 12 h under nitrogen. Upon completion, $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added, then the mixture was extracted with $\mathrm{EtOAc}(10 \mathrm{~mL} \times 3)$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ evaporated then purified by flash column chromatography on silica gel with a gradient eluent of hexane and ethyl acetate (hexane/ethyl acetate 20:1-5:1) to give product 10 in 98% yield.

Synthesis of product 11

To a 15 mL sealed tube was added substrates $8 \mathrm{e}(36.8 \mathrm{mg}, 0.1 \mathrm{mmol})$, phenylhydrazine hydrochloride $(14.5 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{AcOH}(0.5 \mathrm{~mL})$, The reaction mixture was stirred at $120^{\circ} \mathrm{C}$ for 1 h under air. Upon completion the mixture was cooled to room temperature, cold NaHCO_{3} solution was added, then the mixture was extracted with $\mathrm{EtOAc}(10 \mathrm{~mL} \times 3)$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ evaporated then purified by flash column chromatography on silica gel with a gradient eluent of hexane and ethyl acetate (hexane/ethyl acetate 20:1-5:1) to give product 11 in 82% yield.

Synthesis of product 12

A 15 mL sealed tube was charged with substrates $8 \mathrm{e}(36.8 \mathrm{mg}, 0.1 \mathrm{mmol}$) and 2-Aminobenzophenone $(19.8 \mathrm{mg}, 0.1 \mathrm{mmol})$, then $\mathrm{AcOH}(0.5 \mathrm{~mL})$ was added. The resulting reaction mixture was stirred at $120^{\circ} \mathrm{C}$ for 4 h . Upon completion the mixture was cooled to room temperature, cold NaHCO_{3} solution was added, then the mixture was extracted with $\mathrm{EtOAc}(10 \mathrm{~mL} \times 3)$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ evaporated then purified by flash column chromatography on silica gel with a gradient eluent of hexane and ethyl acetate (hexane/ethyl acetate 10:1-5:1) to give product 12 in 85% yield.

Synthesis of product 13

A 15 mL sealed tube was charged with substrates $8 \mathrm{e}(36.8 \mathrm{mg}, 0.1 \mathrm{mmol})$, benzamidine hydrochloride $(15.7 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OAc})_{2}(2.0 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%), 2,2^{\prime}$-bipyridine ($1.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 10$ $\mathrm{mol} \%$), 4-HO-TEMPO ($17.2 \mathrm{mg}, 0.1 \mathrm{mmol}$), and $\mathrm{NaOAc}(12.2 \mathrm{mg}, 0.15 \mathrm{mmol})$. Then 1,2-dichlorobenzene $(1.0 \mathrm{~mL})$ was added to the tube. The tube was then sealed, and the mixture was stirred at $140^{\circ} \mathrm{C}$ for 24 h . Upon cooling to room temperature, the reaction mixture was diluted with 10 mL of ethyl acetate, followed by filtration through a pad of silica gel. The filtrate was concentrated under reduced pressure and then purified by flash chromatography on silica gel (gradient eluent of hexane/ethyl acetate: $10 / 1$ to $5 / 1$) to provide product 13 in 53% yield.

Synthesis of product 14

To a 15 mL sealed tube was added substrates $8 \mathrm{e}(36.8 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{CuBr}_{2}(5.6 \mathrm{mg}, 25 \mathrm{~mol} \%$), TEMPO $(63 \mathrm{mg}, 0.4 \mathrm{mmol}), \operatorname{PhNHNH} 2(39 \mu \mathrm{~L}, 0.4 \mathrm{mmol})$ acetic acid ($6 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$), and DMF $(1.0 \mathrm{~mL})$. The sealed tube was placed into a preheated oil bath $\left(140^{\circ} \mathrm{C}\right)$ and vigorously stirred for 48 h . Upon completion, the reaction mixture was cooled to room temperature, quenched with brine (5 mL), then extracted with $\mathrm{EtOAc}(10 \mathrm{~mL} \times 3)$. Combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Crude product was purified by flash column chromatography (hexanes/EtOAc, 6:1) to obtain product 14 in 57% yield.

Deuterium labeling study

Deuteriumlabeled experiments
To a 25 mL sealed tube was added substrates $1 \mathrm{a}(0.1 \mathrm{mmol})$, $2 \mathrm{a}-\mathrm{d}(0.2 \mathrm{mmol}), \mathrm{PdCl}_{2}(10 \mathrm{~mol} \%, 1.8 \mathrm{mg})$, $\mathrm{K}_{2} \mathrm{CO}_{3}(1.0 \mathrm{eq}, 13.8 \mathrm{mg})$, $\mathrm{TsONa}(1.0 \mathrm{eq}, 19.4 \mathrm{mg}) \mathrm{L} 8(20 \mathrm{~mol} \%, 3.6 \mathrm{mg}), \mathrm{AgNTf}_{2}(20 \mathrm{~mol} \%, 7.8 \mathrm{mg})$ and DCE (3 mL), then the reaction mixture was stirred at $120^{\circ} \mathrm{C}$ for 12 h Under N_{2} atmosphere. After completion, the mixture and then filtered through Celite. The filtrate was evaporated to give the crude product which was then purified by flash column chromatography on silica gel with a gradient eluent of hexane/ethyl acetate (50:1-20:1) to give the product 3a-d in 75 yield.

Intermolecular kinetic isotope effects

To a 25 mL sealed tube was added substrates $1 \mathrm{a}(0.1 \mathrm{mmol})$, 2a (0.2 mmol), 2a-d (0.2 mmol), PdCl_{2} $(10 \mathrm{~mol} \%, 1.8 \mathrm{mg}), \mathrm{K}_{2} \mathrm{CO}_{3}(1.0 \mathrm{eq}, 13.8 \mathrm{mg}), \mathrm{TsONa}(1.0 \mathrm{eq}, 19.4 \mathrm{mg}) \mathrm{L} 8(20 \mathrm{~mol} \%, 3.6 \mathrm{mg}), \mathrm{AgNTf}_{2}$ $(20 \mathrm{~mol} \%, 7.8 \mathrm{mg})$ and DCE (3 mL), then the reaction mixture was stirred at $120^{\circ} \mathrm{C}$ for 12 h Under N_{2} atmosphere. After completion, the mixture and then filtered through Celite. The filtrate was evaporated to give the crude product which was then purified by flash column chromatography on silica gel with a gradient eluent of hexane/ethyl acetate (50:1-20:1) to give the product $3 a-d$ in 69% yield.

