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Homologation of aryl ketones to long-chain
ketones and aldehydes via C–C bond cleavage

Xing Wang,1 Ling-Jun Li,1 Zhen-Yu Wang,2 Hui Xu,1,* and Hui-Xiong Dai1,2,3,4,*

SUMMARY

Transition metal-catalyzed C–C bond cleavage is a powerful tool for the recon-
struction of a molecular skeleton. We report herein the multi-carbon homologa-
tion of aryl ketones to long-chain ketones and aldehydes via ligand-promoted
Ar�C(O) bond cleavage and subsequent cross coupling with alkenols. Various
(hetero)aryl ketones are compatible in the reaction, affording the corresponding
products wtih good to excellent yields with high regioselectivity. Further applica-
tions in the late-stage diversification of biologically important molecules demon-
strate the synthetic utility of this protocol. Mechanistic studies indicate that the
ligand plays an important role in both C–C bond cleavage and the asymmetric
migration-insertion process.

INTRODUCTION

Functionalized long-chain ketones and aldehydes are important structural motifs commonly found in

bioactive compounds and pharmaceuticals (Figure 1A) (Cao et al., 2005; Ertl and Schuhmann, 2019; Hashi-

moto et al., 1977; Huang et al., 2016; Itoh et al., 1999; Moser and Bode, 2008; Ngadjui et al., 1991). For

example, Prasugrel hydrochloride, developed by Daiichi Sankyo & Co., is a platelet ADP P2Y12 receptor

antagonist, used for acute coronary syndrome (Aalla et al., 2012; Baker and White, 2009). Meanwhile,

long-chain ketones and aldehyde are often employed as versatile building blocks in organic synthesis

via transformations of carbonyl group, such as Grignard reactions, Wittig reactions, adol reaction, etc.

(Murray, 2015; Vollhardt and Schore, 2018). Thus, the development of an efficient protocol to synthesize

the long-chain ketone and aldehyde has gained much attention. Among various synthetic approaches,

the Heck-type reaction of aryl reagent with alkenol is one of the most powerful methods (Beletskaya and

Cheprakov, 2000; de Meijere and Meyer, 1994; Dounay and Overman, 2003; Mc Cartney and Guiry,

2011). Aryl halides (Heck and Nolley, 1972; Mizoroki et al., 1971), triflate (Cabri et al., 1992; Race et al.,

2019), diazonium salts (Kikukawa and Matsuda, 1977; Patel and Sigman, 2015), boron reagents (Chen

et al., 2012, 2016; Liu et al., 2019; Mei et al., 2013, 2014), carboxylic acids (Huang et al., 2013a), sulfonoly-

drazide (Huang et al., 2013b), and sulfinic acid salts (Liao et al., 2015) have been developed as the aryl

donors in the past few decades (Figure 1B). C�C bonds constitute the main skeleton of organic com-

pounds. Selective C�C bond cleavage and subsequently cross-coupling with alkenol could rapidly

generate diversified libraries of long-chain ketones. Recently, Kakiuchi achieved Rh(III)-catalyzed Heck-

type cross couplings of styrene derivatives with allylic alcohol via chelation-assisted C�C bond cleavage

(Figure 1C) (Onodera et al., 2020).

Aryl ketones are ubiquitous structural motifs found in pharmaceuticals and natural products (Larock, 1999).

Homologation of the abundant aryl ketones to long-chain ketones and aldehydes via Ar�C(O) bond cleav-

age would be highly appealing. One-carbon homologation of aryl ketone via insertion of carbenoids into

Ar�C(O) bond has been well known (Candeias et al., 2016; Sebastian et al., 2021). Very recently, Feng and

coworkers elegantly achieved asymmetric one-carbon homologation of acyclic and cyclic aryl ketones with

a-diazo esters in the presence of a chiral scandium(III)-N,N0-dioxide Lewis acid catalyst (Tan et al., 2021).

The low valent metal-catalyzed ‘‘Cut and Sew’’ strategy of Ar�C(O) bond with unsaturated C�C bonds

could achieve the two-carbon homologation (Chen et al., 2017; Juliá-Hernández et al., 2015; Kondo

et al., 2000; Okumura et al., 2017; Xia et al., 2019; Xu and Dong, 2012). Both strained and unstrained aryl

ketones were employed as the substrates, and diverse two-carbon homologated ring structures were ob-

tained via Ar�C(O) bond cleavage and subsequent 1,2- or 2,1-insertion with alkenes and alkynes. An un-

conventional one-carbon homologation of unstrained aryl ketones was recently reported by Dong and

Xia via the Rh-catalyzed intramolecular formal 1,1-insertion process (Huang et al., 2022). However, oxidative
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addition of a transitionmetal into the Ar�C(O) bond is thermodynamically unfavorable and often requires a

directing group to enhance the reactivity or utilize the ring-strain release to generate stable cyclic metal

species (Dong, 2014; Chen et al., 2014; Deng and Dong, 2020; Jun, 2004; Kim et al., 2017; Marek et al.,

2015; Murakami and Ishida, 2016; Rybtchinski and Milstein, 1999; Souillart and Cramer, 2015; Xia and

Dong, 2020; Yu et al., 2021). We envisioned that the transition metal-catalyzed Ar�C(O) bond cleavage

and subsequently Heck-type coupling with alkenol could homologate aryl ketones to long-chain ketones.

Recently, our group achieved the ligand-promoted C–C bond cleavage of unstrained aryl ketone (Guo

et al., 2021; Li et al., 2020; Wang et al., 2021; Xu et al., 2021). In this manuscript, we report the multi-carbon

homologation of aryl ketone to long-chain ketone and aldehyde via Heck-type cross coupling of alkenol

with ketone-derived oxime esters (Figure 1D). By employing appropriate pyridine oxazoline ligand, the

transformations were achieved with high chemo- and regioselectivity. To demonstrate the practicality,

the two-carbon homologations of biologically important aryl ketones into long-chain ketones were

showcased.

RESULTS AND DISCUSSION

Optimization of reaction conditions

Aryl ketones could be conveniently activated to the oxime ester derivatives that could be employed as

building blocks in synthesis of various nitrogen-containing heterocycles (Bao et al., 2017; Blake et al.,

2004; Faulkner et al., 2015; Huang et al., 2015;Nishimura and Uemura, 2000; Race et al., 2017; Tan and Hart-

wig, 2010; Tsutsui et al., 1997; Walton, 2014). Thus, we commenced our investigation by treating oxime

ester 1a and 1-penten-3-ol (2a) in the presence of 10 mol % PdCl2, 20 mol % ligand L1, 2 equiv of K2CO3

in DCE at 120�C (Table 1). However, no desired product was observed (Entry 1). Considering that cationic

palladium complexes are more electrophilic to coordinate with allyl alcohol, we screened various additives

to scavenge the chloride ions (Table S1), including NaBArF, Ag2CO3, AgOAc, AgOTf, and AgNTf2 (Entries

Figure 1. Synthesis of long-chain ketones and aldehydes

(A) Representative natural products and drugs containing long-chain ketones and aldehydes.

(B) Various aryl donors in the Heck-type reaction with alkenol.

(C) Directed C–C bond cleavage.

(D) This work: Multi-carbon homologation of aryl ketones to long-chain ketones and aldehydes.
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2–6). To our delight, 1-phenylpentan-3-one 3a (44%) and 2-phenylpentan-3-one 4a (19%) could be ob-

tained by employing AgNTf2 as the additive (Entry 6). Base, palladium catalysts, and solvents were also

screened; however, no better results were obtained (see Tables S2–S4 in supplemental information for de-

tails). To improve the yield and regioselectivity, we examined the different type of ligands (see Schemes S3

and S4 in supplemental information for details). Phosphine ligands were detrimental to the reaction. 2,20-
Bipyridine ligand (L2) could effectively improve the yield to 80%with a 3a/4a ratio of 59/21(Entry 7). Pyridine

oxazoline (PyrOx) ligands have been widely employed in the enantioselective redox relay Heck reactions

(Chen et al., 2016; Liu et al., 2019; Mei et al., 2013, 2014; Patel and Sigman, 2015). After the screening of

various pyridine oxazoline ligands, L3 could significantly improve the regioselectivity of 3a/4a to 43/7,

whereas PyrOx ligand with bulky substituent in oxazoline moiety yielded poor results (Entries 8–10). The

regioselectivity of the aromatic ring migration onto the deactivated olefin is possibly due to the balance

between electronic and steric factors: 1) The subtle electronic differences in alkenyl carbons favor the for-

mation of the linear product 3a; 2) Migratory insertion of Pd catalyst bearing bulky ligand to the less hin-

dered carbon could relieve steric strain, thus favoring the formation of the branched product 4a (Cabri

et al., 1992; Mei et al., 2014). To further evaluate the electronic effects of the substituents in the ligands,

modifications in pyridine moiety were investigated (Entries 11–13). To our delight, ligands containing a

chloro group in the five-position of the pyridine moiety (L8) gave the desired product 3a with a 64% yield

Table 1. Optimization of reaction conditionsa

 

Entry Ligand Additive-1 Additive-2 Yield (%)b 3a/4a/5a

1 L1 w/o – �/�/-

2 L1 NaBArF – 8/4/-

3 L1 Ag2CO3 – Trace/�/�
4 L1 AgOAc – �/�/-

5 L1 AgOTf – Trace/�/�
6 L1 AgNTf2 – 44/19/-

7 L2 AgNTf2 – 59/21/-

8 L3 AgNTf2 – 43/7/-

9 L4 AgNTf2 – 52/23/-

10 L5 AgNTf2 – 32/21/-

11 L6 AgNTf2 – 62/15/10

12 L7 AgNTf2 – 44/10/14

13 L8 AgNTf2 – 64/12/10

14 L8 AgNTf2 LiBr 56/12/8

15c L8 AgNTf2 n-Bu4NBr �/�/-

16c L8 AgNTf2 TsONa 66/12/4

17c,d L8 AgNTf2 TsONa 72 (68)e/12/3

aReaction conditions: 1a (0.1 mmol), 2a (0.2 mmol), PdCl2 (10 mol %), ligand (20 mol %), additive-1 (20 mol %), K2CO3

(0.2 mmol), additive-2 (0.1 mmol), DCE (2 mL), 120�C, N2, 12 h
bThe yield was determined by 1H NMR analysis of crude reaction mixture using CH2Br2 as the internal standard
cK2CO3 (0.1 mmol)
dDCE (3 mL)
eisolated yield of 3a
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(Entry 13). Meanwhile, a 10% yield of alkenol isomer 5awas obtained as the byproduct, which indicated that

part of the PdH species was deactivated during migratory-insertion process. Considering the economic

viability of the starting material, oxime ester deriving from cheaper alkanoyl and aroyl chlorides were

tested, and perfluoriobenzyl oximes afforded the highest yield at 120�C under an N2 atmosphere (For de-

tails, see Scheme S5, Tables S5 and S6 in supplemental information). To further improve the chemo- and

regioselectivity, a series of additives and concentration were investigated (Entries 14–17, also see

Tables S7 and S8 in supplemental information for details) (Abelman and Overman, 1988; Abelman et al.,

1987; Larock and Gong, 1989; Larock et al., 1988). The addition of TsONa could efficiently inhibit the for-

mation of 5a. Further screening of the reaction concentration could improve the yield of 3a to 72% with a

68% isolated yield (Entry17). Aryl ketones (including acetophenone, 1-phenylbutan-1-one, 1-phenylpentan-

1-one) with different side chain, including methyl, ethyl, n-amyl i-propyl, t-butyl, cyclohexyl, and phenyl

group, were also suitable substrates (1a-1–1a-7), giving the desired products 3a with 21–70% isolated

yields (for details, see Table S9).

Substrate scope

Having established the optimal reaction conditions, the scope of aryl ketones was investigated (Scheme 1).

Aryl ketones bearing different substituents at the ortho-, meta-, and para-positions provided the

corresponding two-carbon homologated products (3a�3ab) in moderate to good yields. A variety of elec-

tron-donating or electron-withdrawing groups (�Me,�OMe,�NHAc,�Sme,�OCF3,�Ph,�F,�Cl,�CN,

�NO2,�CF3,�SiMe3,�CO2Et,�PO(Oet)2, and�SO2Me) could be well accommodated under the optimal

reaction conditions. A scale-up experiment with one-pot operation of aryl ketone was carried out by using

propiophenone (10 mmol) as the starting material, affording the corresponding product 3a with a 54%

isolated yield. It’s worth noting that very sensitive substituent including Bpin and alkenyl could be toler-

ated, leaving a handle for further transformation. Aryl substrates with disubstituents (3ac�3af, 3ah�3ai),

naphthalene (3aj�3al) are also suitable substrates. This protocol shows high compatibility with various

heterocycles, including furan (3am), thiophene (3an), pyridine (3ao�3aq), benzofuran (3ar), indole (3as),

benzothiophene (3at), quinoline (3au, 3av), diazole (3aw), triazole (3ax), benzoxazole (3ay), and benzothia-

zole (3az), delivering the desirable b-aryl ketone products with 45–81% yields.

A series of alkyl substituents in alkenol were investigated (including 3-buten-2-ol, 1-hexen-3-ol, 1-octen-3-

ol, and other alkenols), providing the corresponding ketone products (3ba�3bg) in moderate to good

yields. Heteroatom-contained alkenols were also compatible in the reaction (3bh, 3bi). In addition, the al-

kenols derived from the natural products Citronellal and Lily aldehyde could furnish the corresponding

products with 46 and 81%, respectively (3bj, 3bk). The aryl substituted alkenols with various electron-

donating and electron-withdrawing groups (�OMe, �F, �Cl, �CF3, and �CN) provided the desired prod-

ucts 3bl�3bq with 54–68% yields. Moreover, heteroaryl substrates containing furan (3bs) and thiophene

(3bt) were also tolerated, albeit in lower yields. Significantly, the multi-substituted alkenol substrates

showed good compatibility (3bu�3bw). When 3-penten-2-ol was employed as the coupling partner,

both b- and a-regioselective products were obtained with the ratio of 56/26 (3bv).