Analytical data

Characterization data of substrates

ketoxime esters 1a, 1a-1-1a-5, 1a-7, 1a-8, 1az, 1bc, 1be are known product and synthesized according to the literature (Li et al., 2020; Wang et al., 2021; Guo et al., 2021). Alkenyl alcohol 2a', 2a-2i, 2k-2w, 6a-6g, are all known products (Liao et al., 2015; Brandt et al., 2012; Deng et al., 2015; Liu et al., 2017; Latham et al., 2019; Shu et al., 2018). These alkenyl alcohols were commercially available or readily prepared according to the general procedure.
(E/Z)-cyclohexyl(phenyl)methanone O-perfluorobenzoyl oxime (1a-6).
white solid. $\mathrm{Mp}=51-54^{\circ} \mathrm{C} ;(\mathrm{E} / \mathrm{Z}=1: 1 \text {, mixture })^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.14$ $(\mathrm{m}, 1 \mathrm{H}), 3.30(\mathrm{tt}, \mathrm{J}=12.4,3.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.78-2.66(\mathrm{~m}, 0.5 \mathrm{H}), 1.98-1.64(\mathrm{~m}, 5 \mathrm{H}), 1.53-1.25(\mathrm{~m}, 4 \mathrm{H}), 1.23-$ $1.11(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.0,173.6,156.7,156.6,146.6-146.0(\mathrm{~m}), 144.6-143.6(\mathrm{~m})$, 142.6-141.8 (m), 139.0-138.3 (m), 136.9-136.2 (m), 133.2, 132.6, 129.6, 129.1, 128.2, 128.1, 128.1, 126.4, 107.4-106.9 (m) , 44.8, 40.6, 30.0, 29.4, 25.9, 25.8, 25.6, 25.6; HRMS-El calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~F}_{5} \mathrm{NO}_{2}[\mathrm{M}]^{+}$ 397.1096, found 397.1111.
(E)-1-(o-tolyl)propan-1-one O-perfluorobenzoyl oxime (1b).
colorless colloid; (Major) ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.16(\mathrm{~m}, 4 \mathrm{H}), 2.71$ ($\mathrm{qd}, \mathrm{J}=7.4,4.6 \mathrm{~Hz}, 2 \mathrm{H}$), $1.19(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.6,156.6,146.3-146.0(\mathrm{~m}), 144.3-144.0(\mathrm{~m}), 142.3-142.0(\mathrm{~m})$, $138.8-138.4(\mathrm{~m}), 136.7-136.2(\mathrm{~m}), 134.0,133.3,130.0,128.9,125.5,125.3,107.1-106.6(\mathrm{~m}), 29.6,19.1,10.2$; HRMS-EI calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~F}_{5} \mathrm{NO}_{2}[\mathrm{M}]^{+} 357.0783$, found 357.0789 .
(E)-1-(2-fluorophenyl)propan-1-one O-perfluorobenzoyl oxime (1c).
white solid. $\mathrm{Mp}=40-42^{\circ} \mathrm{C}_{;}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54(\mathrm{td}, \mathrm{J}=7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.21$ (td, $J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.13$ (ddd, $J=10.8,8.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.15(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.1,160.5(\mathrm{~d}, \mathrm{~J}=250.9 \mathrm{~Hz}), 156.5,146.5-146.4(\mathrm{~m}), 144.6-144.4(\mathrm{~m}), 142.6-142.4$ (m), 139.0-138.7 (m), 137.0-136.6(m), 132.3 (d, J = 8.6 Hz$), 130.6(d, J=3.2 \mathrm{~Hz}), 124.4(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 121.8(\mathrm{~d}$, $J=13.3 \mathrm{~Hz}), 116.2(\mathrm{~d}, \mathrm{~J}=21.5 \mathrm{~Hz}), 107.0-106.7(\mathrm{~m}), 24.3(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 10.3 ; \mathrm{HRMS}-\mathrm{El}$ calcd for $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{~F}_{6} \mathrm{NO}_{2}$ $[\mathrm{M}]^{+}$361.0532, found 361.0550.
(E)-1-(2-chlorophenyl)propan-1-one O-perfluorobenzoyl oxime (1d).
white colloid. $\mathrm{Mp}=43-45^{\circ} \mathrm{C}$; (Major) ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.27(\mathrm{~m}, 4 \mathrm{H}), 2.89(\mathrm{q}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $1.06(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13}{ }^{3} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.2,156.2,146.8-146.1(\mathrm{~m}), 144.6-144.2(\mathrm{~m}), 142.6-$ $142.0(\mathrm{~m}), 138.7-138.4(\mathrm{~m}), 136.9-136.4(\mathrm{~m}), 132.9,132.4,130.8,130.5,129.8,126.7,107.0-106.6(\mathrm{~m}), 24.6$, 9.8; HRMS-EI calcd for $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{~F}_{5} \mathrm{NO}_{2} \mathrm{Cl}[\mathrm{M}]^{+} 377.0236$, found 377.0258 .
(E)-1-(m-tolyl)propan-1-one O-perfluorobenzoyl oxime (1e).
white solid. $\mathrm{Mp}=81-83^{\circ} \mathrm{C}^{\prime}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.27(\mathrm{~m}$, $2 \mathrm{H}), 2.90(\mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.0,156.6,146.6-$ $146.3(\mathrm{~m}), 144.6-144.3(\mathrm{~m}), 142.6-142.2(\mathrm{~m}), 138.9-138.6(\mathrm{~m}), 138.5,136.9-136.5(\mathrm{~m}), 132.8,131.8,128.6,127.9$, 124.5, 107.3-106.9 (m), 22.3, 21.3, 11.3; HRMS-EI calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~F}_{5} \mathrm{NO}_{2}[\mathrm{M}]^{+} 357.0783$, found 357.0780 .
(E)-1-(3-methoxyphenyl)propan-1-one O-perfluorobenzoyl oxime (1f).
white solid. $\mathrm{Mp}=76-78^{\circ} \mathrm{C}_{;}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{ddd}$, $J=8.1,2.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.21(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 169.7,159.8,156.5,146.6-146.3(\mathrm{~m}), 144.6-144.2(\mathrm{~m}), 142.7-142.2(\mathrm{~m}), 138.9-138.6(\mathrm{~m}), 137.0-136.6(\mathrm{~m})$, 134.2, 129.8, 119.8, 116.9, 112.6, 107.3-106.9 (m), 77.4-76.6 (m), 55.3, 22.4, 11.3; HRMS-El calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~F}_{5} \mathrm{NO}_{3}[\mathrm{M}]^{+} 373.0732$, found 373.0740 .
(E)-1-(3-(methylthio)phenyl)propan-1-one O-perfluorobenzoyl oxime (1g).
white solid. $\mathrm{Mp}=105-107^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.88(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.5,156.4$, 146.6-146.3 (m), 144.6-144.3(m), 142.6-142.2 (m), 139.6, 138.9-138.6 (m), 136.9-136.5 (m), 133.5, 129.1, 128.7, 125.0, 123.9, 107.1-106.8(m), 22.3, 15.6, 11.2; HRMS-El calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~F}_{5} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}]^{+} 389.0503$, found 389.0478 .
(E)-N-(3-(1-(((perfluorobenzoyl)oxy)imino)propyl)phenyl)acetamide (1h).
white solid. $\mathrm{Mp}=142-144^{\circ} \mathrm{C}_{;}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{dt}, \mathrm{J}=8.0$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.18$
$(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}^{2} \mathrm{CDCl}_{3}\right) \delta 169.8,169.2,156.8,146.8-146.4(\mathrm{~m}), 144.7-144.4(\mathrm{~m}), 142.8-$ $142.4(\mathrm{~m}), 139.1-138.7(\mathrm{~m}), 138.6,137.1-136.6(\mathrm{~m}), 133.3,129.3,122.8,122.5,118.4,107.0-106.6(\mathrm{~m}), 24.4$, 22.3, 11.2; HRMS-El calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}]^{+} 400.0841$, found 400.0840.
(E)-3-(1-(((perfluorobenzoyl)oxy)imino)propyl)phenyl acetate (1i).
white solid. $\mathrm{Mp}=95-97^{\circ} \mathrm{C}_{;}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{dt}, J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.45(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{ddd}, J=8.0,2.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 169.1,168.7,156.4,150.9,146.7-146.3(\mathrm{~m}), 144.7-144.3(\mathrm{~m})$, $142.6-142.3(\mathrm{~m}), 139.0-138.6(\mathrm{~m}), 137.0-136.6(\mathrm{~m}), 134.3,129.7,124.7,124.4,120.6,107.1-106.7(\mathrm{~m}), 77.4-$ $76.4(\mathrm{~m})$, 22.1, 21.0, 11.2; HRMS-EI calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~F}_{5} \mathrm{NO}_{4}[\mathrm{M}]^{+} 401.0681$, found 401.0682.
(E)-1-(3-fluorophenyl)propan-1-one O-perfluorobenzoyl oxime (1j).
white solid. $\mathrm{Mp}=67-69^{\circ} \mathrm{C}_{;}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{dt}, J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dt}, \mathrm{J}=9.8,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{td}, J=8.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.20(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.6,162.7(\mathrm{~d}, \mathrm{~J}=247.0 \mathrm{~Hz}), 156.3,146.7-146.3(\mathrm{~m}), 144.7-144.3(\mathrm{~m}), 142.7-142.3(\mathrm{~m})$, $138.9-138.5(\mathrm{~m}), 136.9-136.5(\mathrm{~m}), 135.0(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 130.3(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}), 123.0(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 117.9(\mathrm{~d}, \mathrm{~J}=$ $21.1 \mathrm{~Hz}), 114.3(\mathrm{~d}, \mathrm{~J}=23.6 \mathrm{~Hz}), 107.0-106.6(\mathrm{~m}), 22.1,11.0 ; \mathrm{HRMS}-E I$ calcd for $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{~F}_{6} \mathrm{NO}_{2}[\mathrm{M}]^{+} 361.0532$, found 361.0528 .
(E)-1-(3-chlorophenyl)propan-1-one O-perfluorobenzoyl oxime (1k).
white solid. $\mathrm{Mp}=81-83^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{dd}, \mathrm{J}=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.46 (ddt, $J=8.1,2.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.21(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl ${ }_{3}$) $\delta 168.7,156.4,146.7-146.4(\mathrm{~m}), 144.8-144.4(\mathrm{~m}), 142.7-142.3(\mathrm{~m}), 139.0-138.6(\mathrm{~m})$, 137.0-136.6 (m), 134.9, 134.7, 131.1, 130.0, 127.5, 125.5, 107.0-106.7 (m), 22.2, 11.2; HRMS-El calcd for $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{~F}_{5} \mathrm{NO}_{2} \mathrm{Cl}[\mathrm{M}]^{+}$377.0236, found 377.0236.
(E)-1-(3-(trifluoromethyl)phenyl)propan-1-one O-perfluorobenzoyl oxime (1I).
white solid. $\mathrm{Mp}=82-84^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.72$ $(d, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{q}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.22(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 168.6,156.2,146.8-146.5(\mathrm{~m}), 144.8-144.4(\mathrm{~m}), 142.8-142.4(\mathrm{~m}), 139.0-138.6(\mathrm{~m}), 137.0-136.6(\mathrm{~m})$, $133.9,131.3(q, J=32.8 \mathrm{~Hz}), 130.6,129.4,127.5(q, J=3.7 \mathrm{~Hz}), 124.1(q, J=3.9 \mathrm{~Hz}), 123.7(q, J=272.4 \mathrm{~Hz})$, 106.9-106.6 (m), 22.1, 11.0; HRMS-EI calcd for $\mathrm{C}_{17} \mathrm{H}_{9} \mathrm{~F}_{8} \mathrm{NO}_{2}[\mathrm{M}]^{+} 411.0500$, found 411.0456.
(E)-3-(1-(((perfluorobenzoyl)oxy)imino)propyl)benzonitrile (1m).
white solid. $\mathrm{Mp}=94-96^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{dd}, \mathrm{J}=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.76(\mathrm{dt}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.22(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl ${ }_{3}$) $\delta 167.8,156.1,146.8-146.5(\mathrm{~m}), 144.8-144.4(\mathrm{~m}), 142.8-142.4(\mathrm{~m}), 139.0-138.6(\mathrm{~m})$, 137.0-136.6 (m), 134.3, 134.1, 131.4, 130.9, 129.7, 117.9, 113.2, 106.7-106.3 (m), 22.0, 11.0; HRMS-El calcd for $\mathrm{C}_{17} \mathrm{H}_{9} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}]^{+}$368.0579, found 368.0573.
(E)-1-(3-nitrophenyl)propan-1-one O-perfluorobenzoyl oxime (1n).
white solid. $\mathrm{Mp}=82-84^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.57(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.36-8.32(\mathrm{~m}, 1 \mathrm{H}), 8.16(\mathrm{dd}$, $J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 167.8,156.2,148.5,146.8-146.5(\mathrm{~m}), 144.8-144.4(\mathrm{~m}), 142.8-142.5(\mathrm{~m}), 139.1-138.6(\mathrm{~m}), 137.0-136.6$ (m), 134.7, 133.2, 130.0, 125.6, 122.32, 106.8-106.4 (m), 22.1, 11.1; HRMS-EI calcd for $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}]^{+}$ 388.0477, found 388.0449 .
(E)-1-(p-tolyl)propan-1-one O-perfluorobenzoyl oxime (10).
white solid. $\mathrm{Mp}=95-97^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.89$ $(q, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{CNMR}^{2}\left(126 \mathrm{MHz}_{\mathrm{N}}, \mathrm{CDCl}_{3}\right) \delta 169.6,156.5,146.60-146.3$
(m), 144.5-144.2 (m), 142.5-142.1 (m), 141.4, 138.9-138.5 (m), 136.9-136.5 (m), 129.8, 129.4, 127.2, 107.4106.9 (m), 22.0, 21.2, 11.2; HRMS-EI calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~F}_{5} \mathrm{NO}_{2}[\mathrm{M}]^{+} 357.0783$, found 357.0779.
(E)-1-(4-(tert-butyl)phenyl)propan-1-one O-perfluorobenzoyl oxime (1p).
white solid. $\mathrm{Mp}=86-88^{\circ} \mathrm{C}^{\prime}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.90$ $(q, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}), 1.23(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.6,156.7,154.6$, 146.6-146.3 (m), 144.6-144.2 (m), 142.5-142.2 (m), 139.0-138.6 (m), 137.0-136.6 (m), 129.9, 127.1, 125.7, 107.4-107.1 (m), 77.6-76.3 (m), 34.8, 31.1, 22.1, 11.4; HRMS-El calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~F}_{5} \mathrm{NO}_{2}[\mathrm{M}]^{+} 399.1252$, found 399.1270.
(E)-1-([1, 1'-biphenyl]-4-yl)propan-1-one O-perfluorobenzoyl oxime (1q).
white solid. $\mathrm{Mp}=147-149^{\circ} \mathrm{C}^{\prime}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.63(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.3,156.5,146.7-146.3(\mathrm{~m}), 144.6-144.3(\mathrm{~m}), 143.8,142.6-142.2(\mathrm{~m})$, 139.9, 139.0-138.6 (m), 137.0-136.5 (m), 131.6, 128.7, 127.9, 127.8, 127.4, 127.0, 107.3-106.9 (m), 22.1, 11.4; HRMS-El calcd for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~F}_{5} \mathrm{NO}_{2}[\mathrm{M}]^{+} 419.0939$, found 419.0967.
(E)-4-(1-(((perfluorobenzoyl)oxy)imino)propyl)phenyl acetate (1r).
white solid. $\mathrm{Mp}=120-122^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H})$, $2.89(q, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.9,168.8,156.5$, 152.8, 146.7-146.3 (m), 144.6-144.3 (m), 142.6-142.2 (m), 138.9-138.6 (m), 137.0-136.5 (m), 130.4, 128.6, 122.0, 107.2-106.8 (m), 22.1, 21.0, 11.2; HRMS-EI calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~F}_{5} \mathrm{NO}_{4}[\mathrm{M}]^{+} 401.0681$, found 401.0683.
(E)-1-(4-(trifluoromethoxy)phenyl)propan-1-one O-perfluorobenzoyl oxime (1s).
white solid. $\mathrm{Mp}=49-51^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.24$ $(q, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.56(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.5,156.4,151.2,146.8-146.4(\mathrm{~m})$, 144.8-144.4 (m), 142.7-142.4 (m), 139.1-138.6 (m), 137.0-136.6 (m), 131.5, 129.1, 120.9, $120.3(\mathrm{q}, \mathrm{J}=$ $258.3 \mathrm{~Hz}), 107.1-106.7(\mathrm{~m}), 22.1,11.1$; HRMS-EI calcd for $\mathrm{C}_{17} \mathrm{H}_{9} \mathrm{~F}_{8} \mathrm{NO}_{3}[\mathrm{M}]^{+} 427.0449$, found 427.0448.
(E)-1-(4-fluorophenyl)propan-1-one O-perfluorobenzoyl oxime (1t).
white solid. $\mathrm{Mp}=82-84^{\circ} \mathrm{C}$; (Major) ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.06(\mathrm{~m}, 2 \mathrm{H}), 2.88(\mathrm{q}$, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.20(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}^{2} \mathrm{CDCl}_{3}\right) \delta 168.7,164.5(\mathrm{~d}, \mathrm{~J}=251.9 \mathrm{~Hz}), 156.4$, 146.7-146.4 (m), 144.7-144.3 (m), 142.6-142.2 (m), 139.0-138.6 (m), 137.0-136.5 (m), 129.5 (d, J=8.6 Hz), $128.9(d, J=3.5 \mathrm{~Hz}), 115.8(\mathrm{~d}, J=21.8 \mathrm{~Hz}), 107.1-106.8(\mathrm{~m}), 22.1,11.1$; HRMS-El calcd for $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{~F}_{6} \mathrm{NO}_{2}$ $[\mathrm{M}]^{+} 361.0532$, found 361.0526 .
(E)-1-(4-chlorophenyl)propan-1-one O-perfluorobenzoyl oxime (1u).
white solid. $\mathrm{Mp}=82-84^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.88$ $(q, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.20(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.6,156.4,146.7-146.4(\mathrm{~m}), 144.7-$ 144.3 (m), 142.7-142.3 (m), 139.0-138.6 (m), 137.3, 136.9-136.6 (m), 131.3, 129.0, 128.7, 107.1-106.7 (m), 22.0, 11.2; HRMS-EI calcd for $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{~F}_{5} \mathrm{NO}_{2} \mathrm{Cl}[\mathrm{M}]^{+} 377.0236$, found 377.0251.
(E)-1-(4-(trifluoromethyl)phenyl)propan-1-one O-perfluorobenzoyl oxime (1v).
white solid. $\mathrm{Mp}=63-65^{\circ} \mathrm{C}_{;}{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.93$ $(q, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.22(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.6,156.3,146.8-146.5(\mathrm{~m})$, 144.8-144.4 (m), 142.8-142.4 (m), 139.0-138.6(m), 137.0-136.6(m), 136.5, 132.7 (q, J = 32.8 Hz), 127.8, $125.7(q, J=3.8 \mathrm{~Hz}), 123.7(q, J=272.3 \mathrm{~Hz}), 107.0-106.5(\mathrm{~m}), 22.1,11.0 ; \mathrm{HRMS}-E l$ calcd for $\mathrm{C}_{17} \mathrm{H}_{9} \mathrm{~F}_{8} \mathrm{NO}_{2}$ $[M]^{+} 411.0500$, found 411.0477.
(E)-4-(1-(((perfluorobenzoyl)oxy)imino)propyl)benzonitrile (1w).
white solid. $\mathrm{Mp}=111-113^{\circ} \mathrm{C}_{;}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.91(q, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.21(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.1,156.1,146.8-146.5(\mathrm{~m})$, 144.8-144.4 (m), 142.8-142.4 (m), 139.0-138.6 (m), 137.2, 137.0-136.6 (m), 132.5, 128.0, 118.0, 114.5, 106.7$106.3(\mathrm{~m}), 22.0,11.0 ; \mathrm{HRMS}-\mathrm{El}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{9} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}]^{+} 368.0579$, found 368.0544.
(E)-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)propan-1-one O-perfluorobenzoyl oxime (1x).
white solid. $\mathrm{Mp}=134-136^{\circ} \mathrm{C}$; (Major) ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 2.91(\mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 12 \mathrm{H}), 1.20(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.8,156.6$, $146.6-146.3(\mathrm{~m}), 144.6-144.3(\mathrm{~m}), 142.6-142.2(\mathrm{~m}), 139.0-138.5(\mathrm{~m}), 136.9-136.5(\mathrm{~m}), 135.2,135.0,126.5$, 107.2-106.9 (m), 84.1, 24.8, 22.2, 11.2; HRMS-EI calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{BF}_{5} \mathrm{NO}_{4}[\mathrm{M}]^{+} 469.1478$, found 469.1481.
(E)-1-(4-(trimethylsilyl)phenyl)propan-1-one O-perfluorobenzoyl oxime (1y).
white solid. $\mathrm{Mp}=94-96^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.73(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.91$ $(\mathrm{q}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.23(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.30(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.8,156.6,146.6-146.3$ (m), 144.4, 144.6-144.3 (m), 142.5-142.2 (m), 139.0-138.6 (m), 136.9-136.6 (m), 133.6, 133.1, 126.4, 107.4$107.0(\mathrm{~m}), 22.2,11.3,-1.4 ;$ HRMS-EI calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~F}_{5} \mathrm{NO}_{2} \mathrm{Si}[\mathrm{M}]^{+} 415.1022$, found 415.1012.
ethyl (E)-4-(1-(((perfluorobenzoyl)oxy)imino)propyl)benzoate (1z).
white solid. $\mathrm{Mp}=94-96^{\circ} \mathrm{C}_{\text {; }}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.39$ $(q, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 169.0,166.8,156.4,146.7-146.4(\mathrm{~m}), 144.7-144.4(\mathrm{~m}), 142.7-142.3(\mathrm{~m}), 139.0-138.6(\mathrm{~m}), 137.0$, 136.9-136.6 (m), 132.6, 129.8, 127.3, 107.0-106.6 (m), 61.3, 22.2, 14.2, 11.1; HRMS-El calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~F}_{5} \mathrm{NO}_{4}[\mathrm{M}]^{+} 415.0838$, found 415.0851.
diethyl (E)-(4-(1-(((perfluorobenzoyl)oxy)imino)propyl)phenyl)phosphonate (1aa).
white solid. $\mathrm{Mp}=65-67^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88-7.79(\mathrm{~m}, 4 \mathrm{H}), 4.17-4.01(\mathrm{~m}, 4 \mathrm{H}), 2.89(\mathrm{q}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.29(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.18(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.9,156.2$, 146.7-146.3 (m), 144.6-144.3 (m), 142.7-142.2 (m), 138.9-138.5 (m), 136.9-136.6 (m), $136.7(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz})$, $132.1(d, J=10.3 \mathrm{~Hz}), 131.2(\mathrm{~d}, J=187.9 \mathrm{~Hz}), 127.3(\mathrm{~d}, J=15.0 \mathrm{~Hz}), 106.9-106.5(\mathrm{~m}), 62.3(\mathrm{~d}, J=5.6 \mathrm{~Hz})$, 22.2, $16.2\left(d, J=6.5 \mathrm{~Hz}\right.$), 11.0; HRMS -El calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~F}_{5} \mathrm{NO}_{5} \mathrm{P}[\mathrm{M}]^{+} 479.0916$, found 479.0912.
(E)-1-(4-(methylsulfonyl)phenyl)propan-1-one O-perfluorobenzoyl oxime (1ab).
white solid. $\mathrm{Mp}=115-117^{\circ} \mathrm{C} ;(\mathrm{Major})^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.22(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.2,156.2$, 146.8-146.5 (m), 144.8-144.4 (m), 142.8-142.4 (m), 142.5, 139.0-138.5 (m), 138.3, 137.0-136.6 (m), 128.4, 127.8, 106.7-106.3 (m), 44.3, 22.2, 11.0; HRMS-EI calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~F}_{5} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}]^{+} 421.0402$, found 421.0397 .
(E)-1-(3,5-dimethylphenyl)propan-1-one O-perfluorobenzoyl oxime (1ac).
white solid. $\mathrm{Mp}=107-109^{\circ} \mathrm{C}^{1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{t}, \mathrm{J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.88$ $(\mathrm{q}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 6 \mathrm{H}), 1.21(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.3,156.6,146.6-146.4$ $(\mathrm{m}), 144.6-144.3(\mathrm{~m}), 142.6-142.2(\mathrm{~m}), 138.9-138.6(\mathrm{~m}), 138.4,137.0-136.6(\mathrm{~m}), 132.8,132.7,125.1$, 107.4-107.0 (m), 22.4, 21.2, 11.3; HRMS-EI calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~F}_{5} \mathrm{NO}_{2}[\mathrm{M}]^{+} 371.0939$, found 371.0905.
(E)-1-(3,5-dimethoxyphenyl)propan-1-one O-perfluorobenzoyl oxime (1ad).
white solid. $\mathrm{Mp}=109-111^{\circ} \mathrm{C}_{;}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.86(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{t}, \mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.82$ ($\mathrm{s}, 6 \mathrm{H}), 2.85(\mathrm{q}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.20(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.7,160.9,156.4,146.6-$ $146.3(\mathrm{~m}), 144.6-144.3(\mathrm{~m}), 142.6-142.2(\mathrm{~m}), 139.0-138.5(\mathrm{~m}), 136.9-136.5(\mathrm{~m}), 134.8,107.3-106.9(\mathrm{~m}), 105.4$, 102.9, 77.4-76.6 (m), 55.4, 22.4, 11.3; HRMS-El calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~F}_{5} \mathrm{NO}_{4}[\mathrm{M}]^{+} 403.0838$, found 403.0838 .
(E)-1-(3,5-difluorophenyl)propan-1-one O-perfluorobenzoyl oxime (1ae).
white solid. $\mathrm{Mp}=59-61^{\circ} \mathrm{C}$; (Major) ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.27(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{tt}, \mathrm{J}=8.6,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.86(\mathrm{q}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.22(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.7,163.1(\mathrm{dd}, \mathrm{J}=249.8$, $12.5 \mathrm{~Hz}), 156.1,146.8-146.5(\mathrm{~m}), 144.8-144.4(\mathrm{~m}), 142.8-142.4(\mathrm{~m}), 139.0-138.6(\mathrm{~m}), 137.0-136.6(\mathrm{~m}), 136.2(\mathrm{t}$, $J=9.5 \mathrm{~Hz}), 110.5(\mathrm{dd}, J=20.9,6.7 \mathrm{~Hz}), 106.8-106.4(\mathrm{~m}), 106.3(\mathrm{t}, J=25.3 \mathrm{~Hz}), 22.1,11.0$; HRMS-El calcd for $\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{~F}_{7} \mathrm{NO}_{2}[\mathrm{M}]^{+} 379.0438$, found 379.0461 .
(E)-1-(3,5-dichlorophenyl)propan-1-one O-perfluorobenzoyl oxime (1af).
white solid. $\mathrm{Mp}=80-82^{\circ} \mathrm{C}_{;}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, \mathrm{J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.86$ $(q, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.21(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(126 \mathrm{MHz}^{2}, \mathrm{CDCl}_{3}\right) \delta 167.6,156.1,146.8-146.5(\mathrm{~m}), 144.9-$ $144.4(\mathrm{~m}), 142.8-142.4(\mathrm{~m}), 139.1-138.6(\mathrm{~m}), 137.0-136.6(\mathrm{~m}), 135.9,135.6,130.9,125.8,106.8-106.4(\mathrm{~m})$, 22.1, 11.1; HRMS-EI calcd for $\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{~F}_{5} \mathrm{NO}_{2}[\mathrm{M}]^{+} 410.9847$, found 410.9842.
(E)-1-(4-((E)-styry))phenyl)propan-1-one O-perfluorobenzoyl oxime (1ag).
white solid. $\mathrm{Mp}=159-161^{\circ} \mathrm{C}_{;}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.54(\mathrm{dd}, J=6.6,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 3 \mathrm{H}), 2.90(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.23(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.9,156.4,146.8-146.4(\mathrm{~m}), 144.6-144.3(\mathrm{~m}), 142.6-142.2(\mathrm{~m}), 139.0-138.5(\mathrm{~m}), 137.0-136.6$ (m), 132.3, 131.8, 131.6, 128.6, 128.4, 127.3, 126.1, 122.7, 107.1-106.7 (m), 91.8, 88.6, 22.0, 11.3; HRMS-EI calcd for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~F}_{5} \mathrm{NO}_{2}[\mathrm{M}]^{+} 445.1096$, found 445.1067 .
(E)-1-(2,6-difluorophenyl)propan-1-one O-perfluorobenzoyl oxime (1ah).
white solid. $\mathrm{Mp}=65-67^{\circ} \mathrm{C}_{;}{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40(\mathrm{tt}, \mathrm{J}=8.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dd}, \mathrm{J}=8.5,7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 2.85(\mathrm{q}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.11(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.0,160.4(\mathrm{dd}, \mathrm{J}=251.7$, $6.6 \mathrm{~Hz}), 156.2,146.8-146.5(\mathrm{~m}), 144.8-144.4(\mathrm{~m}), 142.8-142.4(\mathrm{~m}), 139.1-138.6(\mathrm{~m}), 137.0-136.6(\mathrm{~m}), 131.8(\mathrm{t}$, $J=10.1 \mathrm{~Hz}), 111.8(\mathrm{dd}, J=20.4,4.6 \mathrm{~Hz}), 111.5(\mathrm{t}, J=20.0 \mathrm{~Hz}), 106.8-106.5(\mathrm{~m}), 24.9,9.7$; HRMS-El calcd for $\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{~F}_{7} \mathrm{NO}_{2}[\mathrm{M}]^{+}$379.0438, found 379.0431.
(E)-1-(3,4-dichlorophenyl)propan-1-one O-perfluorobenzoyl oxime (1ai).
white solid. $\mathrm{Mp}=102-104^{\circ} \mathrm{C}$; (Major) ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} 500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{dd}, \mathrm{J}=8.4$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.21(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{CNMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 167.7,156.2,146.8-146.5(\mathrm{~m}), 144.8-144.5(\mathrm{~m}), 142.8-142.4(\mathrm{~m}), 139.0-138.6(\mathrm{~m}), 137.0-136.6(\mathrm{~m}), 135.5-$ $135.4(\mathrm{~m}), 133.3,132.8,130.8,129.2,126.5,106.8-106.5(\mathrm{~m}), 22.0,11.1$; HRMS-El calcd for $\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{~F}_{5} \mathrm{NO}_{2}$ $[\mathrm{M}]^{+} 410.9847$, found 410.9820 .
(E)-1-(naphthalen-1-yl)propan-1-one O-perfluorobenzoyl oxime (1aj).
white solid. $\mathrm{Mp}=89-91^{\circ} \mathrm{C}_{;}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{dd}, \mathrm{J}=8.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-7.92(\mathrm{~m}, 1 \mathrm{H}), 7.89$ (dd, J=7.5, 1.7 Hz, 1H), 7.60-7.51 (m, 2H), 7.52-7.50 (m, 2H), 3.02 (q, J = 7.6 Hz, 2H), 1.13 (t, J = 7.6 Hz, 3H); ${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.3,156.7,146.7-146.3(\mathrm{~m}), 144.6-144.3(\mathrm{~m}), 142.6-142.2(\mathrm{~m}), 139.0-138.6$ (m), 137.0-136.5 (m), 133.6, 131.3, 130.8, 130.2, 128.5, 127.1, 126.6, 126.3, 124.9, 124.8, 107.3-106.9 (m), 26.0, 10.4; HRMS-EI calcd for $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{~F}_{5} \mathrm{NO}_{2}[\mathrm{M}]^{+}$393.0783, found 393.0792.
(E)-1-(naphthalen-2-yl)propan-1-one O-perfluorobenzoyl oxime (1ak).
white solid. $\mathrm{Mp}=164-166^{\circ} \mathrm{C}$; (Major) ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{dd}, \mathrm{J}=8.7,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.93-7.90(\mathrm{~m}, 1 \mathrm{H}), 7.90-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.52(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{q}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.29(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.6,156.6,146.7-146.4(\mathrm{~m}), 144.7-144.3(\mathrm{~m}), 142.6-142.2(\mathrm{~m}), 139.0-138.6(\mathrm{~m})$, $137.0-136.6(\mathrm{~m}), 134.5,132.9,130.2,128.8,128.6,128.0,127.7,127.6,126.7,123.9,107.2-106.9(\mathrm{~m}), 22.1$, 11.5; HRMS-El calcd for $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{~F}_{5} \mathrm{NO}_{2}[\mathrm{M}]^{+} 393.0783$, found 393.0792.
(E)-6-(1-(((perfluorobenzoyl)oxy)imino)propyl)naphthalen-2-yl acetate (1al).
white solid. $\mathrm{Mp}=167-169^{\circ} \mathrm{C}_{;}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.20(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{dd}, \mathrm{J}=8.7,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=8.8,2.3 \mathrm{~Hz}, 1 \mathrm{H})$,
$3.01(q, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13}{ }^{3} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.4,169.3,156.5$, 149.6, 146.7-146.4 (m), 144.7-144.4 (m), 142.6-142.3 (m), 139.0-138.6(m), 137.0-136.6(m), 134.9, 130.8, 130.3, 130.1, 128.3, 127.7, 124.6, 122.0, 118.5, 107.2-106.8 (m), 22.0, 21.1, 11.4; HRMS-EI calcd for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~F}_{5} \mathrm{NO}_{4}[\mathrm{M}]^{+} 451.0838$, found 451.0839 .
(E)-1-(furan-3-yl)propan-1-one O-perfluorobenzoyl oxime (1am).
white solid. $\mathrm{Mp}=81-83^{\circ} \mathrm{C}_{;}{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{dd}, \mathrm{J}=3.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dd}, \mathrm{J}=5.1,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.37(\mathrm{dd}, \mathrm{J}=5.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{q}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.24(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.2,156.4,146.6-146.3(\mathrm{~m}), 144.6-144.2(\mathrm{~m}), 142.5-142.2(\mathrm{~m}), 138.9-138.5(\mathrm{~m}), 137.0-136.5(\mathrm{~m}), 134.6$, 127.6, 126.7, 125.8, 107.2-106.9 (m), 22.6, 11.5; HRMS-El calcd for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~F}_{5} \mathrm{NO}_{3}[\mathrm{M}]^{+} 333.0419$, found 333.0394
(E)-1-(thiophen-3-yl)propan-1-one O-perfluorobenzoyl oxime (1an).
white solid. $\mathrm{Mp}=104-106^{\circ} \mathrm{C}_{;}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{t}, \mathrm{J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, \mathrm{J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.82$ (dd, J = 1.9, 0.8 Hz, 1H), $2.72(\mathrm{q}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.23(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13}{ }^{3} \mathrm{CNMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.7$, 156.4, 146.7-146.4 (m), 144.7-144.4 (m), 144.4, 144.1, 142.6-142.2 (m), 138.9-138.6 (m), 136.9-136.6 (m), 120.7, 108.0, 107.2-106.8 (m), 22.8, 11.6; HRMS-EI calcd for $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~F}_{5} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}]^{+} 349.0190$, found 349.0195 .
(E)-1-(6-methoxypyridin-3-yl)propan-1-one O-perfluorobenzoyl oxime (1ao).
white solid. $\mathrm{Mp}=64-66^{\circ} \mathrm{C}_{;}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.48(\mathrm{dd}, \mathrm{J}=2.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{dd}, \mathrm{J}=8.7,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.77(\mathrm{dd}, \mathrm{J}=8.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{q}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.20(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.3,165.9,156.4,146.7-146.5(\mathrm{~m}), 146.5,144.6-144.4(\mathrm{~m}), 142.7-142.3(\mathrm{~m}), 139.0-138.6(\mathrm{~m})$, 137.3, 137.0-136.6 (m), 122.0, 111.3, 107.1-106.8 (m), 53.8, 21.7, 11.3; HRMS-El calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}]^{+}$ 374.0684 , found 374.0689 .
(E)-1-(6-phenylpyridin-3-yl)propan-1-one O-perfluorobenzoyl oxime (1ap).
white solid. $\mathrm{Mp}=146-148^{\circ} \mathrm{C}_{\text {; }}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.00(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.18$ (dd, $\mathrm{J}=8.4,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.03(\mathrm{dd}, J=8.2,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.41(\mathrm{~m}, 3 \mathrm{H}), 2.93(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{t}$, $J=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.3,159.2,156.2,148.1,146.7-146.4(\mathrm{~m}), 144.7-144.3(\mathrm{~m})$, 142.6-142.3 (m), 138.9-138.5 (m), 138.0, 136.9-136.5 (m), 135.5, 129.7, 128.8, 127.0, 126.9, 120.0, 106.9$106.5(\mathrm{~m})$, 21.7, 11.1; HRMS-EI calcd for $\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}]^{+} 420.0892$, found 420.0893 .
(E)-1-(6-(trifluoromethyl)pyridin-3-yl)propan-1-one O-perfluorobenzoyl oxime (1aq).
white solid. $\mathrm{Mp}=47-49^{\circ} \mathrm{C}_{;}{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.02(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{dd}, \mathrm{J}=8.2,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.75(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.22(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13}{ }^{13} \mathrm{CNMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.5$, 156.0, $149.7(q, J=35.3 \mathrm{~Hz}), 148.4,146.9-146.5(\mathrm{~m}), 144.9-144.5(\mathrm{~m}), 142.9-142.5(\mathrm{~m}), 139.0-138.6(\mathrm{~m})$, 137.0-136.6 (m), 136.3, 131.8, $121.1(q, J=274.0 \mathrm{~Hz}), 120.4(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}), 106.5-106.1(\mathrm{~m}), 22.0,10.8 ;$ HRMS-EI calcd for $\mathrm{C}_{16} \mathrm{H}_{8} \mathrm{~F}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}]^{+} 412.0453$, found 412.0469 .
(E)-1-(benzofuran-5-yl)propan-1-one O-perfluorobenzoyl oxime (1ar).
white solid. $\mathrm{Mp}=130-132^{\circ} \mathrm{C}_{\text {; }}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, \mathrm{~J}=$ $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 2.96(\mathrm{q}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.24(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(126$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.9,156.5,156.3,146.6-146.3(\mathrm{~m}), 146.1,144.6-144.3(\mathrm{~m}), 142.5-142.1(\mathrm{~m}), 138.9-138.5(\mathrm{~m})$, 136.9-136.5 (m), 127.8, 127.7, 123.6, 120.9, 111.7, 107.3-106.9 (m), 106.8, 22.5, 11.3; HRMS-EI calcd for $\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{~F}_{5} \mathrm{NO}_{3}[\mathrm{M}]^{+} 383.0575$, found 383.0582 .
(E)-1-(5-(1-(((perfluorobenzoyl)oxy)imino)propyl)-1H-indol-1-yl)ethan-1-one (1as).
white solid. $\mathrm{Mp}=177-179^{\circ} \mathrm{C}_{;}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.49(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.75 (dd, $J=8.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{~s}$, $3 \mathrm{H}), 1.25(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.0,168.6,156.7,146.7-146.4(\mathrm{~m}), 144.6-144.2$
(m), 142.6-142.3 (m), 139.0-138.6 (m), 137.0, 137.0-136.6 (m), 130.7, 128.3, 126.4, 124.3, 120.4, 116.8, 109.4, 107.4-107.1 (m), 23.9, 22.5, 11.5; HRMS-EI calcd for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}]^{+} 424.0841$, found 424.0865.
(E)-1-(benzo[b]thiophen-3-yl)propan-1-one O-perfluorobenzoyl oxime (1at).
light yellow solid. $\mathrm{Mp}=169-171^{\circ} \mathrm{C}_{;}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.78(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(d d d, J=8.2,7.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{ddd}, J=8.1,7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $1.32(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.8,156.5,146.8-146.5(\mathrm{~m}), 144.8-144.4(\mathrm{~m}), 142.7-$ $142.3(\mathrm{~m}), 140.2,139.0-138.7(\mathrm{~m}), 137.0-136.6(\mathrm{~m}), 136.0,131.3,129.3,126.5,125.7,125.4,122.4,107.3-106.9$ (m), 23.1, 11.9; HRMS-EI calcd for $\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{~F}_{5} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}]^{+}$399.0347, found 399.0360.
(E)-1-(quinolin-6-yl)propan-1-one O-perfluorobenzoyl oxime (1au).
white solid. $\mathrm{Mp}=138-140^{\circ} \mathrm{C}_{\text {; }}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.92(\mathrm{dd}, \mathrm{J}=4.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.20-8.16(\mathrm{~m}, 2 \mathrm{H})$, $8.11(d, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{dd}, J=8.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(q, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.24(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}^{2} \mathrm{CDCl}_{3}\right) \delta 168.9,156.3,151.7,149.1,146.7-146.4(\mathrm{~m}), 144.7-144.3(\mathrm{~m}), 142.6-142.3(\mathrm{~m}), 138.9-138.5$ (m), 136.9-136.5 (m), 136.6, 130.9, 130.1, 127.7, 127.7, 127.4, 121.8, 107.0-106.6 (m), 22.1, 11.3; HRMS-EI calcd for $\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}]^{+} 394.0735$, found 394.0716 .
(E)-1-(quinolin-3-yl)propan-1-one O-perfluorobenzoyl oxime (1av).
white solid. $\mathrm{Mp}=151-153^{\circ} \mathrm{C}_{\text {; }}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.29(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $8.12(d, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{ddd}, J=8.4,6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.02(\mathrm{q}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(126 \mathrm{MHz}^{2} \mathrm{CDCl}_{3}\right) \delta 167.7,156.4,148.9,148.3,146.8-$ $146.4(\mathrm{~m}), 144.8-144.4(\mathrm{~m}), 142.8-142.3(\mathrm{~m}), 139.0-138.6(\mathrm{~m}), 137.0-136.6(\mathrm{~m}), 135.3,131.0,129.3,128.5$, 127.4, 127.1, 125.8, 106.9-106.6 (m), 22.0, 11.2; HRMS-El calcd for $\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}]^{+} 394.0735$, found 394.0733.
(E)-1-(4-(1H-pyrazol-1-yl)phenyl)propan-1-one O-perfluorobenzoyl oxime (1aw).
white solid. $\mathrm{Mp}=140-142^{\circ} \mathrm{C}_{;}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.80-$ $7.76(\mathrm{~m}, 2 \mathrm{H}), 7.74(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{t}, \mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.23(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.7,156.5,146.7-146.4(\mathrm{~m}), 144.7-144.3(\mathrm{~m}), 142.6-142.3(\mathrm{~m}), 141.9,141.7$, 138.9-138.6 (m), 136.9-136.6 (m), 130.5, 128.7, 126.7, 118.8, 108.3, 107.2-106.7 (m), 22.0, 11.3; HRMS-EI calcd for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~F}_{5} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}]^{+} 409.0844$, found 409.0829 .
(E)-1-(4-(2H-1,2,3-triazol-2-yl)phenyl)propan-1-one O-perfluorobenzoyl oxime (1ax).
white solid. $\mathrm{Mp}=171-173^{\circ} \mathrm{C}_{;}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.17(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.92(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.85(\mathrm{~s}, 2 \mathrm{H}), 2.94(\mathrm{q}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.7,156.5,146.8-$ $146.4(\mathrm{~m}), 144.7-144.4(\mathrm{~m}), 142.7-142.3(\mathrm{~m}), 141.5,139.0-138.6(\mathrm{~m}), 137.0-136.6(\mathrm{~m}), 136.1,131.8,128.6$, 119.0, 107.1-106.8 (m), 22.1, 11.3; HRMS-EI calcd for $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~F}_{5} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}]^{+} 410.0797$, found 410.0780.
(E)-1-(2-methylbenzo[d]oxazol-5-yl)propan-1-one O-perfluorobenzoyl oxime (1ay).
white solid. $\mathrm{Mp}=94-96^{\circ} \mathrm{C}_{;}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{dd}, \mathrm{J}=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.67(d, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(126 \mathrm{MHz}^{2}, \mathrm{CDCl}_{3}\right)$ ס 169.4, 165.9, 156.5, 151.1, 146.7-146.4 (m), 144.7-144.4(m), 144.0, 142.6-142.3(m), 139.0-138.6 (m), 136.9$136.6(\mathrm{~m}), 129.4,123.7,119.5,109.5,107.1-106.8(\mathrm{~m}), 22.5,14.6,11.4 ;$ HRMS-EI calcd for $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}]^{+}$ 398.0684 , found 398.0651 .
(E)-4-(1-(((perfluorobenzoyl)oxy)imino)propyl)-N,N-dipropylbenzenesulfona-mide (1ba).
white solid. $\mathrm{Mp}=89-91^{\circ} \mathrm{C}$; (Major) ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 3.06$ (td, $J=7.4,1.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.91(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.52(\mathrm{~h}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.20(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(126 \mathrm{MHz}^{2} \mathrm{CDCl}_{3}\right) \delta 168.5,156.2,146.7-146.4(\mathrm{~m}), 144.8-144.4(\mathrm{~m}), 142.7-142.4(\mathrm{~m})$,
142.4, 139.0-138.6 (m), 136.9-136.5 (m), 136.6, 128.0, 127.3, 106.8-106.4 (m), 49.9, 22.2, 21.8, 11.0; HRMS-EI calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}]^{+} 506.1293$, found 506.1265 .
(E)-1-(6-(3-((3r,5r,7r)-adamantan-1-yl)-4-methoxyphenyl)naphthalen-2-yl)propan-1-one O-perfluorobenzoyl oxime (1bb).
white solid. $\mathrm{Mp}=196-198^{\circ} \mathrm{C}^{\prime}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.98-7.92(\mathrm{~m}, 3 \mathrm{H}), 7.80(\mathrm{dd}, J=8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=8.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 6 \mathrm{H}), 2.15-2.09(\mathrm{~m}, 3 \mathrm{H}), 1.84-1.79(\mathrm{~m}$, $6 \mathrm{H}), 1.31(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.5,156.2,146.7-146.4(\mathrm{~m}), 144.8-144.4(\mathrm{~m})$, 142.7-142.4 (m), 142.4, 139.0-138.6 (m), 136.9-136.5 (m), 136.6, 128.0, 127.3, 106.8-106.4 (m), 49.9, 22.2, 21.8, 11.0; HRMS-EI calcd for $\mathrm{C}_{37} \mathrm{H}_{32} \mathrm{~F}_{5} \mathrm{NO}_{3}[\mathrm{M}]^{+}$633.2297, found 633.2292.