Furthermore, aryl ketone could be homologated to long-chain aldehydes when the primary allylic

alcohol substrates 6 were used (Scheme 2).When 3-buten-1-ol was employed, both electron-donating

and electron-withdrawing substituents (OMe, OAc, Cl, CF3, CO2Et) at the ortho-, meta-, and para-po-

sitions of aryl ketones delivered the desirable b-aryl aldehyde products with 54–72% yields. Heteroaryl

substrates containing triazole (7g), pyridine (7h) were also well tolerated. In addition, the multi-

substituted alkenol substrates (crotonyl alcohol and 3-methyl-3-buten-1-ol) showed good compatibility

(7i, 7j). To further explored the potential applications of this protocol, more challenging homoallyl

alcohol substrates were evaluated. After the re-screening of various ligands (Scheme S6), 2,20-bipyri-
dine (L2) was employed instead of L8. Aryl and heteroaryl ketone derivatives (7k-7r) proceeded

smoothly, albeit with lower regioselectivity. Moreover, the alkyl or aryl substituents at three-position

of homoallyl alcohols were well tolerated with high reactivity and excellent regioselectivity (7s, 7t). It

is worth noting that the d-aryl aldehyde product (7u) could be obtained by using 4-penten-1-ol as

the substrate.

Synthetic application

To showcase the potential applications of this protocol, two-carbon homologation of some biologically

important molecules was carried out. Vrious aryl ketones derived from medicinal drugs probenecid,
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Scheme 1. Homologation of Aryl Ketones to Long-chain Ketonesa

aReactionconditions:1a (0.1mmol),2a (0.2mmol), PdCl2 (10mol%),L8 (20mol%),AgNTf2 (20mol%),K2CO3 (0.1mmol), TsONa (0.1mmol),DCE (3mL), 120
�
C,N2, 12h.

b10 mmol-scale with one-pot operation of aryl ketone.
cn-Pr instead of Et in ketone oxime ester 1.
dL2 instead of L8.
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adapalene, homosalate, and natural products evodiamine, desoxyestrone proceeded smoothly,

furnishing the corresponding products (8a�8e) with good yields (57–81%) (Figure 2A). Furthermore, de-

rivatizations of product 8e were performed to introduce various functional groups (Figure 2B). a-Bromi-

nation of 8e gave a-bromoketone 9 with a 76% yield, which is a versatile building block in organic

synthesis. Moreover, reductive amination of the carbonyl group was readily achieved to afford the ami-

nated product 10 with a 98% yield. It is valuable to introduce heterocycles into drug molecules. Structur-

ally important heterocycles, including indole (11), quinoline (12), could be efficiently constructed through

Fischer indole synthesis and Friedländer annulation reaction. In addition, pyrimidine (13) and diazole (14)

could also be introduced into the target molecule with moderate yields (Nguyen et al., 2020; Zhan et al.,

2016).

Mechanistic studies

For a better understanding of the mechanism, some control experiments were carried out (Figure 3).

First, the addition of radical scavenger 2, 2, 6, 6-tetra-methylpiperidine-N-oxyl (TEMPO) and butylated

hydroxytoluene (BHT) did not inhibit the reaction, indicating that a radical pathway might not be

involved in the reaction (Figure 3A). In addition, when oxime ester 1a-8 was employed, the b-aryl ke-

tone product 3a and nitrile compound 3a-1 were obtained with 69 and 84% yields, indicating the

Ar-Pd species were generated via the b-aryl elimination process (Figure 3B). Next, the deuteration ex-

periments were performed (Figure 3C). The coupling of oxime ester 1a-2 with [D]-pent-1-en-3-ol under

the standard reaction conditions afforded the [D]-b-aryl ketone product 3a-d with a 71% yield. The

deuterium is completely transferred to the a-position of carbonyl group, which indicates that the reac-

tion proceeds via an iterative b-hydride elimination/migratory-insertion sequence (Figure S1). In addi-

tion, the intermolecular KIE of 1.1 indicates b-hydride elimination/migratory-insertion might not be

involved in the rate-determined step (Figure S2). The moderate enantioselectivity were observed in

both b-and a-aryl products when bulkier chiral ligand L5 was used (Figures S3–S6), indicating that

the ligand plays an important role in both C–C bond cleavage and the asymmetric migration-insertion

Scheme 2. Homologation of Aryl Ketones to Long-chain Aldehydesa

aReaction conditions: 1a (0.1 mmol), 2a (0.2 mmol), PdCl2 (10 mol %), L8 (20 mol %), AgNTf2 (20 mol %), K2CO3 (0.1 mmol), TsONa (0.1 mmol), DCE (3 mL),

120
�
C, N2, 12 h.

bL2. instead of L8.
c18 h.
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process (Figure 3D). Based on the previous reports and the control experiments (Nishimura and Ue-

mura, 2000; Patel and Sigman, 2015; Tan and Hartwig, 2010), a possible mechanism was proposed (Fig-

ure 3E). The insertion of Pd(0) into the N-O bond of oxime ester 1 generated the intermediate I0, which
isomerized to intermediate I. Ligand-promoted b-aryl elimination of I afforded the aryl palladium spe-

cies II and nitrile product. Migratory insertion of Ar-Pd into pent-1-en-3-ol 2a gave the intermediate III,

which underwent b-H elimination to form IV. The re-insertion of PdH into the IV afforded the

Figure 2. Synthetic application and product transformations

(A) Homologation of biologically important Aryl ketones. aMe instead of Et in ketone substrate.

(B) Production transformationsb. bReaction conditions: For the synthesis of 8e, see the SI.
a8e (0.1 mmol), Br2 (0.1 mmol), DCM (1 mL), r. t, 10 min, air.
b8e (0.1 mmol), p-Anisidine (0.11 mmol), AcOH (0.1 mmol), DCM (1.0 mL), NaBH(OAc)3 (0.15 mmol), r. t, 12 h, N2.
c8e (0.1 mmol), Phenylhydrazine hydrochloride (0.1 mmol), AcOH (0.5 mL), 120�C, 1 h, air.
d8e (0.1 mmol), 2-Aminobenzophenone (0.1 mmol), AcOH (0.5 mL), 120�C, 4 h, air.
e8e (0.1 mmol), Benzamidine hydrochloride (0.1 mmol), Cu(OAc)2 (10 mol%), 2,20-bipyridine (10 mol %), 4-HO-TEMPO (0.1 mmol), and NaOAc (0.15 mmol).

1,2-dichlorobenzene (1.0 mL), 140�C, 24 h, air.
f8e (0.1 mmol), CuBr2 (25 mol %), TEMPO (0.4 mmol), PhNHNH2 (0.4 mmol), acetic acid (0.1 mmol), DMF (1.0 mL), 140�C, 48 h, air.
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Figure 3. Mechanistic studies
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intermediate V, which proceeded b-H elimination to generate the homologated product 3a and regen-

erate the Pd (0) species.

Conclusions

In summary, we have developed an efficient palladium-catalyzed ligand-promoted redox-relay

Heck reaction of aryl ketones with alkenols, affording the homologated long-chain ketones and alde-

hydes with a good to excellent yield with good regioselectivity. This protocol shows excellent func-

tional-group tolerance and heterocyclic compatibility. Late-stage diversifications of some aryl ketones

derived from pharmaceuticals and natural products demonstrate the synthetic practicality of this

methodology.

Limitations of the study

Compared with previous well-developed redox-relay Heck work, the reaction afforded moderate site- and

enantioselectivity under the optimized reaction conditions. In addition, this reaction is not compatible with

unsubstituted pyridine, and the substrate scope limited to ortho-substituted pyridines.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Hui-Xiong Dai (hxdai@simm.ac.cn).

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Hydroxylammonium chloride Sinopharm Chemical Reagent Co. LTD Cas: 5470-11-1

Vinylmagnesium bromide Energy Chemical Cas: 1826-67-1

2,3,4,5,6-Pentafluorobenzoylchloride Sigma-Aldrich Cas: 2251-50-5

Pyridine Sinopharm Chemical Reagent Co. LTD Cas: 110-86-1

PdCl2 J&K Scientific Cas: 7647-10-1

AgNTf2 J&K Scientific Cas: 189114-61-2

K2CO3 Sinopharm Chemical Reagent Co. LTD Cas: 584-08-7

TsONa Sinopharm Chemical Reagent Co. LTD Cas: 657-84-1
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1-Penten-3-ol J&K Scientific Cas: 616-25-1

1-Hexen-3-ol bidepharm Cas: 4798-44-1

1-Octen-3-ol J&K Scientific Cas: 3391-86-4

Crotonyl alcohol Macklin Cas: 6117-91-5

3-Buten-1-ol bidepharm Cas: 627-27-0
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TEMPO Energy Chemical Cas: 2564-83-2

Br2 Sinopharm Chemical Reagent Co. LTD Cas: 7726-95-6
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p-Anisidine Energy Chemical Cas: 104-94-9

AcOH Sinopharm Chemical Reagent Co. LTD Cas: 64-19-7

Phenylhydrazine hydrochloride Energy Chemical Cas: 59-88-1

2-Aminobenzophenone Energy Chemical Cas: 2835-77-0

Benzamidine hydrochloride Energy Chemical Cas: 1670-14-0

Cu(OAc)2 TCI Cas: 6046-93-1

2,20-Bipyridine bidepharm Cas: 366-18-7

4-OH-TMEPO Energy Chemical Cas: 2226-96-2

NaOAc Sinopharm Chemical Reagent Co. LTD Cas: 127-09-3
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Materials availability

All materials generated in this study are available within the article and the supplemental information or

from the lead contact upon reasonable request.

Data and code availability

d All data reported in this paper will be available from the lead contact upon request.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

METHOD DETAILS

General information

All chemicals were used as received without further purification. Solvents were purified prior to use accord-

ing to conventional procedures. 1H and 13C NMR spectra were recorded on Bruker AVANCE III 400, Bruker

AVANCE III 500 and Bruker AVANCE III 600 instruments. All chemical shifts (d) are reported in parts per

million (ppm) and coupling constants (J) are reported in Hz. High resolution mass spectra (HRMS) of the

substrates, intermediate and products were obtained using UHPLC-QTOF spectrometer and Thermo

DFS spectrometer. Melting points were measured by SGWX-4A micro melting point apparatus. All reac-

tions were monitored by thin-layer chromatography (TLC) through GF254 silica gel-coated plates. The

aryl ketones were commercially available or readily prepared according to the known method (Xu et al.,

2021; Nahm and Weinreb, 1981; Niu et al., 2014; Labeeuw et al., 2004; Nambara et al., 1970; George

et al., 2015).

Preparation of ketoxime esters (for ketoxime esters used in this work, see Scheme S1)

To a mixture of hydroxylammonium chloride (278 mg, 4 mmol), NaOAc (640 mg, 8 mmol), EtOH (10 mL) was

added aryl ketone (2 mmol), and the mixture was stirred at r.t. for overnight or at 90�C for 2 h. The reaction

mixture was cooled down to room temperature, and then EtOH was removed under reduced pressure. The

resulting mixture was extracted with EtOAc. The organic layer was then washed with brine and dried over

Na2SO4. The solvent was removed under vacuum to give oxime (>99% yield), not further purified.

To a mixture of oxime (2 mmol) and CH2Cl2 (10 mL) was slowly added 2,3,4,5,6-Pentafluorobenzoylchloride

(552 mg, 2.4 mmol), pyridine (221.2 mg, 2.8 mmol) at 0�C. After completion, aq. HCl (1.0 M) was added to

the above solution, and the aqueous phase was discarded. The organic portion was washed with brine and

dried over Na2SO4. The solvent was removed under reduced pressure and the residue was isolated by col-

umn chromatography (petroleum ether/ethyl acetate 20:1-5:1) or recrystallization to give ketoxime esters 1.

Preparation of alkenyl alcohols (for alkenyl alcohols used in this work, see Scheme S2)

Procedure (A) (Lafrance et al., 2012): To a stirred solution of aldehyde (5.0 mmol) in dry THF (20 mL) was

added vinylmagnesium bromide (1.0 M in THF, 5.5 mL, 5.5 mmol) dropwise through a syringe at 0�C. After
stirring for 20 min the reaction mixture could warm to room temperature. The resulting mixture was stirred

for additional 4 h and then quenched by saturatedNH4Cl solution (20mL). The organic phase was extracted

with ethyl acetate (30mL x 3). The combined organic layers were washed with brine, dried over Na2SO4, and

concentrated under vacuum to afford the crude product. It was further purified by flash silica gel column

chromatography.

Procedure (B) (Li et al., 2012): To a solution of aldehyde (5.0 mmol, 1.0 equiv) in dry THF (20 mL) was slowly

added alkyl magnesium bromide (5.5 mmol, 1.1 equiv) at 0�C. The reaction was stirred at 0�C for 4 h and

then quenched with saturated aqueous NH4Cl. The resultant layers were separated and the aqueous was

extracted with diethyl ether. The combined organic fractions were washed with brine, dried over Na2SO4

and concentrated in vacuo. The residue was purified by distillation.

Synthesis of pent-1-en-3-d-3-ol (2a-d) (Vidal et al., 2019)

NaBD4 (420 mg, 10 mmol, 1.0 eq.), was added to a mixture of pent-1-en-3-one (840 mg, 10 mmol) and

CeCl3$7H2O (5.0 g, 13 mmol, 1.3 eq.) in MeOH (30 mL, 0.3 M) over a period of 30 min. After 2 h, then
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quenched by water (50 mL). The organic phase was extracted with Et2O (100 mL x 3). The organic phase was

washed with brine (100 mL x 3) and dried over Na2SO4. The solvent was removed under reduced pressure

and the residue was purified by distillation to afford 2a-d in 34% yield, 95% D.

General procedure for the preparation of 3 or 8

To a 25 mL sealed tube was added ketoxime esters 1 (0.1 mmol), alkenyl alcohols 2 (0.2 mmol), PdCl2 (10

mol %, 1.8 mg), K2CO3 (1.0 eq, 13.8 mg), TsONa (1.0 eq, 19.4 mg), L8 (20 mol %, 3.6 mg), AgNTf2 (20 mol %,

7.8 mg) and 1,2-dichloroethane (3 mL), then the reaction mixture was stirred at 120�C for 12 h under N2 at-

mosphere. After completion, the mixture and then filtered through Celite. The filtrate was evaporated to

give the crude product which was then purified by flash column chromatography on silica gel with a

gradient eluent of hexane/ethyl acetate to give the product 3 or 8.

General procedure for the preparation of 7

To a 25 mL sealed tube was added ketoxime esters 1 (0.1 mmol), alkenyl alcohols 6 (0.2 mmol), PdCl2 (10

mol %, 1.8 mg), K2CO3 (1.0 eq, 13.8 mg), TsONa (1.0 eq, 19.4 mg) L8 or L1 (20 mol %), AgNTf2 (20 mol %,

7.8 mg) and 1,2-dichloroethane (3 mL), then the reaction mixture was stirred at 120�C for 12–18 h under N2

atmosphere. After completion, the mixture and then filtered through Celite. The filtrate was evaporated to

give the crude product which was then purified by flash column chromatography on silica gel with a

gradient eluent of hexane/ethyl acetate to give the product 7.

10 mmol scale one-pot synthesis

Propiophenone (1.34 g, 10 mmol) was added to the solution of NH3OCOArFOTf (3.9 g, 10.5 mmol) in EtOH

(30.0 mL) at r.t. After the mixture stirred for special time (monitored by TLC), K2CO3 (1.5 g in 20.0 mL H2O)

was added dropwise. Then EtOH was removed under reduced pressure, and the resulting mixture was ex-

tracted with EtOAc. The organic layer was washed with brine and dried over Na2SO4. The solvent was

removed under vacuum to give the corresponding oxime ester 1a-2 without further purification. Under

N2 atmosphere, a mixture of 1a-2, PdCl2 (10 mol %, 180 mg), K2CO3 (10 mmol, 1.38 g), TsONa (10 mmol,

1.94 g) L8 (364 mg, 20 mol %), AgNTf2 (20 mol %, 780 mg), DCE (200 mL), and 1-Pentene-3-ol (2a)

(20 mmol, 2.1 mL) was stirred at 120�C in oil bath for 12 h. After completion, the mixture and then filtered

through Celite. The filtrate was evaporated to give the crude product which was then purified by flash col-

umn chromatography on silica gel with a gradient eluent of hexane/ethyl acetate (50:1-20:1) to give the

product 3a (886 mg) in 54% yield.

Synthetic application and transformation

Synthesis of product 9: To a 15 mL sealed tube was added substrates 8e (36.8 mg, 0.1 mmol), DCM (1 mL),

Br2 (0.1 mL, 1.0 mol/L in DCM) was added to the solution via a syringe. The reaction mixture was stirred at

room temperature for 10 min under air. Upon completion, solvent and other volatile components were

removed on a rotary evaporator under reduced pressure, and the residue was purified by flash column

chromatography on silica gel with a gradient eluent of hexane and ethyl acetate (hexane/ethyl acetate

20:1-10:1) to give product 9 in 76% yield.

Synthesis of product 10

To a 15 mL sealed tube was added substrates 8e (36.8 mg, 0.1 mmol), p-Anisidine (13.5 mg, 0.11 mmol),

AcOH (6 mg, 0.1 mmol) in DCM (1 mL), then NaBH(OAc)3 (32 mg, 0.15 mmol) was added to the solution.

The reaction mixture was stirred at room temperature for 12 h under nitrogen. Upon completion, NH4Cl

solution was added, then the mixture was extracted with EtOAc (10 mL x 3). The organic phase was dried

over Na2SO4 evaporated then purified by flash column chromatography on silica gel with a gradient eluent

of hexane and ethyl acetate (hexane/ethyl acetate 20:1-5:1) to give product 10 in 98% yield.

Synthesis of product 11

To a 15 mL sealed tube was added substrates 8e (36.8 mg, 0.1 mmol), phenylhydrazine hydrochloride

(14.5 mg, 0.1 mmol), AcOH (0.5 mL), The reaction mixture was stirred at 120�C for 1 h under air. Upon

completion the mixture was cooled to room temperature, cold NaHCO3 solution was added, then the

mixture was extracted with EtOAc (10 mL x 3). The organic phase was dried over Na2SO4 evaporated

then purified by flash column chromatography on silica gel with a gradient eluent of hexane and ethyl ac-

etate (hexane/ethyl acetate 20:1-5:1) to give product 11 in 82% yield.
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Synthesis of product 12

A 15 mL sealed tube was charged with substrates 8e (36.8 mg, 0.1 mmol) and 2-Aminobenzophenone

(19.8 mg, 0.1 mmol), then AcOH (0.5 mL) was added. The resulting reaction mixture was stirred at 120�C
for 4 h. Upon completion the mixture was cooled to room temperature, cold NaHCO3 solution was added,

then the mixture was extracted with EtOAc (10 mL x 3). The organic phase was dried over Na2SO4 evapo-

rated then purified by flash column chromatography on silica gel with a gradient eluent of hexane and ethyl

acetate (hexane/ethyl acetate 10:1-5:1) to give product 12 in 85% yield.

Synthesis of product 13

A 15 mL sealed tube was charged with substrates 8e (36.8 mg, 0.1 mmol), benzamidine hydrochloride

(15.7 mg, 0.1 mmol), Cu(OAc)2 (2.0 mg, 0.01 mmol, 10 mol %), 2,20-bipyridine (1.6 mg, 0.01 mmol, 10

mol %), 4-HO-TEMPO (17.2 mg, 0.1 mmol), and NaOAc (12.2 mg, 0.15 mmol). Then 1,2-dichlorobenzene

(1.0 mL) was added to the tube. The tube was then sealed, and the mixture was stirred at 140�C for 24 h.

Upon cooling to room temperature, the reaction mixture was diluted with 10 mL of ethyl acetate, followed

by filtration through a pad of silica gel. The filtrate was concentrated under reduced pressure and then pu-

rified by flash chromatography on silica gel (gradient eluent of hexane/ethyl acetate: 10/1 to 5/1) to provide

product 13 in 53% yield.

Synthesis of product 14

To a 15 mL sealed tube was added substrates 8e (36.8 mg, 0.1 mmol), CuBr2 (5.6 mg, 25 mol %), TEMPO

(63 mg, 0.4 mmol), PhNHNH2 (39 mL, 0.4 mmol) acetic acid (6 mL, 0.1 mmol), and DMF (1.0 mL). The sealed

tube was placed into a preheated oil bath (140�C) and vigorously stirred for 48 h. Upon completion, the

reaction mixture was cooled to room temperature, quenched with brine (5 mL), then extracted with

EtOAc (10 mL x 3). Combined organic phases were dried over Na2SO4, filtered, and concentrated. Crude

product was purified by flash column chromatography (hexanes/EtOAc, 6:1) to obtain product 14 in 57%

yield.

Deuterium labeling study

Deuteriumlabeled experiments

To a 25 mL sealed tube was added substrates 1a (0.1 mmol), 2a-d (0.2 mmol), PdCl2 (10 mol %, 1.8 mg),

K2CO3 (1.0 eq, 13.8 mg), TsONa (1.0 eq, 19.4 mg) L8 (20 mol %, 3.6 mg), AgNTf2 (20 mol %, 7.8 mg) and

DCE (3 mL), then the reactionmixture was stirred at 120�C for 12 h Under N2 atmosphere. After completion,

the mixture and then filtered through Celite. The filtrate was evaporated to give the crude product which

was then purified by flash column chromatography on silica gel with a gradient eluent of hexane/ethyl ac-

etate (50:1-20:1) to give the product 3a-d in 75 yield.

Intermolecular kinetic isotope effects

To a 25 mL sealed tube was added substrates 1a (0.1 mmol), 2a (0.2 mmol), 2a-d (0.2 mmol), PdCl2
(10 mol %, 1.8 mg), K2CO3 (1.0 eq, 13.8 mg), TsONa (1.0 eq, 19.4 mg) L8 (20 mol %, 3.6 mg), AgNTf2
(20 mol %, 7.8 mg) and DCE (3 mL), then the reaction mixture was stirred at 120�C for 12 h Under N2 at-

mosphere. After completion, the mixture and then filtered through Celite. The filtrate was evaporated to

give the crude product which was then purified by flash column chromatography on silica gel with a

gradient eluent of hexane/ethyl acetate (50:1-20:1) to give the product 3a-d in 69% yield.

Analytical data

Characterization data of substrates

ketoxime esters 1a, 1a-1-1a-5, 1a-7, 1a-8, 1az, 1bc, 1be are known product and synthesized according to

the literature (Li et al., 2020; Wang et al., 2021; Guo et al., 2021). Alkenyl alcohol 2a0, 2a-2i, 2k-2w, 6a-6g, are

all known products (Liao et al., 2015; Brandt et al., 2012; Deng et al., 2015; Liu et al., 2017; Latham et al.,

2019; Shu et al., 2018). These alkenyl alcohols were commercially available or readily prepared according

to the general procedure.

(E/Z)-cyclohexyl(phenyl)methanone O-perfluorobenzoyl oxime (1a-6).

ll
OPEN ACCESS

iScience 25, 104505, July 15, 2022 17

iScience
Article



white solid. Mp = 51–54�C; (E/Z = 1:1, mixture) 1H NMR (500 MHz, CDCl3) d 7.47–7.35 (m, 4H), 7.22–7.14

(m, 1H), 3.30 (tt, J = 12.4, 3.4 Hz, 0.5H), 2.78–2.66 (m, 0.5H), 1.98–1.64 (m, 5H), 1.53–1.25 (m, 4H), 1.23–

1.11 (m, 1H); 13C NMR (126 MHz, CDCl3) d 174.0, 173.6, 156.7, 156.6, 146.6–146.0 (m), 144.6–143.6 (m),

142.6–141.8 (m), 139.0–138.3 (m), 136.9–136.2 (m), 133.2, 132.6, 129.6, 129.1, 128.2, 128.1, 128.1, 126.4,

107.4–106.9 (m), 44.8, 40.6, 30.0, 29.4, 25.9, 25.8, 25.6, 25.6; HRMS-EI calcd for C20H16F5NO2 [M]+

397.1096, found 397.1111.

(E)-1-(o-tolyl)propan-1-one O-perfluorobenzoyl oxime (1b).

colorless colloid; (Major) 1H NMR (500 MHz, CDCl3) d 7.33–7.16 (m, 4H), 2.71 (qd, J = 7.4, 4.6 Hz, 2H), 1.19 (t,

J = 7.5 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 171.6, 156.6, 146.3–146.0 (m), 144.3–144.0 (m), 142.3–142.0 (m),

138.8–138.4 (m), 136.7–136.2 (m), 134.0, 133.3, 130.0, 128.9, 125.5, 125.3, 107.1–106.6 (m), 29.6, 19.1, 10.2;

HRMS-EI calcd for C17H12F5NO2 [M]+ 357.0783, found 357.0789.

(E)-1-(2-fluorophenyl)propan-1-one O-perfluorobenzoyl oxime (1c).

white solid. Mp = 40–42�C; 1H NMR (500 MHz, CDCl3) d 7.54 (td, J = 7.5, 1.8 Hz, 1H), 7.49–7.41 (m, 1H), 7.21

(td, J = 7.6, 1.1 Hz, 1H), 7.13 (ddd, J = 10.8, 8.3, 1.1 Hz, 1H), 2.90 (q, J = 7.6 Hz, 2H), 1.15 (t, J = 7.6 Hz, 3H); 13C

NMR (126 MHz, CDCl3) d 169.1, 160.5 (d, J = 250.9 Hz), 156.5, 146.5–146.4 (m), 144.6–144.4 (m), 142.6–142.4

(m), 139.0–138.7 (m), 137.0–136.6 (m), 132.3 (d, J = 8.6 Hz), 130.6 (d, J = 3.2 Hz), 124.4 (d, J = 3.4 Hz), 121.8 (d,

J = 13.3 Hz), 116.2 (d, J = 21.5 Hz), 107.0–106.7 (m), 24.3 (d, J = 4.0 Hz), 10.3;HRMS-EI calcd for C16H9F6NO2

[M]+ 361.0532, found 361.0550.

(E)-1-(2-chlorophenyl)propan-1-one O-perfluorobenzoyl oxime (1d).

white colloid. Mp = 43–45�C; (Major) 1H NMR (500 MHz, CDCl3) d 7.41–7.27 (m, 4H), 2.89 (q, J = 7.7 Hz, 2H),

1.06 (t, J = 7.7 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 171.2, 156.2, 146.8–146.1 (m), 144.6–144.2 (m), 142.6–

142.0 (m), 138.7–138.4 (m), 136.9–136.4 (m), 132.9, 132.4, 130.8, 130.5, 129.8, 126.7, 107.0–106.6 (m), 24.6,

9.8; HRMS-EI calcd for C16H9F5NO2Cl [M]+ 377.0236, found 377.0258.