3,3,5-trimethylcyclohexyl (E)-2-acetoxy-5-(1-(((perfluorobenzoyl)oxy)imino) propyl)benzoate (1bd).
white solid. $\mathrm{Mp}=89-91^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.29(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{dd}, \mathrm{J}=8.4,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{tt}, J=11.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.12-2.04(\mathrm{~m}, 1 \mathrm{H})$, $1.81-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.25-1.19(\mathrm{~m}, 4 \mathrm{H}), 1.00-0.94(\mathrm{~m}, 7 \mathrm{H}), 0.92(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{t}, \mathrm{J}=$ $12.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.0,168.2,163.4,156.4,152.3,146.7-146.4(\mathrm{~m}), 144.6-144.3(\mathrm{~m})$, 142.6-142.3 (m), 138.9-138.5 (m), 136.9-136.5 (m), 132.2, 130.8, 130.7, 124.6, 124.4, 107.0-106.6 (m), 72.5, $47.4,43.8,40.2,32.9,32.3,27.1,25.4,22.2,21.0,11.1$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+$ $\left.\mathrm{NH}_{4}\right]^{+} 587.2175$, found 587.2174 .
pent-1-en-3-d-3-ol (2a-d).
colorless oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.85$ (ddt, $\left.J=17.2,10.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.21(\mathrm{dd}, J=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.11(\mathrm{dd}, J=10.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{qt}, J=6.3,1.3 \mathrm{~Hz}, 0.05 \mathrm{H}) .1 .59-1.51(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{2} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CHCl}_{3}$): $\delta 4.02(\mathrm{q}, \mathrm{J}=1.0 \mathrm{~Hz}, 1 \mathrm{H})$.
(5S)-5,9-dimethyldeca-1,8-dien-3-ol (1j).
colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.91-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{dq}, \mathrm{J}=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-5.04(\mathrm{~m}, 2 \mathrm{H})$, $4.21-4.14(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.59(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.57-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.29$ $(\mathrm{m}, 2 \mathrm{H}), 1.28-1.11(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.8,141.4,131.2,124.7$, 114.7, 114.1, 71.6, 71.0, 44.4, 44.3, 37.5, 36.9, 29.0, 28.7, 25.7, 25.4, 25.3, 19.9, 19.2, 17.6; HRMS-El calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}[\mathrm{M}]^{+}$182.1665, found 182.1687.

Characterization data of products
1-phenylpentan-3-one (3a) (Zhang et al., 2013).
$11.3 \mathrm{mg}, 70 \%$ yield; colorless liquid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.25(\mathrm{~m}), 7.22-7.15(\mathrm{~m}), 2.90(\mathrm{t}, \mathrm{J}=$ $7.7 \mathrm{~Hz}), 2.73(\mathrm{t}, J=7.7 \mathrm{~Hz}), 2.41(\mathrm{q}, J=7.3 \mathrm{~Hz}), 1.05(\mathrm{t}, J=7.3 \mathrm{~Hz})$.