(E)-1-(m-tolyl)propan-1-one O-perfluorobenzoyl oxime (1e).

white solid. Mp = 81–83�C; 1HNMR (500MHz, CDCl3) d 7.60 (d, J= 1.8 Hz, 1H), 7.54–7.50 (m, 1H), 7.35–7.27 (m,

2H), 2.90 (q, J= 7.6 Hz, 2H), 2.40 (s, 3H), 1.22 (t, J= 7.7 Hz, 3H); 13CNMR (126MHz, CDCl3) d 170.0, 156.6, 146.6–

146.3 (m), 144.6–144.3 (m), 142.6–142.2 (m), 138.9–138.6 (m), 138.5, 136.9–136.5 (m), 132.8, 131.8, 128.6, 127.9,

124.5, 107.3–106.9 (m), 22.3, 21.3, 11.3; HRMS-EI calcd for C17H12F5NO2 [M]+ 357.0783, found 357.0780.

(E)-1-(3-methoxyphenyl)propan-1-one O-perfluorobenzoyl oxime (1f).

white solid. Mp = 76–78�C; 1H NMR (500 MHz, CDCl3) d 7.35 (t, J = 7.8 Hz, 1H), 7.32–7.28 (m, 2H), 7.02 (ddd,

J = 8.1, 2.5, 1.3 Hz, 1H), 3.85 (s, 3H), 2.89 (q, J= 7.6 Hz, 2H), 1.21 (t, J= 7.6 Hz, 3H); 13CNMR (126MHz, CDCl3)

d 169.7, 159.8, 156.5, 146.6–146.3 (m), 144.6–144.2 (m), 142.7–142.2 (m), 138.9–138.6 (m), 137.0–136.6 (m),

134.2, 129.8, 119.8, 116.9, 112.6, 107.3–106.9 (m), 77.4–76.6 (m), 55.3, 22.4, 11.3; HRMS-EI calcd for

C17H12F5NO3 [M]+ 373.0732, found 373.0740.

(E)-1-(3-(methylthio)phenyl)propan-1-one O-perfluorobenzoyl oxime (1g).

white solid. Mp = 105–107�C; 1H NMR (500 MHz, CDCl3) d 7.62 (s, 1H), 7.50–7.45 (m, 1H), 7.34 (d, J = 5.0 Hz,

2H), 2.88 (q, J = 7.6 Hz, 2H), 2.50 (s, 3H), 1.20 (t, J = 7.7 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 169.5, 156.4,

146.6–146.3 (m), 144.6–144.3 (m), 142.6–142.2 (m), 139.6 , 138.9–138.6 (m), 136.9–136.5 (m), 133.5, 129.1,

128.7, 125.0, 123.9, 107.1–106.8 (m), 22.3, 15.6, 11.2;HRMS-EI calcd for C17H12F5NO2S [M]+ 389.0503, found

389.0478.

(E)-N-(3-(1-(((perfluorobenzoyl)oxy)imino)propyl)phenyl)acetamide (1h).

white solid. Mp= 142–144�C; 1HNMR (500MHz, CDCl3) d 8.04 (s, 1H), 7.81 (t, J= 2.0 Hz, 1H), 7.74 (dt, J= 8.0,

1.5 Hz, 1H), 7.38 (d, J = 7.9 Hz, 1H), 7.32 (t, J = 7.9 Hz, 1H), 2.86 (q, J = 7.7 Hz, 2H), 2.19 (s, 3H), 1.18
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(t, J = 7.7 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 169.8, 169.2, 156.8, 146.8–146.4 (m), 144.7–144.4 (m), 142.8–

142.4 (m), 139.1–138.7 (m), 138.6, 137.1–136.6 (m), 133.3, 129.3, 122.8, 122.5, 118.4, 107.0–106.6 (m), 24.4,

22.3, 11.2; HRMS-EI calcd for C18H13F5N2O3 [M]+ 400.0841, found 400.0840.

(E)-3-(1-(((perfluorobenzoyl)oxy)imino)propyl)phenyl acetate (1i).

white solid. Mp = 95–97�C; 1H NMR (500 MHz, CDCl3) d 7.62 (dt, J = 7.9, 1.2 Hz, 1H), 7.53 (t, J = 2.0 Hz, 1H),

7.45 (t, J = 8.0 Hz, 1H), 7.22 (ddd, J = 8.0, 2.3, 1.0 Hz, 1H), 2.88 (q, J = 7.7 Hz, 2H), 2.31 (s, 3H), 1.22 (t, J =

7.6 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 169.1, 168.7, 156.4, 150.9, 146.7–146.3 (m), 144.7–144.3 (m),

142.6–142.3 (m), 139.0–138.6 (m), 137.0–136.6 (m), 134.3, 129.7, 124.7, 124.4, 120.6, 107.1–106.7 (m), 77.4–

76.4 (m), 22.1, 21.0, 11.2; HRMS-EI calcd for C18H12F5NO4 [M]+ 401.0681, found 401.0682.

(E)-1-(3-fluorophenyl)propan-1-one O-perfluorobenzoyl oxime (1j).

white solid. Mp = 67–69�C; 1H NMR (500 MHz, CDCl3) d 7.52 (dt, J = 7.9, 1.2 Hz, 1H), 7.46 (dt, J = 9.8, 2.1 Hz,

1H), 7.44–7.35 (m, 1H), 7.15 (td, J = 8.3, 2.0 Hz, 1H), 2.88 (q, J = 7.7 Hz, 2H), 1.20 (t, J = 7.7 Hz, 3H); 13C NMR

(126 MHz, CDCl3) d 168.6, 162.7 (d, J = 247.0 Hz), 156.3, 146.7–146.3 (m), 144.7–144.3 (m), 142.7–142.3 (m),

138.9–138.5 (m), 136.9–136.5 (m), 135.0 (d, J = 7.7 Hz), 130.3 (d, J = 8.0 Hz), 123.0 (d, J = 3.5 Hz), 117.9 (d, J =

21.1 Hz), 114.3 (d, J = 23.6 Hz), 107.0–106.6 (m), 22.1, 11.0; HRMS-EI calcd for C16H9F6NO2 [M]+ 361.0532,

found 361.0528.

(E)-1-(3-chlorophenyl)propan-1-one O-perfluorobenzoyl oxime (1k).

white solid. Mp = 81–83�C; 1H NMR (500 MHz, CDCl3) d 7.76 (d, J = 2.0 Hz, 1H), 7.64 (dd, J = 7.8, 1.1 Hz, 1H),

7.46 (ddt, J = 8.1, 2.1, 1.0 Hz, 1H), 7.38 (t, J = 7.9 Hz, 1H), 2.88 (q, J = 7.7 Hz, 2H), 1.21 (t, J = 7.7 Hz, 3H); 13C

NMR (126 MHz, CDCl3) d 168.7, 156.4, 146.7–146.4 (m), 144.8–144.4 (m), 142.7–142.3 (m), 139.0–138.6 (m),

137.0–136.6 (m), 134.9, 134.7, 131.1, 130.0, 127.5, 125.5, 107.0–106.7 (m), 22.2, 11.2; HRMS-EI calcd for

C16H9F5NO2Cl [M]+ 377.0236, found 377.0236.

(E)-1-(3-(trifluoromethyl)phenyl)propan-1-one O-perfluorobenzoyl oxime (1l).

white solid. Mp = 82–84�C; 1H NMR (500 MHz, CDCl3) d 8.00 (d, J = 2.0 Hz, 1H), 7.95 (d, J = 7.9 Hz, 1H), 7.72

(d, J = 7.8 Hz, 1H), 7.57 (t, J = 7.9 Hz, 1H), 2.94 (q, J = 7.7 Hz, 2H), 1.22 (t, J = 7.7 Hz, 3H); 13C NMR (126 MHz,

CDCl3) d 168.6, 156.2, 146.8–146.5 (m), 144.8–144.4 (m), 142.8–142.4 (m), 139.0–138.6 (m), 137.0–136.6 (m),

133.9, 131.3 (q, J = 32.8 Hz), 130.6, 129.4, 127.5 (q, J = 3.7 Hz), 124.1 (q, J = 3.9 Hz), 123.7 (q, J = 272.4 Hz),

106.9–106.6 (m), 22.1, 11.0; HRMS-EI calcd for C17H9F8NO2 [M]+ 411.0500, found 411.0456.

(E)-3-(1-(((perfluorobenzoyl)oxy)imino)propyl)benzonitrile (1m).

white solid. Mp = 94–96�C; 1H NMR (500 MHz, CDCl3) d 8.04 (d, J = 1.8 Hz, 1H), 8.01 (dd, J = 7.8, 1.7 Hz, 1H),

7.76 (dt, J = 7.8, 1.4 Hz, 1H), 7.58 (t, J = 7.8 Hz, 1H), 2.91 (q, J = 7.7 Hz, 2H), 1.22 (td, J = 7.7, 1.7 Hz, 3H); 13C

NMR (126 MHz, CDCl3) d 167.8, 156.1, 146.8–146.5 (m), 144.8–144.4 (m), 142.8–142.4 (m), 139.0–138.6 (m),

137.0–136.6 (m), 134.3, 134.1, 131.4, 130.9, 129.7, 117.9, 113.2, 106.7–106.3 (m), 22.0, 11.0; HRMS-EI calcd

for C17H9F5N2O2 [M]+ 368.0579, found 368.0573.

(E)-1-(3-nitrophenyl)propan-1-one O-perfluorobenzoyl oxime (1n).

white solid. Mp = 82–84�C; 1H NMR (500 MHz, CDCl3) d 8.57 (d, J = 2.0 Hz, 1H), 8.36–8.32 (m, 1H), 8.16 (dd,

J = 7.8, 1.5 Hz, 1H), 7.66 (t, J = 8.0 Hz, 1H), 2.97 (q, J = 7.7 Hz, 2H), 1.25 (t, J = 7.7 Hz, 3H); 13C NMR (126 MHz,

CDCl3) d 167.8, 156.2, 148.5, 146.8–146.5 (m), 144.8–144.4 (m), 142.8–142.5 (m), 139.1–138.6 (m), 137.0–136.6

(m), 134.7, 133.2, 130.0, 125.6, 122.32, 106.8–106.4 (m), 22.1, 11.1; HRMS-EI calcd for C16H9F5N2O4 [M]+

388.0477, found 388.0449.

(E)-1-(p-tolyl)propan-1-one O-perfluorobenzoyl oxime (1o).

white solid. Mp = 95–97�C; 1H NMR (500 MHz, CDCl3) d 7.66 (d, J = 8.2 Hz, 2H), 7.23 (d, J = 7.9 Hz, 2H), 2.89

(q, J= 7.7 Hz, 2H), 2.38 (s, 3H), 1.21 (t, J= 7.7 Hz, 3H); 13CNMR (126MHz, CDCl3) d 169.6, 156.5, 146.60–146.3
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(m), 144.5–144.2 (m), 142.5–142.1 (m), 141.4, 138.9–138.5 (m), 136.9–136.5 (m), 129.8, 129.4, 127.2, 107.4–

106.9 (m), 22.0, 21.2, 11.2; HRMS-EI calcd for C17H12F5NO2 [M]+ 357.0783, found 357.0779.

(E)-1-(4-(tert-butyl)phenyl)propan-1-one O-perfluorobenzoyl oxime (1p).

white solid. Mp = 86–88�C; 1H NMR (500 MHz, CDCl3) d 7.70 (d, J = 8.5 Hz, 2H), 7.46 (d, J = 8.5 Hz, 2H), 2.90

(q, J = 7.7 Hz, 2H), 1.34 (s, 9H), 1.23 (t, J = 7.7 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 169.6, 156.7, 154.6,

146.6–146.3 (m), 144.6–144.2 (m), 142.5–142.2 (m), 139.0–138.6 (m), 137.0–136.6 (m), 129.9, 127.1, 125.7,

107.4–107.1 (m), 77.6–76.3 (m), 34.8, 31.1, 22.1, 11.4; HRMS-EI calcd for C20H18F5NO2 [M]+ 399.1252, found

399.1270.

(E)-1-([1,10-biphenyl]-4-yl)propan-1-one O-perfluorobenzoyl oxime (1q).

white solid. Mp = 147–149�C; 1H NMR (500 MHz, CDCl3) d 7.87 (d, J = 8.2 Hz, 2H), 7.68 (d, J = 8.1 Hz, 2H),

7.63 (d, J= 7.0 Hz, 2H), 7.47 (t, J= 7.5 Hz, 2H), 7.39 (t, J= 7.3 Hz, 1H), 2.95 (q, J= 7.7 Hz, 2H), 1.27 (t, J= 7.6 Hz,

3H); 13C NMR (126 MHz, CDCl3) d 169.3, 156.5, 146.7–146.3 (m), 144.6–144.3 (m), 143.8, 142.6–142.2 (m),

139.9, 139.0–138.6 (m), 137.0–136.5 (m), 131.6, 128.7, 127.9, 127.8, 127.4, 127.0, 107.3–106.9 (m), 22.1,

11.4; HRMS-EI calcd for C22H14F5NO2 [M]+ 419.0939, found 419.0967.

(E)-4-(1-(((perfluorobenzoyl)oxy)imino)propyl)phenyl acetate (1r).

white solid. Mp = 120–122�C; 1H NMR (500 MHz, CDCl3) d 7.79 (d, J = 8.8 Hz, 2H), 7.17 (d, J = 8.7 Hz, 2H),

2.89 (q, J = 7.7 Hz, 2H), 2.31 (s, 3H), 1.21 (t, J = 7.7 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 168.9, 168.8, 156.5,

152.8, 146.7–146.3 (m), 144.6–144.3 (m), 142.6–142.2 (m), 138.9–138.6 (m), 137.0–136.5 (m), 130.4, 128.6,

122.0, 107.2–106.8 (m), 22.1, 21.0, 11.2; HRMS-EI calcd for C18H12F5NO4 [M]+ 401.0681, found 401.0683.

(E)-1-(4-(trifluoromethoxy)phenyl)propan-1-one O-perfluorobenzoyl oxime (1s).

white solid. Mp = 49–51�C; 1H NMR (500 MHz, CDCl3) d 8.15 (d, J = 8.8 Hz, 2H), 7.61 (d, J = 8.4 Hz, 2H), 3.24

(q, J = 7.7 Hz, 2H), 1.56 (t, J = 7.7 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 168.5, 156.4, 151.2, 146.8–146.4 (m),

144.8–144.4 (m), 142.7–142.4 (m), 139.1–138.6 (m), 137.0–136.6 (m), 131.5, 129.1, 120.9, 120.3 (q, J =

258.3 Hz), 107.1–106.7 (m), 22.1, 11.1; HRMS-EI calcd for C17H9F8NO3 [M]+ 427.0449, found 427.0448.

(E)-1-(4-fluorophenyl)propan-1-one O-perfluorobenzoyl oxime (1t).

white solid. Mp = 82–84�C; (Major) 1H NMR (500 MHz, CDCl3) d 7.80–7.73 (m, 2H), 7.14–7.06 (m, 2H), 2.88 (q,

J = 7.7 Hz, 2H), 1.20 (t, J = 7.7 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 168.7, 164.5 (d, J = 251.9 Hz), 156.4,

146.7–146.4 (m), 144.7–144.3 (m), 142.6–142.2 (m), 139.0–138.6 (m), 137.0–136.5 (m), 129.5 (d, J = 8.6 Hz),

128.9 (d, J = 3.5 Hz), 115.8 (d, J = 21.8 Hz), 107.1–106.8 (m), 22.1, 11.1; HRMS-EI calcd for C16H9F6NO2

[M]+ 361.0532, found 361.0526.

(E)-1-(4-chlorophenyl)propan-1-one O-perfluorobenzoyl oxime (1u).

white solid. Mp = 82–84�C; 1H NMR (500 MHz, CDCl3) d 7.71 (d, J = 8.3 Hz, 2H), 7.40 (d, J = 8.4 Hz, 2H), 2.88

(q, J = 7.7 Hz, 2H), 1.20 (t, J = 7.7 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 168.6, 156.4, 146.7–146.4 (m), 144.7–

144.3 (m), 142.7–142.3 (m), 139.0–138.6 (m), 137.3, 136.9–136.6 (m), 131.3, 129.0, 128.7, 107.1–106.7 (m),

22.0, 11.2; HRMS-EI calcd for C16H9F5NO2Cl [M]+ 377.0236, found 377.0251.

(E)-1-(4-(trifluoromethyl)phenyl)propan-1-one O-perfluorobenzoyl oxime (1v).

white solid. Mp = 63–65�C; 1H NMR (500 MHz, CDCl3) d 7.88 (d, J = 8.1 Hz, 2H), 7.68 (d, J = 8.1 Hz, 2H), 2.93

(q, J = 7.7 Hz, 2H), 1.22 (t, J = 7.7 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 168.6, 156.3, 146.8–146.5 (m),

144.8–144.4 (m), 142.8–142.4 (m), 139.0–138.6 (m), 137.0–136.6 (m), 136.5, 132.7 (q, J = 32.8 Hz), 127.8,

125.7 (q, J = 3.8 Hz), 123.7 (q, J = 272.3 Hz), 107.0–106.5 (m), 22.1, 11.0; HRMS-EI calcd for C17H9F8NO2

[M]+ 411.0500, found 411.0477.

(E)-4-(1-(((perfluorobenzoyl)oxy)imino)propyl)benzonitrile (1w).
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white solid. Mp = 111–113�C; 1H NMR (500 MHz, CDCl3) d 7.88 (d, J = 8.4 Hz, 2H), 7.73 (d, J = 8.5 Hz, 2H),

2.91 (q, J = 7.7 Hz, 2H), 1.21 (t, J = 7.7 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 168.1, 156.1, 146.8–146.5 (m),

144.8–144.4 (m), 142.8–142.4 (m), 139.0–138.6 (m), 137.2, 137.0–136.6 (m), 132.5, 128.0, 118.0, 114.5, 106.7–

106.3 (m), 22.0, 11.0; HRMS-EI calcd for C17H9F5N2O2 [M]+ 368.0579, found 368.0544.

(E)-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)propan-1-one O-perfluorobenzoyl oxime (1x).

white solid. Mp = 134–136�C; (Major) 1H NMR (500 MHz, CDCl3) d 7.86 (d, J = 7.7 Hz, 2H), 7.75 (d, J = 7.8 Hz,

2H), 2.91 (q, J = 7.6 Hz, 2H), 1.35 (s, 12H), 1.20 (t, J = 7.6 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 169.8, 156.6,

146.6–146.3 (m), 144.6–144.3 (m), 142.6–142.2 (m), 139.0–138.5 (m), 136.9–136.5 (m), 135.2, 135.0, 126.5,

107.2–106.9 (m), 84.1, 24.8, 22.2, 11.2; HRMS-EI calcd for C22H21BF5NO4 [M]+ 469.1478, found 469.1481.

(E)-1-(4-(trimethylsilyl)phenyl)propan-1-one O-perfluorobenzoyl oxime (1y).

white solid. Mp = 94–96�C; 1H NMR (500 MHz, CDCl3) d 7.73 (d, J = 7.7 Hz, 2H), 7.60 (d, J = 8.0 Hz, 2H), 2.91

(q, J = 7.7 Hz, 2H), 1.23 (t, J = 7.6 Hz, 3H), 0.30 (s, 9H); 13C NMR (126 MHz, CDCl3) d 169.8, 156.6, 146.6–146.3

(m), 144.4, 144.6–144.3 (m), 142.5–142.2 (m), 139.0–138.6 (m), 136.9–136.6 (m), 133.6, 133.1, 126.4, 107.4–

107.0 (m), 22.2, 11.3, �1.4; HRMS-EI calcd for C19H18F5NO2Si [M]+ 415.1022, found 415.1012.

ethyl (E)-4-(1-(((perfluorobenzoyl)oxy)imino)propyl)benzoate (1z).

white solid. Mp = 94–96�C; 1H NMR (500 MHz, CDCl3) d 8.09 (d, J = 8.4 Hz, 2H), 7.82 (d, J = 8.3 Hz, 2H), 4.39

(q, J = 7.1 Hz, 2H), 2.92 (q, J = 7.7 Hz, 2H), 1.40 (t, J = 7.1 Hz, 3H), 1.21 (t, J = 7.7 Hz, 3H); 13C NMR (126 MHz,

CDCl3) d 169.0, 166.8, 156.4, 146.7–146.4 (m), 144.7–144.4 (m), 142.7–142.3 (m), 139.0–138.6 (m), 137.0,

136.9–136.6 (m), 132.6, 129.8, 127.3, 107.0–106.6 (m), 61.3, 22.2, 14.2, 11.1; HRMS-EI calcd for

C19H14F5NO4 [M]+ 415.0838, found 415.0851.

diethyl (E)-(4-(1-(((perfluorobenzoyl)oxy)imino)propyl)phenyl)phosphonate (1aa).

white solid. Mp = 65–67�C; 1H NMR (500 MHz, CDCl3) d 7.88–7.79 (m, 4H), 4.17–4.01 (m, 4H), 2.89 (q,

J = 7.6 Hz, 2H), 1.29 (t, J = 7.1 Hz, 6H), 1.18 (t, J = 7.6 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 168.9, 156.2,

146.7–146.3 (m), 144.6–144.3 (m), 142.7–142.2 (m), 138.9–138.5 (m), 136.9–136.6 (m), 136.7 (d, J = 3.2 Hz),

132.1 (d, J = 10.3 Hz), 131.2 (d, J = 187.9 Hz), 127.3 (d, J = 15.0 Hz), 106.9–106.5 (m), 62.3 (d, J = 5.6 Hz),

22.2, 16.2 (d, J = 6.5 Hz), 11.0; HRMS-EI calcd for C20H19F5NO5P [M]+ 479.0916, found 479.0912.

(E)-1-(4-(methylsulfonyl)phenyl)propan-1-one O-perfluorobenzoyl oxime (1ab).

white solid. Mp = 115–117�C; (Major) 1H NMR (500 MHz, CDCl3) d 8.01 (d, J = 8.5 Hz, 2H), 7.96 (d, J = 8.5 Hz,

2H), 3.07 (s, 3H), 2.93 (q, J = 7.6 Hz, 2H), 1.22 (t, J = 7.7 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 168.2, 156.2,

146.8–146.5 (m), 144.8–144.4 (m), 142.8–142.4 (m), 142.5, 139.0–138.5 (m), 138.3, 137.0–136.6 (m), 128.4,

127.8, 106.7–106.3 (m), 44.3, 22.2, 11.0; HRMS-EI calcd for C17H12F5NO4S [M]+ 421.0402, found 421.0397.

(E)-1-(3,5-dimethylphenyl)propan-1-one O-perfluorobenzoyl oxime (1ac).

white solid. Mp = 107–109�C; 1HNMR (500MHz, CDCl3) d 7.36 (d, J= 1.5 Hz, 2H), 7.12 (t, J = 1.5 Hz, 1H), 2.88

(q, J = 7.7 Hz, 2H), 2.36 (s, 6H), 1.21 (t, J = 7.7 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 170.3, 156.6, 146.6–146.4

(m), 144.6–144.3 (m), 142.6–142.2 (m), 138.9–138.6 (m), 138.4, 137.0–136.6 (m), 132.8, 132.7, 125.1,

107.4–107.0 (m), 22.4, 21.2, 11.3; HRMS-EI calcd for C18H14F5NO2 [M]+ 371.0939, found 371.0905.

(E)-1-(3,5-dimethoxyphenyl)propan-1-one O-perfluorobenzoyl oxime (1ad).

white solid. Mp = 109–111�C; 1HNMR (500MHz, CDCl3) d 6.86 (d, J= 2.3 Hz, 2H), 6.54 (t, J = 2.2 Hz, 1H), 3.82

(s, 6H), 2.85 (q, J= 7.7 Hz, 2H), 1.20 (t, J = 7.6 Hz, 3H); 13CNMR (126MHz, CDCl3) d 169.7, 160.9, 156.4, 146.6–

146.3 (m), 144.6–144.3 (m), 142.6–142.2 (m), 139.0–138.5 (m), 136.9–136.5 (m), 134.8, 107.3–106.9 (m), 105.4,

102.9, 77.4–76.6 (m), 55.4, 22.4, 11.3; HRMS-EI calcd for C18H14F5NO4 [M]+ 403.0838, found 403.0838.

(E)-1-(3,5-difluorophenyl)propan-1-one O-perfluorobenzoyl oxime (1ae).
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white solid. Mp = 59–61�C; (Major) 1H NMR (500 MHz, CDCl3) d 7.33–7.27 (m, 2H), 6.92 (tt, J = 8.6, 2.4 Hz,

1H), 2.86 (q, J = 7.7 Hz, 2H), 1.22 (t, J = 7.7 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 167.7, 163.1 (dd, J = 249.8,

12.5 Hz), 156.1, 146.8–146.5 (m), 144.8–144.4 (m), 142.8–142.4 (m), 139.0–138.6 (m), 137.0–136.6 (m), 136.2 (t,

J = 9.5 Hz), 110.5 (dd, J = 20.9, 6.7 Hz), 106.8–106.4 (m), 106.3 (t, J = 25.3 Hz), 22.1, 11.0; HRMS-EI calcd for

C16H8F7NO2 [M]+ 379.0438, found 379.0461.

(E)-1-(3,5-dichlorophenyl)propan-1-one O-perfluorobenzoyl oxime (1af).

white solid. Mp = 80–82�C; 1H NMR (500 MHz, CDCl3) d 7.64 (d, J = 2.0 Hz, 2H), 7.46 (t, J = 1.9 Hz, 1H), 2.86

(q, J = 7.7 Hz, 2H), 1.21 (t, J = 7.6 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 167.6, 156.1, 146.8–146.5 (m), 144.9–

144.4 (m), 142.8–142.4 (m), 139.1–138.6 (m), 137.0–136.6 (m), 135.9, 135.6, 130.9, 125.8, 106.8–106.4 (m),

22.1, 11.1; HRMS-EI calcd for C16H8Cl2F5NO2 [M]+ 410.9847, found 410.9842.

(E)-1-(4-((E)-styryl)phenyl)propan-1-one O-perfluorobenzoyl oxime (1ag).

white solid. Mp = 159–161�C; 1H NMR (500 MHz, CDCl3) d 7.77 (d, J = 8.1 Hz, 2H), 7.59 (d, J = 8.2 Hz, 2H),

7.54 (dd, J = 6.6, 3.0 Hz, 2H), 7.40–7.34 (m, 3H), 2.90 (q, J = 7.7 Hz, 2H), 1.23 (t, J = 7.7 Hz, 3H); 13C NMR (126

MHz, CDCl3) d 168.9, 156.4, 146.8–146.4 (m), 144.6–144.3 (m), 142.6–142.2 (m), 139.0–138.5 (m), 137.0–136.6

(m), 132.3, 131.8, 131.6, 128.6, 128.4, 127.3, 126.1, 122.7, 107.1–106.7 (m), 91.8, 88.6, 22.0, 11.3; HRMS-EI

calcd for C24H16F5NO2 [M]+ 445.1096, found 445.1067.

(E)-1-(2,6-difluorophenyl)propan-1-one O-perfluorobenzoyl oxime (1ah).

white solid. Mp = 65–67�C; 1H NMR (500 MHz, CDCl3) d 7.40 (tt, J = 8.4, 6.3 Hz, 1H), 6.98 (dd, J = 8.5, 7.4 Hz,

2H), 2.85 (q, J = 7.7 Hz, 2H), 1.11 (t, J = 7.7 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 164.0, 160.4 (dd, J = 251.7,

6.6 Hz), 156.2, 146.8–146.5 (m), 144.8–144.4 (m), 142.8–142.4 (m), 139.1–138.6 (m), 137.0–136.6 (m), 131.8 (t,

J = 10.1 Hz), 111.8 (dd, J = 20.4, 4.6 Hz), 111.5 (t, J = 20.0 Hz), 106.8–106.5 (m), 24.9, 9.7; HRMS-EI calcd for

C16H8F7NO2 [M]+ 379.0438, found 379.0431.