1-(o-tolyl)pentan-3-one (3b) (Zhang et al., 2013).
$8.9 \mathrm{mg}, 51 \%$ yield; colorless liquid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.17-7.09(\mathrm{~m}, 4 \mathrm{H}), 2.89(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $2.69(t, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

1-(2-fluorophenyl)pentan-3-one (3c).
$13.1 \mathrm{mg}, 71 \%$ yield; colorless liquid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{td}, \mathrm{J}=7.5,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.04-6.96(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.05(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.3,161.1(\mathrm{~d}, \mathrm{~J}=245.0 \mathrm{~Hz}), 130.8(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 127.9(\mathrm{~d}, \mathrm{~J}=15.3 \mathrm{~Hz})$, $127.8(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}), 124.0(\mathrm{~d}, J=4.1 \mathrm{~Hz}), 115.2(\mathrm{~d}, \mathrm{~J}=22.2 \mathrm{~Hz}), 42.3,36.0,23.5,7.7 ;{ }^{19} \mathrm{~F} \mathrm{NMR}(471 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta-118.6-118.7(\mathrm{~m})$. HRMS-El calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{FO}[\mathrm{M}]^{+}$180.0945, found 180.0931.

1-(2-chlorophenyl)pentan-3-one (3d).
$15.7 \mathrm{mg}, 80 \%$ yield; colorless liquid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{dd}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23$ (dd, $J=$ $7.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.12(\mathrm{~m}, 2 \mathrm{H}), 3.00(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.05$ $(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.3,138.7,133.8,130.6,129.5,127.6,126.9,41.8,36.0,27.9$, 7.7; HRMS-El calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}[\mathrm{M}]^{+}$196.0649, found 196.0649.

1-(m-tolyl)pentan-3-one (3e) (Zhang et al., 2013).
$12.1 \mathrm{mg}, 69 \%$ yield; colorless liquid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.17(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz}$, $3 \mathrm{H}), 2.87(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

1-(3-methoxyphenyl)pentan-3-one (3f) (Molander and Petrillo, 2008).
$13.4 \mathrm{mg}, 70 \%$ yield; colorless liquid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.19(\mathrm{td}, \mathrm{J}=7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, \mathrm{~J}=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.71(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 1.05(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

1-(3-(methylthio)phenyl)pentan-3-one (3g).
$15.4 \mathrm{mg}, 74 \%$ yield; colorless liquid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.21-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.95$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.04(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.4,141.9,138.5,128.9,126.4,125.1,124.2,43.7,36.1,29.7,15.7$, 7.7; HRMS-El calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{OS}[\mathrm{M}]^{+}$208.0916, found 208.0915.
N-(3-(3-oxopentyl)phenyl)acetamide (3h).
$11.5 \mathrm{mg}, 52 \%$ yield; white solid. $\mathrm{Mp}=64-66^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54(\mathrm{brs}, 1 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 7.31$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $2.39(q, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.7,168.5,142.1$, 138.1, 129.0, 124.2, 119.7, 117.6, 43.6, 36.1, 29.7, 24.5, 7.7; HRMS-EI calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}[\mathrm{M}]^{+}$219.1254, found 219.1248.

3-(3-oxopentyl)phenyl acetate (3i).
$16.6 \mathrm{mg}, 75 \%$ yield; colorless liquid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.93-6.89(\mathrm{~m}, 2 \mathrm{H}), 2.90(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.3,169.5,150.7,142.9,129.4,125.9,121.4,119.2,43.5,36.1$, 29.5, 21.1, 7.7; HRMS-EI calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}[\mathrm{M}]^{+}$220.1094, found 220.1096.

1-(3-fluorophenyl)pentan-3-one (3j) (Kumar et al., 2018).
$14.0 \mathrm{mg}, 78 \%$ yield; colorless liquid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.92-6.84(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.05(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

1-(3-chlorophenyl)pentan-3-one (3k).
$14.3 \mathrm{mg}, 73 \%$ yield; colorless liquid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{dt}, \mathrm{J}=7.2,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.87(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.05(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.1,143.2,134.1,129.7,128.4,126.6,126.2,43.4,36.1,29.3,7.7$; HRMS-El calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}\left[\mathrm{M}^{+}\right.$196.0649, found 196.0657.

1-(3-(trifluoromethyl)phenyl)pentan-3-one (31).
$16.0 \mathrm{mg}, 70 \%$ yield; colorless liquid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $87.47-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 2 \mathrm{H}), 2.96(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.05(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 209.9,142.1,131.8,130.8(q, J=31.9 \mathrm{~Hz}), 128.9,125.0(q, J=3.9 \mathrm{~Hz}), 124.2(q, J=272.3 \mathrm{~Hz}), 123.0(\mathrm{q}$, $J=3.6 \mathrm{~Hz}), 43.4,36.1,29.4,7.7 ;{ }^{19} \mathrm{~F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-62.6 ; \mathrm{HRMS}-\mathrm{El}$ calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}[\mathrm{M}]^{+}$ 230.0913, found 230.0911.

OPEN ACCESS

3-(3-oxopentyl)benzonitrile (3m) (Molander and Petrillo, 2008).
$12.1 \mathrm{mg}, 65 \%$ yield; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{dt}, \mathrm{J}=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.37(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.04(\mathrm{t}, J=7.3 \mathrm{~Hz}$, 3 H).

1-(3-nitrophenyl)pentan-3-one (3n) (Shen et al., 2011).
$9.9 \mathrm{mg}, 48 \%$ yield; colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.13-8.03(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{dt}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.47(\mathrm{dd}, J=8.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.08(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

1-(p-tolyl)pentan-3-one (3o) (Zhang et al., 2013).
$10.9 \mathrm{mg}, 62 \%$ yield; colorless liquid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.12-7.04(\mathrm{~m}, 4 \mathrm{H}), 2.86(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $2.71(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

1-(4-(tert-butyl)phenyl)pentan-3-one (3p) (Zhang et al., 2013).
$12.2 \mathrm{mg}, 56 \%$ yield; colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $2.87(t, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}), 1.05(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

1-([1,1'-biphenyl]-4-yl)pentan-3-one (3q) (Jana and Tunge., 2009).
$17.1 \mathrm{mg}, 72 \%$ yield; white solid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{dd}, \mathrm{J}=8.3,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.44(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.07(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

4-(3-oxopentyl)phenyl acetate (3r) (Schlosser and Michel, 1996).
$17.4 \mathrm{mg}, 79 \%$ yield; colorless liquid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $87.20-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.96(\mathrm{~m}, 2 \mathrm{H}), 2.88(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

1-(4-(trifluoromethoxy)phenyl)pentan-3-one (3s) (Zhang et al., 2013).
$17.4 \mathrm{mg}, 71 \%$ yield; colorless liquid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $2.90(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.04(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

1-(4-fluorophenyl)pentan-3-one (3t) (Clifton et al., 1982).
$14.2 \mathrm{mg}, 79 \%$ yield; colorless liquid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.19-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.95(\mathrm{~m}, 2 \mathrm{H}), 2.90(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.07(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

1-(4-chlorophenyl)pentan-3-one (3u) (Zhang et al., 2013).
$16.1 \mathrm{mg}, 82 \%$ yield; colorless liquid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 87.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.09(\mathrm{~m}, 2 \mathrm{H}), 2.86(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.03(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

1-(4-(trifluoromethyl)phenyl)pentan-3-one (3v) (Zhang et al., 2013).
$17.7 \mathrm{mg}, 77 \%$ yield; colorless liquid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.96(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.05(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

4-(3-oxopenty) benzonitrile (3w) (Shen et al., 2011).
$12.2 \mathrm{mg}, 65 \%$ yield; white solid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $2.95(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.04(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pentan-3-one (3x).
$20.7 \mathrm{mg}, 72 \%$ yield; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $2.91(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 12 \mathrm{H}), 1.03(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 210.5,144.5,135.0,127.7,83.7,43.6,36.1,30.0,24.8,7.7$; HRMS-El calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{BO}_{3}[\mathrm{M}]^{+}$288.1891, found 288.1910.

1-(4-(trimethylsilyl)phenyl)pentan-3-one (3y).
$14.0 \mathrm{mg}, 60 \%$ yield; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $2.89(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.06(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.25(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 210.6,141.8,137.8,133.5,127.7,43.7,36.0,29.7,7.8,-1.1$; HRMS-El calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{OSi}[\mathrm{M}]^{+}$234.1434, found 234.1419 .
ethyl 4-(3-oxopentyl)benzoate (3z) (Shen et al., 2011).
$18.3 \mathrm{mg}, 71 \%$ yield; colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97-7.93(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 2 \mathrm{H}), 4.36(\mathrm{q}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $1.04(t, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
diethyl (4-(3-oxopentyl)phenyl)phosphonate (3aa).
$24.8 \mathrm{mg}, 83 \%$ yield; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.27(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.17-4.06(\mathrm{~m}, 2 \mathrm{H}), 4.09-4.00(\mathrm{~m}, 2 \mathrm{H}), 2.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.73(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.30(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.03(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.0,146.1(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 132.0(\mathrm{~d}, ~ J=10.4 \mathrm{~Hz}), 128.5(\mathrm{~d}, J=15.7 \mathrm{~Hz}), 125.8(\mathrm{~d}, J=190.0 \mathrm{~Hz})$, $62.0(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 43.2,36.1,29.6,16.3(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}), 7.7 ;^{31} \mathrm{P} \mathrm{NMR}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.2 ; \mathrm{HRMS}-\mathrm{El}$ calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{P}[\mathrm{M}]^{+}$299.1328, found 298.1348.

1-(4-(methylsulfonyl)phenyl)pentan-3-one (3ab).
$17.3 \mathrm{mg}, 72 \%$ yield; light yellow solid. $\mathrm{Mp}=69-71^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.38(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.05$ ($\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 209.6,147.9,138.3,129.4,127.6,44.5,43.0,36.1,29.4,7.7$; HRMS-El calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}]^{+} 240.0815$, found 240.0807 .

1-(3,5-dimethylphenyl)pentan-3-one (3ac).
$12.0 \mathrm{mg}, 63 \%$ yield; colorless liquid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 2 \mathrm{H}), 2.83(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 2.71(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 6 \mathrm{H}), 1.06(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 210.8,141.0,137.9,127.7,126.1,44.0,36.0,29.7,21.2,7.8 ;$ HRMS-El calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}[\mathrm{M}]^{+}$ 190.1352, found 190.1358 .

1-(3,5-dimethoxyphenyl)pentan-3-one (3ad) (Krishnamurty and Prasad, 1975).
$14.2 \mathrm{mg}, 64 \%$ yield; colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.33(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.30(\mathrm{t}, \mathrm{J}=2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.77(\mathrm{~s}, 6 \mathrm{H}), 2.84(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.05(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

1-(3,5-difluorophenyl)pentan-3-one (3ae).
$13.1 \mathrm{mg}, 66 \%$ yield; colorless liquid; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.74-6.65(\mathrm{~m}, 2 \mathrm{H}), 6.62(\mathrm{tt}, \mathrm{J}=9.0,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.88(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.05(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.7,163.0(\mathrm{dd}, J=248.0,13.2 \mathrm{~Hz}), 145.1(\mathrm{t}, \mathrm{J}=9.0 \mathrm{~Hz}), 111.1(\mathrm{dd}, J=19.4,5.8 \mathrm{~Hz}), 101.6$ ($\mathrm{t}, \mathrm{J}=25.3 \mathrm{~Hz}$) , 42.9, 36.1, 29.3, 7.7; $\left.{ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{(471} \mathrm{MHz} \mathrm{CDCl} 3,\right) \delta-110.4(\mathrm{t}, J=7.6 \mathrm{~Hz})$; HRMS-El calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{O}[\mathrm{M}]^{+}$198.0851, found 198.0856.

1-(3,5-dichlorophenyl)pentan-3-one (3af).
$16.3 \mathrm{mg}, 71 \%$ yield; colorless liquid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.18(\mathrm{t}, \mathrm{J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}$, $2 \mathrm{H}), 2.85(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.05(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.5,144.6,134.8,126.9,126.3,43.0,36.1,29.0,7.7 ;$ HRMS-El calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}[\mathrm{M}]^{+}$ 230.0260, found 230.0257.
(E)-1-(4-styrylphenyl)pentan-3-one (3ag).
$16.4 \mathrm{mg}, 62 \%$ yield; white solid. $\mathrm{Mp}=99-101^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{dd}, \mathrm{J}=8.2,1.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.44(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.92(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.06(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.6,140.7,137.4,135.2,128.6,128.4,128.1,127.5,126.6,126.4,43.7,36.1,29.6,7.7$; HRMS-El calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}[\mathrm{M}]^{+} 265.1587$, found 265.1560.

1-(2,6-difluorophenyl)pentan-3-one (3ah).
$12.9 \mathrm{mg}, 65 \%$ yield; colorless liquid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.13(\mathrm{tt}, \mathrm{J}=8.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{p}, \mathrm{J}=6.8$, $6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.06(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.9,161.5(\mathrm{dd}, \mathrm{J}=246.9,8.6 \mathrm{~Hz}), 127.6(\mathrm{t}, \mathrm{J}=10.4 \mathrm{~Hz}), 116.4(\mathrm{t}, \mathrm{J}=19.9 \mathrm{~Hz}), 111.1$ (dd, $J=20.1,5.9 \mathrm{~Hz}), 41.4,35.8,16.7,7.7 ;{ }^{19} \mathrm{~F} \operatorname{NMR}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-110.4(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}) ; \mathrm{HRMS}$-El calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{O}[\mathrm{M}]^{+}$198.0851, found 198.0856 .

1-(3,4-dichlorophenyl)pentan-3-one (3ai).
$16.6 \mathrm{mg}, 72 \%$ yield; colorless liquid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.02(\mathrm{dd}, J=8.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.04(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.8,141.5,132.2,130.3,130.3,130.0,127.9,43.2,36.1,28.7$, 7.7; HRMS-El calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}[\mathrm{M}]^{+}$230.0260, found 230.0266.