(E)-1-(3,4-dichlorophenyl)propan-1-one O-perfluorobenzoyl oxime (1ai).

white solid. Mp = 102–104�C; (Major) 1H NMR (500 MHz, CDCl3) d 7.87 (d, J = 2.1 Hz, 1H), 7.61 (dd, J = 8.4,

2.1 Hz, 1H), 7.51 (d, J = 8.4 Hz, 1H), 2.87 (q, J = 7.7 Hz, 2H), 1.21 (t, J = 7.7 Hz, 3H); 13C NMR (126MHz, CDCl3)

d 167.7, 156.2, 146.8–146.5 (m), 144.8–144.5 (m), 142.8–142.4 (m), 139.0–138.6 (m), 137.0–136.6 (m), 135.5–

135.4 (m), 133.3, 132.8, 130.8, 129.2, 126.5, 106.8–106.5 (m), 22.0, 11.1; HRMS-EI calcd for C16H8Cl2F5NO2

[M]+ 410.9847, found 410.9820.

(E)-1-(naphthalen-1-yl)propan-1-one O-perfluorobenzoyl oxime (1aj).

white solid. Mp = 89–91�C; 1H NMR (500 MHz, CDCl3) d 7.99 (dd, J = 8.3, 1.2 Hz, 1H), 7.96–7.92 (m, 1H), 7.89

(dd, J = 7.5, 1.7 Hz, 1H), 7.60–7.51 (m, 2H), 7.52–7.50 (m, 2H), 3.02 (q, J = 7.6 Hz, 2H), 1.13 (t, J = 7.6 Hz, 3H);
13C NMR (126 MHz, CDCl3) d 172.3, 156.7, 146.7–146.3 (m), 144.6–144.3 (m), 142.6–142.2 (m), 139.0–138.6

(m), 137.0–136.5 (m), 133.6, 131.3, 130.8, 130.2, 128.5, 127.1, 126.6, 126.3, 124.9, 124.8, 107.3–106.9 (m),

26.0, 10.4; HRMS-EI calcd for C20H12F5NO2 [M]+ 393.0783, found 393.0792.

(E)-1-(naphthalen-2-yl)propan-1-one O-perfluorobenzoyl oxime (1ak).

white solid. Mp = 164–166�C; (Major) 1H NMR (500 MHz, CDCl3) d 8.21 (s, 1H), 7.95 (dd, J = 8.7, 1.8 Hz, 1H),

7.93–7.90 (m, 1H), 7.90–7.85 (m, 2H), 7.59–7.52 (m, 2H), 3.03 (q, J = 7.7 Hz, 2H), 1.29 (t, J = 7.7 Hz, 3H); 13C

NMR (126 MHz, CDCl3) d 169.6, 156.6, 146.7–146.4 (m), 144.7–144.3 (m), 142.6–142.2 (m), 139.0–138.6 (m),

137.0–136.6 (m), 134.5, 132.9, 130.2, 128.8, 128.6, 128.0, 127.7, 127.6, 126.7, 123.9, 107.2–106.9 (m), 22.1,

11.5; HRMS-EI calcd for C20H12F5NO2 [M]+ 393.0783, found 393.0792.

(E)-6-(1-(((perfluorobenzoyl)oxy)imino)propyl)naphthalen-2-yl acetate (1al).

white solid. Mp = 167–169�C; 1H NMR (500 MHz, CDCl3) d 8.20 (d, J = 1.8 Hz, 1H), 7.95 (dd, J = 8.7, 1.8 Hz,

1H), 7.92 (d, J = 8.9 Hz, 1H), 7.84 (d, J = 8.7 Hz, 1H), 7.59 (d, J = 2.3 Hz, 1H), 7.29 (dd, J = 8.8, 2.3 Hz, 1H),
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3.01 (q, J = 7.7 Hz, 2H), 2.36 (s, 3H), 1.27 (t, J = 7.7 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 169.4, 169.3, 156.5,

149.6, 146.7–146.4 (m), 144.7–144.4 (m), 142.6–142.3 (m), 139.0–138.6 (m), 137.0–136.6 (m), 134.9, 130.8,

130.3, 130.1, 128.3, 127.7, 124.6, 122.0, 118.5, 107.2–106.8 (m), 22.0, 21.1, 11.4; HRMS-EI calcd for

C22H14F5NO4 [M]+ 451.0838, found 451.0839.

(E)-1-(furan-3-yl)propan-1-one O-perfluorobenzoyl oxime (1am).

white solid. Mp = 81–83�C; 1HNMR (500MHz, CDCl3) d 7.76 (dd, J = 3.0, 1.3 Hz, 1H), 7.56 (dd, J= 5.1, 1.3 Hz,

1H), 7.37 (dd, J = 5.1, 2.9 Hz, 1H), 2.85 (q, J = 7.7 Hz, 2H), 1.24 (t, J = 7.7 Hz, 3H); 13C NMR (126 MHz, CDCl3)

d 165.2, 156.4, 146.6–146.3 (m), 144.6–144.2 (m), 142.5–142.2 (m), 138.9–138.5 (m), 137.0–136.5 (m), 134.6,

127.6, 126.7, 125.8, 107.2–106.9 (m), 22.6, 11.5; HRMS-EI calcd for C14H8F5NO3 [M]+ 333.0419, found

333.0394.

(E)-1-(thiophen-3-yl)propan-1-one O-perfluorobenzoyl oxime (1an).

white solid. Mp = 104–106�C; 1H NMR (500 MHz, CDCl3) d 7.84 (t, J = 1.1 Hz, 1H), 7.46 (t, J = 1.7 Hz, 1H), 6.82

(dd, J = 1.9, 0.8 Hz, 1H), 2.72 (q, J = 7.7 Hz, 2H), 1.23 (t, J = 7.7 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 163.7,

156.4, 146.7–146.4 (m), 144.7–144.4 (m), 144.4, 144.1, 142.6–142.2 (m), 138.9–138.6 (m), 136.9–136.6 (m),

120.7, 108.0, 107.2–106.8 (m), 22.8, 11.6; HRMS-EI calcd for C14H8F5NO2S [M]+ 349.0190, found 349.0195.

(E)-1-(6-methoxypyridin-3-yl)propan-1-one O-perfluorobenzoyl oxime (1ao).

white solid. Mp = 64–66�C; 1HNMR (500MHz, CDCl3) d 8.48 (dd, J = 2.5, 0.7 Hz, 1H), 8.05 (dd, J= 8.7, 2.5 Hz,

1H), 6.77 (dd, J = 8.8, 0.7 Hz, 1H), 3.95 (s, 3H), 2.86 (q, J = 7.7 Hz, 2H), 1.20 (t, J = 7.7 Hz, 3H); 13C NMR (126

MHz, CDCl3) d 167.3, 165.9, 156.4, 146.7–146.5 (m), 146.5, 144.6–144.4 (m), 142.7–142.3 (m), 139.0–138.6 (m),

137.3, 137.0–136.6 (m), 122.0, 111.3, 107.1–106.8 (m), 53.8, 21.7, 11.3;HRMS-EI calcd for C16H11F5N2O3 [M]+

374.0684, found 374.0689.

(E)-1-(6-phenylpyridin-3-yl)propan-1-one O-perfluorobenzoyl oxime (1ap).

white solid. Mp = 146–148�C; 1H NMR (500 MHz, CDCl3) d 9.00 (d, J = 2.3 Hz, 1H), 8.18 (dd, J = 8.4, 2.4 Hz,

1H), 8.03 (dd, J = 8.2, 1.3 Hz, 2H), 7.79 (d, J = 8.4 Hz, 1H), 7.50–7.41 (m, 3H), 2.93 (q, J = 7.7 Hz, 2H), 1.25 (t,

J = 7.7 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 167.3, 159.2, 156.2, 148.1, 146.7–146.4 (m), 144.7–144.3 (m),

142.6–142.3 (m), 138.9–138.5 (m), 138.0, 136.9–136.5 (m), 135.5, 129.7, 128.8, 127.0, 126.9, 120.0, 106.9–

106.5 (m), 21.7, 11.1; HRMS-EI calcd for C21H13F5N2O2 [M]+ 420.0892, found 420.0893.

(E)-1-(6-(trifluoromethyl)pyridin-3-yl)propan-1-one O-perfluorobenzoyl oxime (1aq).

white solid. Mp = 47–49�C; 1H NMR (500 MHz, CDCl3) d 9.02 (d, J = 2.1 Hz, 1H), 8.28 (dd, J = 8.2, 2.2 Hz, 1H),

7.75 (d, J = 8.2 Hz, 1H), 2.95 (q, J = 7.7 Hz, 2H), 1.22 (t, J = 7.7 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 166.5,

156.0, 149.7 (q, J = 35.3 Hz), 148.4, 146.9–146.5 (m), 144.9–144.5 (m), 142.9–142.5 (m), 139.0–138.6 (m),

137.0–136.6 (m), 136.3, 131.8, 121.1 (q, J = 274.0 Hz), 120.4 (d, J = 3.1 Hz), 106.5–106.1 (m), 22.0, 10.8;

HRMS-EI calcd for C16H8F8N2O2 [M]+ 412.0453, found 412.0469.

(E)-1-(benzofuran-5-yl)propan-1-one O-perfluorobenzoyl oxime (1ar).

white solid. Mp = 130–132�C; 1H NMR (500 MHz, CDCl3) d 8.02 (s, 1H), 7.74 (d, J = 8.7 Hz, 1H), 7.66 (d, J =

2.3 Hz, 1H), 7.53 (d, J = 8.7 Hz, 1H), 6.81 (s, 1H), 2.96 (q, J = 7.7 Hz, 2H), 1.24 (t, J = 7.7 Hz, 3H); 13C NMR (126

MHz, CDCl3) d 169.9, 156.5, 156.3, 146.6–146.3 (m), 146.1, 144.6–144.3 (m), 142.5–142.1 (m), 138.9–138.5 (m),

136.9–136.5 (m), 127.8, 127.7, 123.6, 120.9, 111.7, 107.3–106.9 (m), 106.8, 22.5, 11.3; HRMS-EI calcd for

C18H10F5NO3 [M]+ 383.0575, found 383.0582.

(E)-1-(5-(1-(((perfluorobenzoyl)oxy)imino)propyl)-1H-indol-1-yl)ethan-1-one (1as).

white solid. Mp = 177–179�C; 1H NMR (500 MHz, CDCl3) d 8.49 (d, J = 8.7 Hz, 1H), 8.02 (d, J = 1.8 Hz, 1H),

7.75 (dd, J = 8.7, 1.8 Hz, 1H), 7.48 (d, J = 3.8 Hz, 1H), 6.70 (d, J = 3.7 Hz, 1H), 2.97 (q, J = 7.7 Hz, 2H), 2.66 (s,

3H), 1.25 (t, J = 7.6 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 170.0, 168.6, 156.7, 146.7–146.4 (m), 144.6–144.2
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(m), 142.6–142.3 (m), 139.0–138.6 (m), 137.0, 137.0–136.6 (m), 130.7, 128.3, 126.4, 124.3, 120.4, 116.8, 109.4,

107.4–107.1 (m), 23.9, 22.5, 11.5; HRMS-EI calcd for C20H13F5N2O3 [M]+ 424.0841, found 424.0865.

(E)-1-(benzo[b]thiophen-3-yl)propan-1-one O-perfluorobenzoyl oxime (1at).

light yellow solid. Mp = 169–171�C; 1H NMR (500 MHz, CDCl3) d 8.78 (d, J = 8.2 Hz, 1H), 7.91 (s, 1H), 7.87 (d,

J = 8.0 Hz, 1H), 7.51 (ddd, J = 8.2, 7.1, 1.2 Hz, 1H), 7.43 (ddd, J = 8.1, 7.0, 1.2 Hz, 1H), 2.99 (q, J = 7.7 Hz, 2H),

1.32 (t, J = 7.7 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 165.8, 156.5, 146.8–146.5 (m), 144.8–144.4 (m), 142.7–

142.3 (m), 140.2, 139.0–138.7 (m), 137.0–136.6 (m), 136.0, 131.3, 129.3, 126.5, 125.7, 125.4, 122.4, 107.3–106.9

(m), 23.1, 11.9; HRMS-EI calcd for C18H10F5NO2S [M]+ 399.0347, found 399.0360.

(E)-1-(quinolin-6-yl)propan-1-one O-perfluorobenzoyl oxime (1au).

white solid. Mp = 138–140�C; 1H NMR (500 MHz, CDCl3) d 8.92 (dd, J = 4.3, 1.7 Hz, 1H), 8.20–8.16 (m, 2H),

8.11 (d, J = 1.7 Hz, 2H), 7.41 (dd, J = 8.3, 4.3 Hz, 1H), 2.99 (q, J = 7.7 Hz, 2H), 1.24 (t, J = 7.7 Hz, 3H); 13C NMR

(126MHz, CDCl3) d 168.9, 156.3, 151.7, 149.1, 146.7–146.4 (m), 144.7–144.3 (m), 142.6–142.3 (m), 138.9–138.5

(m), 136.9–136.5 (m), 136.6, 130.9, 130.1, 127.7, 127.7, 127.4, 121.8, 107.0–106.6 (m), 22.1, 11.3; HRMS-EI

calcd for C19H11F5N2O2 [M]+ 394.0735, found 394.0716.