1-(naphthalen-1-yl)pentan-3-one (3aj) (Zhang et al., 2013).
$7.8 \mathrm{mg}, 37 \%$ yield; Colorless liquid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01$ (dd, $\left.J=8.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.87$ (dd, $J=$ $7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.38$ $(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.86(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.07(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

1-(naphthalen-2-yl)pentan-3-one (3ak) (Watanabe et al., 2013).
$14.8 \mathrm{mg}, 70 \%$ yield; white solid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.63(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{dd}, J=8.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{t}, \mathrm{J}=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.06(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

6-(3-oxopentyl)naphthalen-2-yl acetate (3al).
$18.6 \mathrm{mg}, 69 \%$ yield; white solid. $\mathrm{Mp}=77-79^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{dd}, J=8.8,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.05(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.5,169.7,147.9,138.6,132.3,131.6,128.9,127.8,127.8,126.3,121.2,118.3$, 43.7, 36.2, 29.9, 21.2, 7.7; HRMS-El calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3}[\mathrm{M}]^{+} 270.1250$, found 270.1256.

1-(furan-3-yl)pentan-3-one (3am).
$7.9 \mathrm{mg}, 52 \%$ yield; colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{t}, \mathrm{J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, \mathrm{J}=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.27-6.23(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=8.1,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.68-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.05(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}$, 3 H); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.6,142.8,139.0,123.9,110.9,42.6,36.1,19.0,7.7$; HRMS-El calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}[\mathrm{M}]^{+}$152.0832, found 152.0820.

1-(thiophen-3-yl)pentan-3-one (3an) (Tamaru et al., 1979).
$10.2 \mathrm{mg}, 61 \%$ yield; colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.96-6.91(\mathrm{~m}, 2 \mathrm{H}), 2.92(\mathrm{t}, \mathrm{J}=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.05(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

1-(6-methoxypyridin-3-yl)pentan-3-one (3ao).
$11.6 \mathrm{mg}, 60 \%$ yield; colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, \mathrm{J}=8.5,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.66(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $1.04(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.2,162.8,146.0,139.0,129.1,110.5,53.3,43.6,36.1$, 25.9, 7.7; HRMS-El calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}[\mathrm{M}]^{+}$193.1097, found 193.1108.

1-(6-phenylpyridin-3-yl)pentan-3-one (3ap).
16.2 mg , 68% yield; white solid. $\mathrm{Mp}=36-38^{\circ} \mathrm{C}_{;}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.53(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.98-$ $7.93(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{dd}, \mathrm{J}=8.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=8.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 1 \mathrm{H})$, $2.94(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.06(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.9,155.4,149.5,139.1,136.8,135.0,128.7,128.7,126.7,120.2,43.2,36.1,26.5,7.7$; HRMSEl calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}[\mathrm{M}]^{+} 239.1305$, found 239.1297.

1-(6-(trifluoromethyl)pyridin-3-yl)pentan-3-one (3aq).
$10.4 \mathrm{mg}, 45 \%$ yield; white solid. $\mathrm{Mp}=41-43^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.55(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{dd}$, $J=7.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.0,1 \mathrm{H}), 2.97(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $1.04(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.1,150.1,146.1(\mathrm{q}, \mathrm{J}=34.7 \mathrm{~Hz}), 140.1,137.2,121.6(\mathrm{q}$, $J=274.0 \mathrm{~Hz}), 120.1(q, J=2.5 \mathrm{~Hz}), 42.6,36.0,26.5,7.6 ;{ }^{19} \mathrm{~F} \mathrm{NMR}\left(376 \mathrm{MHz}^{2}, \mathrm{CDCl}_{3}\right) \delta-67.8 ;$ HRMS-El calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}]^{+}$231.0866, found 231.0852.

1-(benzofuran-5-yl)pentan-3-one (3ar).
$11.7 \mathrm{mg}, 58 \%$ yield; colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.11$ (dd, $J=8.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{q}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.04(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.8,153.6,145.2,135.6,127.6,124.7$, 120.4, 111.2, 106.4, 44.5, 36.2, 29.7, 7.7; HRMS-EI calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2}[\mathrm{M}]^{+}$202.0988, found 202.0984.

1-(1-acetyl-1H-indol-5-yl)pentan-3-one (3as).
$12.4 \mathrm{mg}, 51 \%$ yield; white solid. $\mathrm{Mp}=86-88^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.32(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-$ $7.33(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{dd}, \mathrm{J}=8.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.03(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{CNMR}\left(151 \mathrm{MHz}^{1} \mathrm{CDCl}_{3}\right) \delta 210.8,168.5$, 136.6, 134.1, 130.7, 125.6, 125.4, 120.3, 116.4, 109.0, 44.3, 36.2, 29.8, 23.9, 7.7; HRMS-El calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}$ $[\mathrm{M}]^{+}$243.1254, found 243.1251.

1-(benzo[b]thiophen-3-yl)pentan-3-one (3at).
$11.3 \mathrm{mg}, 52 \%$ yield; colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.43-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 3.14(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.86(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.07(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.5,140.4,138.6,135.4,124.2,123.9,122.9,121.5,121.5,41.6$, 36.1, 22.4, 7.8; HRMS-EI calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{OS}[\mathrm{M}]^{+}$218.0760, found 218.0760.

1-(quinolin-6-yl)pentan-3-one (3au).
$10.2 \mathrm{mg}, 48 \%$ yield; colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.84(\mathrm{dd}, \mathrm{J}=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{dd}, \mathrm{J}=8.4$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=8.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.08$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.03(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(126 \mathrm{MHz}$, CDCl_{3}) $\delta 210.2,149.8,147.0,139.6,135.6,130.6,129.4,128.2,126.3,121.1,43.4,36.1,29.6,7.7$; HRMS-EI calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}[\mathrm{M}]^{+}$213.1148, found 213.1148.

1-(quinolin-3-yl)pentan-3-one (3av).
$9.6 \mathrm{mg}, 45 \%$ yield; colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.78(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.94(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.84$ $(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.04(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.8,151.7$, 146.8, 134.5, 133.8, 129.1, 128.8, 128.0, 127.3, 126.7, 43.2, 36.1, 26.9, 7.7; HRMS-El calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}[\mathrm{M}]^{+}$ 213.1148, found 213.1148.

1-(4-(1H-pyrazol-1-yl)phenyl)pentan-3-one (3aw).
$17.1 \mathrm{mg}, 75 \%$ yield; white solid. $\mathrm{Mp}=63-65^{\circ} \mathrm{C}_{i}{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}$, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.45(\mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.75(\mathrm{t}, \mathrm{J}=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.05(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.4,140.9,139.5$, 138.5, 129.3, 126.7, 119.3, 107.4, 43.7, 36.2, 29.2, 7.7; HRMS-El calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}\left[\mathrm{M}^{+} 228.1257\right.$, found 228.1252.

1-(4-(2H-1,2,3-triazol-2-yl)phenyl)pentan-3-one (3ax).
$18.5 \mathrm{mg}, 81 \%$ yield; white solid. $\mathrm{Mp}=44-46^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.79$ (s , $2 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.04(\mathrm{t}, \mathrm{J}=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.3,140.7,138.2,135.3,129.2,119.0,43.6,36.2,29.2,7.7$; HRMSEl calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}]^{+}$229.1210, found 229.1210.

1-(2-methylbenzo[d]oxazol-5-yl)pentan-3-one (3ay).
$14.8 \mathrm{mg}, 68 \%$ yield; yellowish oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.03(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl ${ }_{3}$) $\delta 210.3,163.6,151.2,139.8,138.1,124.5,119.0,109.9,44.1,36.2$, 29.9, 14.5, 7.7; HRMS-El calcd for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{NO}_{2}[\mathrm{M}]^{+}$217.1097, found 217.1087.

1-(benzo[d]thiazol-5-yl)pentan-3-one (3az).
$12.5 \mathrm{mg}, 57 \%$ yield; colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.97(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, \mathrm{~J}=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, \mathrm{~J}=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=8.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $1.05(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.2,154.2,153.7,139.8,131.4,126.6,122.8,121.7$, 43.9, 36.2, 29.6, 7.8; HRMS-EI calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NOS}[\mathrm{M}]^{+}$219.0712, found 219.0710.

4-phenylbutan-2-one (3ba) (Jana and Tunge, 2009).
$10.5 \mathrm{mg}, 71 \%$ yield; colorless liquid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 3 \mathrm{H}), 2.90(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H})$.

1-phenylhexan-3-one (3bb) (Liao et al., 2015).
$12.5 \mathrm{mg}, 71 \%$ yield; colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 3 \mathrm{H}), 2.90(\mathrm{t}, \mathrm{J}=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.59(\mathrm{~h}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.

4-methyl-1-phenylpentan-3-one (3bc) (Kotani et al., 2011).
$12.7 \mathrm{mg}, 72 \%$ yield; colorless liquid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 87.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 3 \mathrm{H}), 2.89(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.57$ (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.07(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H})$.

4,4-dimethyl-1-phenylpentan-3-one (3bd) (Kotani et al., 2011)
$9.1 \mathrm{mg}, 48 \%$ yield; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 3 \mathrm{H}), 2.91-2.84$ (m, 2H), 2.84-2.76(m, 2H), $1.11(\mathrm{~s}, 9 \mathrm{H})$.

1-phenyloctan-3-one (3be) (Liao et al., 2015).
$14.3 \mathrm{mg}, 70 \%$ yield; colorless liquid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $87.32-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 3 \mathrm{H}), 2.90(\mathrm{t}$, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.56(\mathrm{p}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.35-1.18(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.

1,4-diphenylbutan-2-one (3bf) (Bay et al., 2020).
$14.6 \mathrm{mg}, 65 \%$ yield; colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, $7.21-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 1 \mathrm{H}), 2.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$.

1-cyclohexyl-3-phenylpropan-1-one (3bg) (Amani and Molander, 2017).
$13.8 \mathrm{mg}, 64 \%$ yield; colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 3 \mathrm{H}), 2.88(\mathrm{t}, \mathrm{J}=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.78-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{tt}, \mathrm{J}=11.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.73(\mathrm{~m}, 4 \mathrm{H}), 1.68-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.16$ ($\mathrm{m}, 5 \mathrm{H}$).

3-phenyl-1-(tetrahydro-2H-pyran-4-yl)propan-1-one (3bh) (Amani and Molander, 2017).
$12.0 \mathrm{mg}, 55 \%$ yield; colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.17$ (m, 3H), 3.99 (ddd, $J=11.4,4.1,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.41(\mathrm{td}, J=11.4,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.82-2.76(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{tt}, J=$ $10.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.64(\mathrm{~m}, 4 \mathrm{H})$.

1-((tert-butyldimethylsilyl)oxy)-5-phenylpentan-3-one (3bi) (Hon et al., 2007).
$23.4 \mathrm{mg}, 80 \%$ yield; colorless liquid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 3 \mathrm{H}), 4.15(\mathrm{~s}$, 2H), 2.94-2.90(m, 2H), 2.86-2.81 (m, 2H), $0.91(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H})$.
(S)-5,9-dimethyl-1-phenyldec-8-en-3-one (3bj).
$11.9 \mathrm{mg}, 46 \%$ yield; colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 3 \mathrm{H}), 5.13-5.07$ (m, 1H), $2.92(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{td}, J=7.8,7.3,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{dd}, J=15.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.23$ (dd, $J=$ $15.7,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{ddt}, J=29.7,14.4,7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.71(\mathrm{q}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.62(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.35-$ $1.27(\mathrm{~m}, 1 \mathrm{H}), 1.25-1.16(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.0,141.2,131.5$, 128.4, 128.3, 126.0, 124.3, 50.4, 44.8, 36.9, 29.7, 28.9, 25.7, 25.4, 19.7, 17.6; HRMS-EI calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}$ $[\mathrm{M}]^{+}$258.1978, found 258.1982.

1-(4-(tert-butyl)phenyl)-2-methyl-5-phenylpentan-3-one (3bk) (Liao et al., 2015).
$24.9 \mathrm{mg}, 81 \%$ yield; colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.19(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{dd}, J=13.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-2.78$ $(\mathrm{m}, 3 \mathrm{H}), 2.76-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.51(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}), 1.08(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.

1,3-diphenylpropan-1-one (3bl) (Liao et al., 2015).
$12.2 \mathrm{mg}, 58 \%$ yield; white solid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{dd}, \mathrm{J}=8.3,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 1 \mathrm{H})$, 7.48-7.44 (m, 2H), 7.33-7.28 (m, 2H), 7.28-7.25 (m, 2H), 7.24-7.19 (m, 1H), 3.33-3.29 (m, 2H), 3.11-3.05 (m, 2 H).

1-(3-methoxyphenyl)-3-phenylpropan-1-one (3bm) (Zhang et al., 2017).
$13.2 \mathrm{mg}, 55 \%$ yield; colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54(\mathrm{dt}, J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{dd}, J=2.7$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{ddd}$, $J=8.2,2.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.32-3.27(\mathrm{~m}, 2 \mathrm{H}), 3.07(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H})$.

1-(4-fluorophenyl)-3-phenylpropan-1-one (3bn) (Zhang et al., 2017).
$12.3 \mathrm{mg}, 54 \%$ yield; white solid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-$ $7.24(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{td}, J=7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.31-3.24(\mathrm{~m}, 2 \mathrm{H}), 3.07(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$.

1-(4-chlorophenyl)-3-phenylpropan-1-one (3bo) (Zhang et al., 2017).
$13.9 \mathrm{mg}, 57 \%$ yield; white solid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.32(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 3.31-3.26(\mathrm{~m}, 2 \mathrm{H}), 3.09(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$.

3-phenyl-1-(4-(trifluoromethyl)phenyl)propan-1-one (3bp) (Zhang et al., 2017).
$18.1 \mathrm{mg}, 65 \%$ yield; white solid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$.

4-(3-phenylpropanoyl)benzonitrile (3bq) (Das et al., 2019).
$16.0 \mathrm{mg}, 68 \%$ yield; white solid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 3 \mathrm{H}), 3.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.08(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$.

1-(naphthalen-2-yl)-3-phenylpropan-1-one (3br) (Zhang et al., 2017).
$13.8 \mathrm{mg}, 53 \%$ yield; white solid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.47(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{dd}, J=8.6,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{ddd}, J=8.2,6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{ddd}, J=8.2,6.8$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$.

1-(furan-3-yl)-3-phenylpropan-1-one (3bs).
$6.4 \mathrm{mg}, 32 \%$ yield; white solid. $\mathrm{Mp}=60-62^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{t}, \mathrm{J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, \mathrm{J}=$ $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 3 \mathrm{H}), 6.77(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-3.06(\mathrm{~m}, 2 \mathrm{H}), 3.05-3.01(\mathrm{~m}$, 2H). ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 194.0,147.1,144.2,141.0,128.5,128.4,127.6,126.2,108.5,42.1,30.0$; HRMS-El calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}]^{+}$200.0832, found 200.0823 .

3-phenyl-1-(thiophen-3-yl)propan-1-one (3bt) (Nicholson et al., 2021).
$6.5 \mathrm{mg}, 30 \%$ yield; white solid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{dd}, \mathrm{J}=2.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dd}, \mathrm{J}=$ $5.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{t}$, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$.

2-methyl-1-phenylpentan-3-one (3bu) (Kaku et al., 2013).
$15.8 \mathrm{mg}, 90 \%$ yield; colorless liquid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.16-$ $7.12(\mathrm{~m}, 2 \mathrm{H}), 2.97(\mathrm{dd}, J=13.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~h}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J=13.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dq}, J=$ $17.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{dq}, J=17.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.08(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

4-phenylpentan-2-one (3bv-1) (Funabiki et al., 2009).
$9.1 \mathrm{mg}, 56 \%$ yield; colorless liquid; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 3 \mathrm{H})$, $3.31(h, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=16.3,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=16.3,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H})$.

3-phenylpentan-2-one (3bv-2) (Méndez-Sánchez et al., 2016).
$4.2 \mathrm{mg}, 26 \%$ yield; colorless liquid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H})$, $7.21(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-2.02(\mathrm{~m}, 4 \mathrm{H}), 1.71(\mathrm{dp}, J=14.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.83(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H})$.

4-methyl-5-phenylhexan-3-one (3bw) (Oi et al., 2002).
$9.7 \mathrm{mg}, 51 \%$ yield; colorless liquid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 3 \mathrm{H})$, $2.99(\mathrm{dq}, J=9.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dq}, J=9.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{dq}, J=17.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{dq}, J=17.9$, $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

3-phenylpropanal (7a) (Huang et al., 2017).
$7.5 \mathrm{mg}, 56 \%$ yield; colorless liquid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.83(\mathrm{t}, \mathrm{J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.24-7.18(\mathrm{~m}, 3 \mathrm{H}), 2.97(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{td}, J=7.6,1.4 \mathrm{~Hz}, 2 \mathrm{H})$.

3-(2-chlorophenyl)propanal (7b) (Huang et al., 2017).
$12.1 \mathrm{mg}, 72 \%$ yield; colorless liquid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.83(\mathrm{t}, \mathrm{J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, \mathrm{J}=7.5$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J=7.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 2 \mathrm{H}), 3.06(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{td}, J=7.6,1.3 \mathrm{~Hz}, 2 \mathrm{H})$.

3-(3-methoxyphenyl)propanal (7c) (Huang et al., 2017).
$9.2 \mathrm{mg}, 56 \%$ yield; colorless liquid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.82(\mathrm{t}, \mathrm{J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.80-6.73(\mathrm{~m}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{td}, J=7.3,1.2 \mathrm{~Hz}, 2 \mathrm{H})$.

3-(3-(trifluoromethyl)phenyl)propanal (7d) (Airoldi et al., 2020).
$10.9 \mathrm{mg}, 54 \%$ yield; colorless liquid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $9.83(\mathrm{t}, \mathrm{J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 2 \mathrm{H})$, $7.43-7.37(\mathrm{~m}, 2 \mathrm{H}), 3.02(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 2 \mathrm{H})$.

4-(3-oxopropyl)phenyl acetate (7e) (Christensen et al., 2015).
$12.5 \mathrm{mg}, 65 \%$ yield; colorless liquid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.82(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$.
ethyl 4-(3-oxopropyl)benzoate (7f) (Soni et al., 2015).
$14.0 \mathrm{mg}, 68 \%$ yield; colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.82(\mathrm{t}, \mathrm{J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.26(d, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.36(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H})$.

3-(4-(2H-1,2,3-triazol-2-yl)phenyl)propanal (7g).
$14.7 \mathrm{mg}, 73 \%$ yield; yellowish colloid; ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.84(\mathrm{t}, \mathrm{J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.79(\mathrm{~s}, 2 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{td}, J=7.5,1.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 201.1, 139.9, 138.3, 135.4, 129.2, 119.2, 45.1, 27.5; HRMS-El calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}\left[\mathrm{M}^{+}\right.$ 201.0897, found 201.0898.

3-(6-phenylpyridin-3-yl)propanal (7h).
$14.3 \mathrm{mg}, 68 \%$ yield; white solid; $\mathrm{Mp}=61-63^{\circ} \mathrm{C}_{;}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.85(\mathrm{~s}, 1 \mathrm{H}), 8.56(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.95(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{dd}, J=8.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-$ $7.38(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.6,155.7,149.5$, 139.0, 136.8, 134.3, 128.8, 128.7, 126.8, 120.4, 44.8, 24.9; HRMS-El calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}[\mathrm{M}]^{+} 211.0992$, found 211.0994.

3-(2-chlorophenyl)butanal (7i-1 or 7l-2) (Larionov et al., 2014).
$8.0 \mathrm{mg}, 44 \%$ yield; colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.73(\mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.25(d, J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{dt}, J=8.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dq}, J=13.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.78$ (ddd, $J=16.7,6.0$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.64$ (ddd, $J=16.7,8.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.

2-(2-chlorophenyl)butanal (7i-2).
$7.1 \mathrm{mg}, 39 \%$ yield; colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.71(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.31-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{dd}, \mathrm{J}=7.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-3.99(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.72(\mathrm{~m}, 1 \mathrm{H})$,
$0.92(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}^{2} \mathrm{CDCl}_{3}\right) \delta 200.2,134.9,134.5,130.0,129.7,128.7,127.3,56.7,22.4$, 11.6; HRMS-EI calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}[\mathrm{M}]^{+}$182.0493, found 182.0482.

3-(2-chlorophenyl)-2-methylpropanal (7j).
$16.0 \mathrm{mg}, 88 \%$ yield; colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.73(\mathrm{~d}, \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 1 \mathrm{H})$, $7.23-7.15(\mathrm{~m}, 3 \mathrm{H}), 3.24(\mathrm{dd}, \mathrm{J}=13.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{dd}, \mathrm{J}=13.7,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.12$ $(\mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 203.9,136.7,134.1,131.4,129.7,128.0,126.8,46.3,34.3$, 13.3; HRMS-El calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClO}[\mathrm{M}]^{+}$182.0493, found 182.0493.

4-(2-fluorophenyl)butanal (7k-1).
$9.1 \mathrm{mg}, 55 \%$ yield; colorless liquid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.77(\mathrm{t}, \mathrm{J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 2 \mathrm{H})$, 7.07 (td, $J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-6.99(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{td}, J=7.3,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.96(\mathrm{p}, \mathrm{J}=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl 3) $\delta 202.1,161.1(\mathrm{~d}, \mathrm{~J}=245.0 \mathrm{~Hz}), 130.7(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}), 128.0(\mathrm{~d}, \mathrm{~J}=$ $15.4 \mathrm{~Hz}), 127.9(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 124.0(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 115.3(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 43.1,28.2,22.4 ;{ }^{19} \mathrm{~F}$ NMR (471 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-118.8 ; \mathrm{HRMS}-\mathrm{El}$ calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{FO}[\mathrm{M}]^{+}$166.0788, found 166.0782.

3-(2-fluorophenyl)butanal (7k-2) (Bräuer et al., 2017).
$3.8 \mathrm{mg}, 23 \%$ yield; colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.73(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.10$ (td, $J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{ddd}, J=10.7,8.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~h}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{ddd}, J=16.9,6.6$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(d d d, J=16.9,7.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$

4-(2-chlorophenyl)butanal (7I-1) (Stockwell and Welsch, 2017).
$11.8 \mathrm{mg}, 65 \%$ yield; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.78(\mathrm{t}, \mathrm{J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=7.5,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 3 \mathrm{H}), 2.81-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.49(\mathrm{td}, \mathrm{J}=7.3,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.98(\mathrm{tt}, \mathrm{J}=9.2,6.8 \mathrm{~Hz}, 2 \mathrm{H})$.

4-(3-methoxyphenyl)butanal (7m-1).
$9.8 \mathrm{mg}, 55 \%$ yield; colorless oil; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.76(\mathrm{t}, \mathrm{J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.80-6.71(\mathrm{~m}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{td}, J=7.3,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.96(\mathrm{p}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) $\delta 202.3,159.7,142.8,129.4,120.8,114.2,111.3,55.1,43.1,35.0,23.5$; HRMS-EI calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}[\mathrm{M}]^{+}$178.0988, found 178.0986.

3-(3-methoxyphenyl)butanal (7m-2) (Itooka et al., 2003).
$4.1 \mathrm{mg}, 23 \%$ yield; colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.71(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{td}, J=7.6,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.82(\mathrm{dt}, J=7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.78-6.74(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~h}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{ddd}, J=16.6$, $6.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{ddd}, J=16.7,7.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.

4-(4-chlorophenyl)butanal (7n-1) (Sakaguchi et al., 2019).
$10.0 \mathrm{mg}, 55 \%$ yield; colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.76(\mathrm{t}, \mathrm{J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{td}, J=7.3,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{p}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$.

3-(4-chlorophenyl)butanal (7n-2) (Ren et al., 2016).
$4.2 \mathrm{mg}, 23 \%$ yield; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.70(\mathrm{t}, \mathrm{J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.15(d, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(h, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{ddd}, J=16.9,7.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{ddd}, J=16.9,7.5$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.

4-(4-(trifluoromethyl)phenyl)butanal (7o-1) (Lu and Guo, 2019).
$7.8 \mathrm{mg}, 36 \%$ yield; colorless oil; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.78(\mathrm{t}, \mathrm{J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{td}, J=7.2,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{p}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$.

3-(4-(trifluoromethyl)phenyl)butanal (7o-2) (You et al., 2018).
$3.2 \mathrm{mg}, 15 \%$ yield; colorless oil; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.72(\mathrm{t}, \mathrm{J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{~h}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{ddd}, J=17.1,6.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{ddd}, J=17.1,7.5$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.

4-(naphthalen-2-yl)butanal (7p-1) (Grissom and Klingberg, 1993).
$10.1 \mathrm{mg}, 51 \%$ yield; colorless oil; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.78(\mathrm{t}, \mathrm{J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.77(\mathrm{~m}, 3 \mathrm{H}), 7.62$ $(\mathrm{s}, 1 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{td}, J=7.3,1.6 \mathrm{~Hz}, 2 \mathrm{H})$, $2.06(\mathrm{p}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$.

3-(naphthalen-2-yl)butanal (7p-2) (You et al., 2018).
$4.8 \mathrm{mg}, 24 \%$ yield; colorless oil; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.75(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.78(\mathrm{~m}, 3 \mathrm{H}), 7.66(\mathrm{~d}$, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{dd}, J=8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~h}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{ddd}, J=16.7,6.9$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{ddd}, J=16.7,7.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.

4-(thiophen-3-yl)butanal (7q-1).
$6.3 \mathrm{mg}, 41 \%$ yield; yellowish oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.76(\mathrm{t}, \mathrm{J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.97-6.91$ $(\mathrm{m}, 2 \mathrm{H}), 2.69(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{td}, J=7.3,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{p}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 202.2,141.5,128.0,125.6,120.6,43.2,29.4,22.8$; HRMS-El calcd for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{OS}[\mathrm{M}]^{+}$154.0447, found 154.0434.

3-(thiophen-3-yl)butanal (7q-2) (Schlosser and Michel, 1996).
$4.2 \mathrm{mg}, 27 \%$ yield; yellowish oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.73(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.00-$ $6.97(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~h}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{ddd}, J=16.6,6.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{ddd}, J=16.7,7.5,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.33(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.

4-(quinolin-6-yl)butanal (7r-1).
$7.2 \mathrm{mg}, 36 \%$ yield; yellowish colloid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.77(\mathrm{t}, \mathrm{J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.86(\mathrm{dd}, \mathrm{J}=4.3$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=8.6,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.37(\mathrm{dd}, J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{td}, J=7.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.05(\mathrm{p}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.0,149.7,147.0,139.7,135.7,130.8,129.3,128.3,126.3,121.2,43.0,34.8$, 23.3; HRMS-EI calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}[\mathrm{M}]^{+}$199.0992, found 199.0975.

3-(quinolin-6-yl)butanal (7r-2).
$4.0 \mathrm{mg}, 20 \%$ yield; yellowish colloid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.74(\mathrm{~s}, 1 \mathrm{H}), 8.89(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{dd}, J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~h}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}$, $J=17.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{ddd}, J=17.0,7.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl $\left.)_{3}\right)$ $\delta 201.2,150.0,147.2,143.8,135.9,129.8,129.0,128.3,124.9,121.3,51.5,34.1,22.0 ;$ HRMS-El calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}[\mathrm{M}]^{+}$199.0992, found 199.0982.

4-(2-chlorophenyl)-3-methylbutanal (7s).
$14.7 \mathrm{mg}, 75 \%$ yield; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.71(\mathrm{t}, \mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dt}, J=7.4,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 3 \mathrm{H}), 2.71(\mathrm{qd}, J=13.4,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.53-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{ddd}, J=16.2,8.0,2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.01(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.5,137.7,134.2,131.4,129.6,127.7,126.6,50.2,40.5$, 28.8, 19.9; HRMS-EI calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClO}[\mathrm{M}]^{+}$196.0649, found 196.0650.

4-(2-chlorophenyl)-3-phenylbutanal (7t).
$17.5 \mathrm{mg}, 68 \%$ yield; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.59(\mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, \mathrm{J}=7.9,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.29(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{td}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{td}, J=7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.96$
(dd, $J=7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.63 (dtd, $J=8.8,7.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.10-2.99$ (m, 2H), 2.84 (ddd, $J=16.7,8.9,2.3 \mathrm{~Hz}$, 1 H), 2.74 (ddd, $J=16.7,6.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.6,142.9,136.9,134.2,131.5,129.6$, 128.6, 127.9, 127.4, 126.8, 126.6, 48.6, 41.0, 40.1; HRMS-El calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClO}[\mathrm{M}]^{+} 258.0806$, found 258.0800 .