(E)-1-(quinolin-3-yl)propan-1-one O-perfluorobenzoyl oxime (1av).

white solid. Mp = 151–153�C; 1H NMR (500 MHz, CDCl3) d 9.29 (d, J = 2.3 Hz, 1H), 8.49 (d, J = 2.3 Hz, 1H),

8.12 (d, J = 8.4 Hz, 1H), 7.87 (dd, J = 8.1, 1.4 Hz, 1H), 7.77 (ddd, J = 8.4, 6.8, 1.4 Hz, 1H), 7.59 (t, J = 7.5 Hz, 1H),

3.02 (q, J = 7.7 Hz, 2H), 1.28 (t, J = 7.7 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 167.7, 156.4, 148.9, 148.3, 146.8–

146.4 (m), 144.8–144.4 (m), 142.8–142.3 (m), 139.0–138.6 (m), 137.0–136.6 (m), 135.3, 131.0, 129.3, 128.5,

127.4, 127.1, 125.8, 106.9–106.6 (m), 22.0, 11.2; HRMS-EI calcd for C19H11F5N2O2 [M]+ 394.0735, found

394.0733.

(E)-1-(4-(1H-pyrazol-1-yl)phenyl)propan-1-one O-perfluorobenzoyl oxime (1aw).

white solid. Mp = 140–142�C; 1H NMR (500 MHz, CDCl3) d 7.99 (d, J = 2.5 Hz, 1H), 7.90–7.85 (m, 2H), 7.80–

7.76 (m, 2H), 7.74 (d, J = 1.7 Hz, 1H), 6.49 (t, J = 2.2 Hz, 1H), 2.91 (q, J = 7.7 Hz, 2H), 1.23 (t, J = 7.6 Hz, 3H); 13C

NMR (126 MHz, CDCl3) d 168.7, 156.5, 146.7–146.4 (m), 144.7–144.3 (m), 142.6–142.3 (m), 141.9, 141.7,

138.9–138.6 (m), 136.9–136.6 (m), 130.5, 128.7, 126.7, 118.8, 108.3, 107.2–106.7 (m), 22.0, 11.3; HRMS-EI

calcd for C19H12F5N3O2 [M]+ 409.0844, found 409.0829.

(E)-1-(4-(2H-1,2,3-triazol-2-yl)phenyl)propan-1-one O-perfluorobenzoyl oxime (1ax).

white solid. Mp = 171–173�C; 1H NMR (500 MHz, CDCl3) d 8.17 (d, J = 8.8 Hz, 2H), 7.92 (d, J = 8.8 Hz, 2H),

7.85 (s, 2H), 2.94 (q, J = 7.7 Hz, 2H), 1.25 (t, J = 7.7 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 168.7, 156.5, 146.8–

146.4 (m), 144.7–144.4 (m), 142.7–142.3 (m), 141.5, 139.0–138.6 (m), 137.0–136.6 (m), 136.1, 131.8, 128.6,

119.0, 107.1–106.8 (m), 22.1, 11.3; HRMS-EI calcd for C18H11F5N4O2 [M]+ 410.0797, found 410.0780.

(E)-1-(2-methylbenzo[d]oxazol-5-yl)propan-1-one O-perfluorobenzoyl oxime (1ay).

white solid. Mp = 94–96�C; 1H NMR (500 MHz, CDCl3) d 7.91 (d, J = 1.6 Hz, 1H), 7.71 (dd, J = 8.4, 1.6 Hz, 1H),

7.67 (d, J = 8.4 Hz, 1H), 2.94 (q, J = 7.7 Hz, 2H), 2.66 (s, 3H), 1.23 (t, J = 7.6 Hz, 3H); 13C NMR (126MHz, CDCl3)

d 169.4, 165.9, 156.5, 151.1, 146.7–146.4 (m), 144.7–144.4 (m), 144.0, 142.6–142.3 (m), 139.0–138.6 (m), 136.9–

136.6 (m), 129.4, 123.7, 119.5, 109.5, 107.1–106.8 (m), 22.5, 14.6, 11.4;HRMS-EI calcd for C18H11F5N2O3 [M]+

398.0684, found 398.0651.

(E)-4-(1-(((perfluorobenzoyl)oxy)imino)propyl)-N,N-dipropylbenzenesulfona-mide (1ba).

white solid. Mp = 89–91�C; (Major) 1H NMR (500 MHz, CDCl3) d 7.87 (d, J = 8.5 Hz, 2H), 7.84 (d, J = 8.7 Hz,

2H), 3.06 (td, J = 7.4, 1.6 Hz, 4H), 2.91 (q, J = 7.7 Hz, 2H), 1.52 (h, J = 7.4 Hz, 4H), 1.20 (t, J = 7.6 Hz, 3H), 0.84 (t,

J = 7.4 Hz, 6H); 13C NMR (126 MHz, CDCl3) d 168.5, 156.2, 146.7–146.4 (m), 144.8–144.4 (m), 142.7–142.4 (m),
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142.4, 139.0–138.6 (m), 136.9–136.5 (m), 136.6, 128.0, 127.3, 106.8–106.4 (m), 49.9, 22.2, 21.8, 11.0; HRMS-EI

calcd for C22H23F5N2O4S [M]+ 506.1293, found 506.1265.

(E)-1-(6-(3-((3r,5r,7r)-adamantan-1-yl)-4-methoxyphenyl)naphthalen-2-yl)propan-1-one O-perfluoroben-

zoyl oxime (1bb).

white solid. Mp = 196–198�C; 1H NMR (500 MHz, CDCl3) d 8.22 (d, J = 1.6 Hz, 1H), 8.01 (d, J = 1.7 Hz, 1H),

7.98–7.92 (m, 3H), 7.80 (dd, J = 8.5, 1.8 Hz, 1H), 7.61 (d, J = 2.4 Hz, 1H), 7.55 (dd, J = 8.3, 2.3 Hz, 1H), 7.00 (d,

J = 8.5 Hz, 1H), 3.91 (s, 3H), 3.04 (q, J = 7.7 Hz, 2H), 2.20 (d, J = 2.9 Hz, 6H), 2.15–2.09 (m, 3H), 1.84–1.79 (m,

6H), 1.31 (t, J = 7.7 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 168.5, 156.2, 146.7–146.4 (m), 144.8–144.4 (m),

142.7–142.4 (m), 142.4, 139.0–138.6 (m), 136.9–136.5 (m), 136.6, 128.0, 127.3, 106.8–106.4 (m), 49.9, 22.2,

21.8, 11.0; HRMS-EI calcd for C37H32F5NO3 [M]+ 633.2297, found 633.2292.

3,3,5-trimethylcyclohexyl (E)-2-acetoxy-5-(1-(((perfluorobenzoyl)oxy)imino) propyl)benzoate (1bd).

white solid. Mp = 89–91�C; 1H NMR (500 MHz, CDCl3) d 8.29 (d, J = 2.3 Hz, 1H), 7.97 (dd, J = 8.4, 2.3 Hz, 1H),

7.16 (d, J = 8.4 Hz, 1H), 5.11 (tt, J = 11.6, 4.4 Hz, 1H), 2.90 (q, J = 7.7 Hz, 2H), 2.35 (s, 3H), 2.12–2.04 (m, 1H),

1.81–1.70 (m, 2H), 1.39–1.33 (m, 1H), 1.25–1.19 (m, 4H), 1.00–0.94 (m, 7H), 0.92 (d, J = 6.5 Hz, 3H), 0.82 (t, J =

12.7 Hz, 1H); 13CNMR (126MHz, CDCl3) d 169.0, 168.2, 163.4, 156.4, 152.3, 146.7–146.4 (m), 144.6–144.3 (m),

142.6–142.3 (m), 138.9–138.5 (m), 136.9–136.5 (m), 132.2, 130.8, 130.7, 124.6, 124.4, 107.0–106.6 (m), 72.5,

47.4, 43.8, 40.2, 32.9, 32.3, 27.1, 25.4, 22.2, 21.0, 11.1; HRMS (ESI-TOF) calcd for C28H32F5N2O6 [M +

NH4]
+ 587.2175, found 587.2174.

pent-1-en-3-d-3-ol (2a-d).

colorless oil; 1H NMR (500 MHz, CDCl3): d 5.85 (ddt, J = 17.2, 10.4, 0.9 Hz, 1H), 5.21 (dd, J = 17.2, 1.6 Hz, 1H),

5.11 (dd, J = 10.4, 1.6 Hz, 1H), 4.02 (qt, J = 6.3, 1.3 Hz, 0.05H). 1.59–1.51 (m, 2H), 0.92 (t, J = 7.5 Hz, 3H). 2H

NMR (500 MHz, CHCl3): d 4.02 (q, J = 1.0 Hz, 1H).

(5S)-5,9-dimethyldeca-1,8-dien-3-ol (1j).

colorless oil; 1H NMR (500 MHz, CDCl3) d 5.91–5.78 (m, 1H), 5.21 (dq, J = 17.2, 1.6 Hz, 1H), 5.11–5.04 (m, 2H),

4.21–4.14 (m, 1H), 2.05–1.88 (m, 2H), 1.69–1.62 (m, 4H), 1.59 (d, J = 1.4 Hz, 3H), 1.57–1.51 (m, 1H), 1.48–1.29

(m, 2H), 1.28–1.11 (m, 2H), 0.91 (t, J = 6.4 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 141.8, 141.4, 131.2, 124.7,

114.7, 114.1, 71.6, 71.0, 44.4, 44.3, 37.5, 36.9, 29.0, 28.7, 25.7, 25.4, 25.3, 19.9, 19.2, 17.6; HRMS-EI calcd for

C12H22O [M]+ 182.1665, found 182.1687.

Characterization data of products

1-phenylpentan-3-one (3a) (Zhang et al., 2013).

11.3 mg, 70% yield; colorless liquid; 1H NMR (500 MHz, CDCl3) d 7.31–7.25 (m), 7.22–7.15 (m), 2.90 (t, J =

7.7 Hz), 2.73 (t, J = 7.7 Hz), 2.41 (q, J = 7.3 Hz), 1.05 (t, J = 7.3 Hz).

1-(o-tolyl)pentan-3-one (3b) (Zhang et al., 2013).

8.9 mg, 51% yield; colorless liquid; 1H NMR (500 MHz, CDCl3) d 7.17–7.09 (m, 4H), 2.89 (t, J = 7.7 Hz, 2H),

2.69 (t, J = 7.7 Hz, 2H), 2.43 (q, J = 7.3 Hz, 2H), 2.31 (s, 3H), 1.06 (t, J = 7.3 Hz, 3H).

1-(2-fluorophenyl)pentan-3-one (3c).

13.1 mg, 71% yield; colorless liquid; 1H NMR (500 MHz, CDCl3) d 7.23–7.13 (m, 2H), 7.04 (td, J = 7.5, 1.3 Hz,

1H), 7.04–6.96 (m, 1H), 2.92 (t, J = 7.6 Hz, 2H), 2.73 (t, J = 7.6 Hz, 2H), 2.41 (q, J= 7.3 Hz, 2H), 1.05 (t, J = 7.3 Hz,

3H); 13C NMR (126 MHz, CDCl3) d 210.3, 161.1 (d, J = 245.0 Hz), 130.8 (d, J = 5.0 Hz), 127.9 (d, J = 15.3 Hz),

127.8 (d, J = 7.8 Hz), 124.0 (d, J = 4.1 Hz), 115.2 (d, J = 22.2 Hz), 42.3, 36.0, 23.5, 7.7; 19F NMR (471 MHz,

CDCl3) d �118.6–118.7 (m). HRMS-EI calcd for C11H13FO [M]+ 180.0945, found 180.0931.

1-(2-chlorophenyl)pentan-3-one (3d).
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15.7 mg, 80% yield; colorless liquid; 1H NMR (500 MHz, CDCl3) d 7.33 (dd, J = 7.7, 1.6 Hz, 1H), 7.23 (dd, J =

7.3, 2.0 Hz, 1H), 7.19–7.12 (m, 2H), 3.00 (t, J = 7.7 Hz, 2H), 2.74 (t, J = 7.7 Hz, 2H), 2.42 (q, J = 7.3 Hz, 2H), 1.05

(t, J= 7.3 Hz, 3H); 13CNMR (126MHz, CDCl3) d 210.3, 138.7, 133.8, 130.6, 129.5, 127.6, 126.9, 41.8, 36.0, 27.9,

7.7; HRMS-EI calcd for C11H13ClO [M]+ 196.0649, found 196.0649.

1-(m-tolyl)pentan-3-one (3e) (Zhang et al., 2013).

12.1 mg, 69% yield; colorless liquid; 1H NMR (500 MHz, CDCl3) d 7.17 (t, J = 7.9 Hz, 1H), 6.99 (q, J = 7.4 Hz,

3H), 2.87 (t, J = 7.7 Hz, 2H), 2.72 (t, J = 7.7 Hz, 2H), 2.41 (q, J = 7.3 Hz, 2H), 2.33 (s, 3H), 1.05 (t, J = 7.3 Hz, 3H).

1-(3-methoxyphenyl)pentan-3-one (3f) (Molander and Petrillo, 2008).

13.4 mg, 70% yield; colorless liquid; 1H NMR (500 MHz, CDCl3) d 7.19 (td, J = 7.5, 1.8 Hz, 1H), 6.77 (d, J =

7.6 Hz, 1H), 6.75–6.71 (m, 2H), 3.79 (s, 3H), 2.88 (t, J = 7.7 Hz, 2H), 2.73 (t, J = 7.7 Hz, 2H), 2.41 (q, J = 7.3 Hz,

2H), 1.05 (t, J = 7.3 Hz, 3H).

1-(3-(methylthio)phenyl)pentan-3-one (3g).