5-(naphthalen-2-yl)pentanal (7u) (Nicolaou et al., 2009).
$4.5 \mathrm{mg}, 21 \%$ yield; yellowish oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.76(\mathrm{t}, \mathrm{J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.75(\mathrm{~m}, 3 \mathrm{H}), 7.61(\mathrm{~s}$, $1 \mathrm{H}), 7.47-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{td}, J=7.1,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.80-$ $1.67(\mathrm{~m}, 4 \mathrm{H})$.

4-(3-oxopentyl)- N, N-dipropylbenzenesulfonamide (8a).
($26.3 \mathrm{mg}, 81 \%$ yield; colorless oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $3.06-3.01(\mathrm{~m}, 4 \mathrm{H}), 2.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.53(\mathrm{~h}, J=7.4 \mathrm{~Hz}$, $4 \mathrm{H}), 1.02(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.8,146.0,137.8,128.9$, 127.2, 50.0, 43.1, 36.1, 29.4, 22.0, 11.1, 7.7; HRMS-EI calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}]^{+} 325.1706$, found 325.1699.

1-(6-(3-((3r,5r,7r)-adamantan-1-yl)-4-methoxyphenyl)naphthalen-2-yl)pentan-3-one (8b).
$25.8 \mathrm{mg}, 57 \%$ yield; white solid. $\mathrm{Mp}=151-153^{\circ} \mathrm{C}_{;}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.82$ (d, J=8.4 Hz, 2H), 7.72 (dd, $J=8.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53$ (dd, $J=$ $8.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 6 \mathrm{H}), 2.15-2.08(\mathrm{~m}, 4 \mathrm{H}), 1.82(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.07$ $(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.7,158.4,138.8,138.4,138.3,133.1,132.3,128.2,127.8$, 127.4, 126.1, 125.8, 125.8, 125.5, 124.7, 112.0, 55.1, 43.8, 40.6, 37.1, 37.1, 36.2, 30.0, 29.1, 7.8; HRMS-EI calcd for $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{O}_{2}[\mathrm{M}]^{+} 452.2710$, found 452.2709.

14-methyl-10-(3-oxopentyl)-13-tosyl-8,13,13b,14-tetrahydroindolo[2', 3':3,4]pyrido[2,1-b]quinazolin-5(7H)one (8c).
$31.4 \mathrm{mg}, 58 \%$ yield; white solid. $\mathrm{Mp}=137-139^{\circ} \mathrm{C}_{;}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.19(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.09$ (dd, $J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.48$ (ddd, $J=8.0,7.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27$ ($\mathrm{t}, J=8.6 \mathrm{~Hz}, 3 \mathrm{H}$), $7.16(\mathrm{td}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{ddd}$, $J=12.7,5.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.13-3.03(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.93-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.79(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.77-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(126 \mathrm{MHz}$, CDCl_{3}) $210.4,164.4,150.7,145.0,137.1,136.0,135.8,133.1,129.4,129.2,129.0,128.2,127.0,126.6,123.6$, 123.0, 122.9, 120.4, 118.6, 115.2, 67.8, 44.0, 38.3, 36.1, 35.2, 29.5, 21.6, 20.8, 7.7; HRMS-EI calcd for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}]^{+} 541.2030$, found 541.2052.

3,3,5-trimethylcyclohexyl 2-acetoxy-5-(3-oxopentyl)benzoate (8d).
$29.1 \mathrm{mg}, 75 \%$ yield; colorless oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, \mathrm{J}=8.2,2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{tt}, J=11.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{q}$, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.11-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{t}, \mathrm{J}=12.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.05(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 7 \mathrm{H}), 0.92(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{t}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}_{\mathrm{CDCl}}^{3}$) $\delta 210.0,169.7,164.1,148.6,139.1,133.6,131.3,123.8,123.6,72.0,47.5,44.0,43.5,40.4,36.1$, 33.0, 32.3, 28.9, 27.1, 25.5, 22.3, 21.1, 7.7; HRMS-El calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{5}[\mathrm{M}]^{+} 388.2244$, found 388.2242 .
($8 R, 9 S, 13 S, 14 S, 17 S$)-13-methyl-2-(3-oxobutyl)-7, $8,9,11,12,13,14,15,16,17$-decahydro-6H-cyclopenta[a]phe-nanthren-17-yl acetate (8e).
$22.8 \mathrm{mg}, 62 \%$ yield; white solid. $\mathrm{Mp}=99-101^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.94(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.69$ (dd, $J=9.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.82(\mathrm{~m}, 4 \mathrm{H}), 2.78-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.37-2.28(\mathrm{~m}$, $1 \mathrm{H}), 2.27-2.19(\mathrm{~m}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.25(\mathrm{~m}, 7 \mathrm{H}), 0.83$ (s, 3H); ${ }^{13} \mathrm{CNMR}\left(126 \mathrm{MHz}^{2} \mathrm{CDCl}_{3}\right) \delta 208.1,171.2,140.2,138.1,134.3,129.1,125.5,125.3,82.6,49.8,45.4$,
$44.2,42.8,38.3,36.8,30.0,29.6,29.1,27.5,27.1,25.9,23.2,21.2,12.0 ;$ HRMS-El calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{3}[\mathrm{M}]^{+}$ 368.2346 , found 368.2350 .
($8 \mathrm{R}, 9 \mathrm{~S}, 13 \mathrm{~S}, 14 \mathrm{~S}, 17 \mathrm{~S}$)-2-(2-bromo-3-oxobutyl)-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclo-penta[a]phenanthren-17-yl acetate (9).
$33.8 \mathrm{mg}, 76 \%$; white solid; $\mathrm{Mp}=126-128^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.11(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.95(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.72-4.67(\mathrm{~m}, 1 \mathrm{H}), 4.44(\mathrm{td}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=14.4,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.12$ (ddd, $J=14.3,7.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(d d, J=9.1,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.32-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.27-$ $2.18(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.31(\mathrm{~m}, 5 \mathrm{H}), 1.31-1.22$ $(\mathrm{m}, 1 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}_{\mathrm{MDCl}}^{3}\right) \delta 201.4,171.2,140.5,135.5,134.1,129.2(\mathrm{~d}, \mathrm{~J}=4.3 \mathrm{~Hz}), 126.3$ $(d, J=7.7 \mathrm{~Hz}), 126.2,82.6,53.5(d, J=9.2 \mathrm{~Hz}), 49.9,44.2,42.8,39.5(d, J=8.1 \mathrm{~Hz}), 38.2,36.8,29.1,27.5,27.1$, 26.9 (d, $J=7.8 \mathrm{~Hz}$), 26.0 ($d, J=4.0 \mathrm{~Hz}$), 23.2, 21.2, 12.0; HRMS (ESI-TOF) calcd for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{NO}_{3} \mathrm{Br}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$ 464.1795, found 464.1800.
($8 \mathrm{R}, 9 \mathrm{~S}, 13 \mathrm{~S}, 14 \mathrm{~S}, 17 \mathrm{~S}$)-2-(3-((4-methoxyphenyl)amino)butyl)-13-methyl-7,8,9,11,12,13,14,15,16,17-decahy-dro-6H-cyclopenta[a]phenanthren-17-yl acetate (10).
$46.5 \mathrm{mg}, 98 \%$; yellow sticky foam; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.12(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.96(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{dd}, J=8.9,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.72(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ $(\mathrm{s}, 3 \mathrm{H}), 3.42(\mathrm{~h}, \mathrm{~J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.33-2.20(\mathrm{~m}, 3 \mathrm{H}), 2.09(\mathrm{~d}, J=1.7 \mathrm{~Hz}$, $3 H), 1.95-1.84(m, 3 H), 1.81-1.70(m, 2 H), 1.63-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.35(\mathrm{~m}, 5 \mathrm{H}), 1.33-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{~d}, \mathrm{~J}=$ $6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.1,151.8,141.7,140.0(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz})$, $139.1,133.9,129.0,125.6(d, J=4.6 \mathrm{~Hz}), 125.4,114.8,114.7,82.6,55.7,49.8,48.9(d, J=11.2 \mathrm{~Hz}), 44.3(d, J=$ $5.4 \mathrm{~Hz}), 42.8,39.0(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}), 38.3,36.9,32.3,29.1,27.5,27.2,25.9(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}), 23.2,21.1,20.8,12.0$; HRMS (ESI-TOF) m / z Calcd for $\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 476.3159$, found 476.3158 .
($8 \mathrm{R}, 9 \mathrm{~S}, 13 \mathrm{~S}, 14 \mathrm{~S}, 17 \mathrm{~S}$)-13-methyl-2-((2-methyl-1H-indol-3-yl)methyl)-7,8,9,11,12,13,14,15,16,17-decahydro6 H -cyclopenta[a]phenanthren-17-yl acetate (11).
$36.2 \mathrm{mg}, 82 \%$; yellowish solid; m.p. $113-115^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 2 \mathrm{H}), 4.70(\mathrm{t}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 2 \mathrm{H}), 2.85-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.20(\mathrm{~m}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.78-$ $1.72(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.24(\mathrm{~m}, 2 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.2,139.8,138.8,135.2,133.8,131.4,128.9,128.9,125.4,125.2,120.8,119.1,118.3$, 110.7, 110.0, 82.7, 49.8, 44.3, 42.8, 38.3, 36.9, 29.9, 29.1, 27.5, 27.2, 25.9, 23.2, 21.2, 12.0, 11.8; HRMS-EI calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{NO}_{2}[\mathrm{M}]^{+} 441.2662$, found 441.2657 .
($8 \mathrm{R}, 9 \mathrm{~S}, 13 \mathrm{~S}, 14 \mathrm{~S}, 17 \mathrm{~S}$)-13-methyl-2-((2-methyl-4-phenylquinolin-3-yl)methyl)-7,8,9,11,12,13,14,15,16,17-dec-ahydro-6H-cyclopenta[a]phenanthren-17-yl acetate (12).
$45.2 \mathrm{mg}, 85 \%$; white solid; $\mathrm{Mp}=123-125^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{ddd}$, $J=8.3,5.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.36(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.88(\mathrm{~m}, 2 \mathrm{H})$, $6.67(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 2 \mathrm{H}), 2.84-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 2.26-2.09(\mathrm{~m}, 3 \mathrm{H})$, $2.05(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.32(\mathrm{~m}, 2 \mathrm{H})$, 1.32-1.19 (m, 2H), $0.82(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.1,159.5,147.6,146.4,140.0,137.1$, 136.7, 134.1, 129.6, 129.3, 128.9, 128.6, 128.4, 128.3, 128.3, 127.8, 126.9, 126.4, 125.6, 125.1, 125.0, 82.6, 49.8, 44.2, 42.8, 38.2, 36.8, 35.9, 29.0, 27.5, 27.1, 25.9, 24.4, 23.2, 21.1, 12.0; HRMS (ESI-TOF) m/z Calcd for $\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 530.3054$, found 530.3064 .
($8 R, 9 S, 13 S, 14 S, 17 S$)-13-methyl-2-(6-methyl-2-phenylpyrimidin-4-yl)-7,8,9,11,12,13,14,15,16,17-decahydro6 H -cyclopenta[a]phenanthren-17-yl acetate (13).
$24.5 \mathrm{mg}, 53 \%$; white solid; $\mathrm{Mp}=.147-149^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.57(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H})$, $7.94(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.98-2.91 (m, 2H), $2.64(\mathrm{~s}, 3 \mathrm{H}), 2.55-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.28-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.92$ $(\mathrm{m}, 2 \mathrm{H}), 1.82-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.41(\mathrm{~m}, 3 \mathrm{H}), 1.37-1.29(\mathrm{~m}, 2 \mathrm{H}), 0.87$
($\mathrm{s}, 3 \mathrm{H}$) ${ }^{13}{ }^{13} \mathrm{CNMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.2,167.4,164.1,164.0,140.8,139.8,138.2,134.6,130.4,129.5,128.4$, 128.3, 124.4, 124.2, 113.7, 82.6, 49.9, 44.3, 42.9, 38.3, 36.9, 29.5, 27.5, 27.0, 26.0, 24.6, 23.2, 21.2, 12.1; HRMS (ESI-TOF) m/z Calcd for $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 467.2693$, found 467.2694 .
($8 \mathrm{R}, 9 \mathrm{~S}, 13 \mathrm{~S}, 14 \mathrm{~S}, 17 \mathrm{~S}$)-13-methyl-2-(3-methyl-1-phenyl-1H-pyrazol-5-yl)-7, $8,9,11,12,13,14,15,16,17$-decahy-dro-6H-cyclopenta[a]phenanthren-17-yl acetate (14)
$26.1 \mathrm{mg}, 57 \%$; white solid; $\mathrm{Mp}=86-88^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 6.99-$ $6.94(\mathrm{~m}, 2 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=8.9,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.25-2.11(\mathrm{~m}, 2 \mathrm{H})$, $2.06(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.49(\mathrm{~m}, 1 \mathrm{H})$, $1.45-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.22(\mathrm{~m}, 2 \mathrm{H}), 0.80(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.2$, $149.3,144.1,140.4,140.2,136.7,128.9,128.8,127.8,127.0,125.8,125.7,125.4,107.1,82.6,49.9,44.0$, $42.8,38.2,36.8,29.2,27.5,27.0,25.6,23.2,21.2,13.6,12.0$; HRMS (ESI-TOF) m/z Calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{2}$ $[M+H]^{+} 455.2693$, found 455.2697 .

[^0]: Scheme 1. Homologation of Aryl Ketones to Long-chain Ketones ${ }^{\text {a }}$

 ${ }^{\mathrm{b}} 10 \mathrm{mmol}$-scale with one-pot operation of aryl ketone.
 ${ }^{c} n$ - Pr instead of Et in ketone oxime ester 1.
 ${ }^{d}$ L2 instead of L8.