15.4 mg, 74% yield; colorless liquid; 1H NMR (500 MHz, CDCl3) d 7.21–7.17 (m, 1H), 7.10–7.06 (m, 2H), 6.95

(d, J= 7.5 Hz, 1H), 2.86 (t, J= 7.7 Hz, 2H), 2.72 (t, J= 7.7 Hz, 2H), 2.47 (s, 3H), 2.41 (q, J= 7.3 Hz, 2H), 1.04 (t, J=

7.3 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 210.4, 141.9, 138.5, 128.9, 126.4, 125.1, 124.2, 43.7, 36.1, 29.7, 15.7,

7.7; HRMS-EI calcd for C12H16OS [M]+ 208.0916, found 208.0915.

N-(3-(3-oxopentyl)phenyl)acetamide (3h).

11.5 mg, 52% yield; white solid. Mp = 64–66�C; 1H NMR (500 MHz, CDCl3) d 7.54 (brs, 1H), 7.36 (s, 1H), 7.31

(d, J= 8.3 Hz, 1H), 7.19 (t, J= 7.8 Hz, 1H), 6.91 (d, J= 7.5 Hz, 1H), 2.85 (t, J = 7.6 Hz, 2H), 2.71 (t, J= 7.6 Hz, 2H),

2.39 (q, J = 7.3 Hz, 2H), 2.15 (s, 3H), 1.03 (t, J = 7.3 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 210.7, 168.5, 142.1,

138.1, 129.0, 124.2, 119.7, 117.6, 43.6, 36.1, 29.7, 24.5, 7.7; HRMS-EI calcd for C13H17NO2 [M]+ 219.1254,

found 219.1248.

3-(3-oxopentyl)phenyl acetate (3i).

16.6 mg, 75% yield; colorless liquid; 1H NMR (500 MHz, CDCl3) d 7.30–7.26 (m, 1H), 7.05 (d, J = 7.8 Hz, 1H),

6.93–6.89 (m, 2H), 2.90 (t, J= 7.6 Hz, 2H), 2.73 (t, J= 7.6 Hz, 2H), 2.40 (q, J= 7.3 Hz, 2H), 2.28 (s, 3H), 1.04 (t, J=

7.3 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 210.3, 169.5, 150.7, 142.9, 129.4, 125.9, 121.4, 119.2, 43.5, 36.1,

29.5, 21.1, 7.7; HRMS-EI calcd for C13H16O3 [M]+ 220.1094, found 220.1096.

1-(3-fluorophenyl)pentan-3-one (3j) (Kumar et al., 2018).

14.0 mg, 78% yield; colorless liquid; 1H NMR (500 MHz, CDCl3) d 7.25–7.19 (m, 1H), 6.95 (d, J = 7.6 Hz, 1H),

6.92–6.84 (m, 2H), 2.89 (t, J= 7.6 Hz, 2H), 2.73 (t, J = 7.6 Hz, 2H), 2.41 (q, J= 7.3 Hz, 2H), 1.05 (t, J = 7.3 Hz, 3H).

1-(3-chlorophenyl)pentan-3-one (3k).

14.3 mg, 73% yield; colorless liquid; 1H NMR (500 MHz, CDCl3) d 7.22–7.14 (m, 3H), 7.06 (dt, J = 7.2, 1.6 Hz,

1H), 2.87 (t, J = 7.6 Hz, 2H), 2.72 (t, J = 7.5 Hz, 2H), 2.41 (q, J = 7.3 Hz, 2H), 1.05 (t, J = 7.3 Hz, 3H); 13C NMR

(126 MHz, CDCl3) d 210.1, 143.2, 134.1, 129.7, 128.4, 126.6, 126.2, 43.4, 36.1, 29.3, 7.7; HRMS-EI calcd for

C11H13ClO [M]+ 196.0649, found 196.0657.

1-(3-(trifluoromethyl)phenyl)pentan-3-one (3l).

16.0 mg, 70% yield; colorless liquid; 1HNMR (500MHz, CDCl3) d 7.47–7.42 (m, 2H), 7.41–7.36 (m, 2H), 2.96 (t,

J = 7.5 Hz, 2H), 2.75 (t, J = 7.5 Hz, 2H), 2.42 (q, J = 7.3 Hz, 2H), 1.05 (t, J = 7.3 Hz, 3H); 13C NMR (126 MHz,

CDCl3) d 209.9, 142.1, 131.8, 130.8 (q, J= 31.9 Hz), 128.9, 125.0 (q, J= 3.9 Hz), 124.2 (q, J= 272.3 Hz), 123.0 (q,

J = 3.6 Hz), 43.4, 36.1, 29.4, 7.7; 19F NMR (471 MHz, CDCl3) d �62.6; HRMS-EI calcd for C12H13F3O [M]+

230.0913, found 230.0911.
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3-(3-oxopentyl)benzonitrile (3m) (Molander and Petrillo, 2008).

12.1 mg, 65% yield; colorless oil; 1H NMR (500 MHz, CDCl3) d 7.49–7.45 (m, 2H), 7.43 (dt, J = 7.8, 1.6 Hz, 1H),

7.37 (t, J = 7.9 Hz, 1H), 2.92 (t, J = 7.4 Hz, 2H), 2.74 (t, J = 7.4 Hz, 2H), 2.41 (q, J = 7.3 Hz, 2H), 1.04 (t, J = 7.3 Hz,

3H).

1-(3-nitrophenyl)pentan-3-one (3n) (Shen et al., 2011).

9.9 mg, 48% yield; colorless oil; 1H NMR (500 MHz, CDCl3) d 8.13–8.03 (m, 2H), 7.57 (dt, J = 7.8, 1.4 Hz, 1H),

7.47 (dd, J = 8.8, 7.6 Hz, 1H), 3.04 (t, J = 7.4 Hz, 2H), 2.83 (t, J = 7.4 Hz, 2H), 2.46 (q, J = 7.3 Hz, 2H), 1.08 (t, J =

7.3 Hz, 3H).

1-(p-tolyl)pentan-3-one (3o) (Zhang et al., 2013).

10.9 mg, 62% yield; colorless liquid; 1H NMR (500 MHz, CDCl3) d 7.12–7.04 (m, 4H), 2.86 (t, J = 7.6 Hz, 2H),

2.71 (t, J = 7.6 Hz, 2H), 2.40 (q, J = 7.3 Hz, 2H), 2.31 (s, 3H), 1.04 (t, J = 7.3 Hz, 3H).

1-(4-(tert-butyl)phenyl)pentan-3-one (3p) (Zhang et al., 2013).

12.2 mg, 56% yield; colorless oil; 1H NMR (500 MHz, CDCl3) d 7.30 (d, J = 7.9 Hz, 2H), 7.12 (d, J = 7.9 Hz, 2H),

2.87 (t, J = 7.7 Hz, 2H), 2.73 (t, J = 7.7 Hz, 2H), 2.42 (q, J = 7.3 Hz, 2H), 1.30 (s, 9H), 1.05 (t, J = 7.3 Hz, 3H).

1-([1,10-biphenyl]-4-yl)pentan-3-one (3q) (Jana and Tunge., 2009).

17.1 mg, 72% yield; white solid; 1H NMR (500 MHz, CDCl3) d 7.59 (dd, J = 8.3, 1.1 Hz, 2H), 7.53 (d, J = 8.2 Hz,

2H), 7.44 (t, J = 7.7 Hz, 2H), 7.34 (t, J = 7.4 Hz, 1H), 7.27 (d, J = 8.1 Hz, 2H), 2.96 (t, J = 7.7 Hz, 2H), 2.78 (t, J =

7.7 Hz, 2H), 2.44 (q, J = 7.3 Hz, 2H), 1.07 (t, J = 7.3 Hz, 3H).

4-(3-oxopentyl)phenyl acetate (3r) (Schlosser and Michel, 1996).

17.4 mg, 79% yield; colorless liquid; 1HNMR (500MHz, CDCl3) d 7.20–7.15 (m, 2H), 7.01–6.96 (m, 2H), 2.88 (t,

J = 7.6 Hz, 2H), 2.71 (t, J = 7.6 Hz, 2H), 2.40 (q, J = 7.3 Hz, 2H), 2.28 (s, 3H), 1.04 (t, J = 7.3 Hz, 3H).

1-(4-(trifluoromethoxy)phenyl)pentan-3-one (3s) (Zhang et al., 2013).

17.4 mg, 71% yield; colorless liquid; 1H NMR (500 MHz, CDCl3) d 7.22–7.17 (m, 2H), 7.11 (d, J = 7.7 Hz, 2H),

2.90 (t, J = 7.5 Hz, 2H), 2.72 (t, J = 7.5 Hz, 2H), 2.41 (q, J = 7.3 Hz, 2H), 1.04 (t, J = 7.3 Hz, 3H).

1-(4-fluorophenyl)pentan-3-one (3t) (Clifton et al., 1982).

14.2 mg, 79% yield; colorless liquid; 1HNMR (500MHz, CDCl3) d 7.19–7.13 (m, 2H), 7.01–6.95 (m, 2H), 2.90 (t,

J = 7.5 Hz, 2H), 2.73 (t, J = 7.5 Hz, 2H), 2.43 (q, J = 7.3 Hz, 2H), 1.07 (t, J = 7.3 Hz, 3H).

1-(4-chlorophenyl)pentan-3-one (3u) (Zhang et al., 2013).

16.1 mg, 82% yield; colorless liquid; 1HNMR (500MHz, CDCl3) d 7.25–7.21 (m, 2H), 7.12–7.09 (m, 2H), 2.86 (t,

J = 7.5 Hz, 2H), 2.70 (t, J = 7.5 Hz, 2H), 2.39 (q, J = 7.3 Hz, 2H), 1.03 (t, J = 7.3 Hz, 3H).

1-(4-(trifluoromethyl)phenyl)pentan-3-one (3v) (Zhang et al., 2013).

17.7 mg, 77% yield; colorless liquid; 1H NMR (500 MHz, CDCl3) d 7.52 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 8.0 Hz,

2H), 2.96 (t, J = 7.5 Hz, 2H), 2.75 (t, J = 7.5 Hz, 2H), 2.41 (q, J = 7.3 Hz, 2H), 1.05 (t, J = 7.3 Hz, 3H).

4-(3-oxopentyl)benzonitrile (3w) (Shen et al., 2011).

12.2 mg, 65% yield; white solid; 1H NMR (500 MHz, CDCl3) d 7.55 (d, J = 8.2 Hz, 2H), 7.29 (d, J = 8.1 Hz, 2H),

2.95 (t, J = 7.4 Hz, 2H), 2.74 (t, J = 7.4 Hz, 2H), 2.41 (q, J = 7.3 Hz, 2H), 1.04 (t, J = 7.3 Hz, 3H).
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1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pentan-3-one (3x).

20.7 mg, 72% yield; colorless oil; 1H NMR (500 MHz, CDCl3) d 7.72 (d, J = 7.6 Hz, 2H), 7.19 (d, J = 7.7 Hz, 2H),

2.91 (t, J = 7.7 Hz, 2H), 2.72 (t, J = 7.6 Hz, 2H), 2.39 (q, J = 7.3 Hz, 2H), 1.33 (s, 12H), 1.03 (t, J = 7.3 Hz, 3H); 13C

NMR (126 MHz, CDCl3) d 210.5, 144.5, 135.0, 127.7, 83.7, 43.6, 36.1, 30.0, 24.8, 7.7; HRMS-EI calcd for

C17H25BO3 [M]+ 288.1891, found 288.1910.

1-(4-(trimethylsilyl)phenyl)pentan-3-one (3y).

14.0 mg, 60% yield; colorless oil; 1H NMR (500 MHz, CDCl3) d 7.44 (d, J = 7.9 Hz, 2H), 7.18 (d, J = 7.8 Hz, 2H),

2.89 (t, J = 7.7 Hz, 2H), 2.74 (t, J = 7.7 Hz, 2H), 2.42 (q, J = 7.3 Hz, 2H), 1.06 (t, J = 7.3 Hz, 3H), 0.25 (s, 9H); 13C

NMR (126 MHz, CDCl3) d 210.6, 141.8, 137.8, 133.5, 127.7, 43.7, 36.0, 29.7, 7.8, �1.1; HRMS-EI calcd for

C14H22OSi [M]+ 234.1434, found 234.1419.

ethyl 4-(3-oxopentyl)benzoate (3z) (Shen et al., 2011).

18.3 mg, 71% yield; colorless oil; 1H NMR (500 MHz, CDCl3) d 7.97–7.93 (m, 2H), 7.26–7.22 (m, 2H), 4.36 (q,

J = 7.2 Hz, 2H), 2.95 (t, J = 7.6 Hz, 2H), 2.74 (t, J = 7.5 Hz, 2H), 2.40 (q, J = 7.3 Hz, 2H), 1.38 (t, J = 7.1 Hz, 3H),

1.04 (t, J = 7.3 Hz, 3H).

diethyl (4-(3-oxopentyl)phenyl)phosphonate (3aa).

24.8 mg, 83% yield; colorless oil; 1H NMR (500 MHz, CDCl3) d 7.71 (d, J = 8.1 Hz, 1H), 7.69 (d, J = 8.0 Hz, 1H),

7.27 (d, J = 8.1 Hz, 1H), 7.26 (d, J = 7.9 Hz, 2H), 4.17–4.06 (m, 2H), 4.09–4.00 (m, 2H), 2.93 (t, J = 7.5 Hz, 2H),

2.73 (t, J = 7.6 Hz, 2H), 2.40 (q, J = 7.3 Hz, 2H), 1.30 (t, J = 7.0 Hz, 6H), 1.03 (t, J = 7.3 Hz, 3H); 13C NMR (126

MHz, CDCl3) d 210.0, 146.1 (d, J = 3.6 Hz), 132.0 (d, J = 10.4 Hz), 128.5 (d, J = 15.7 Hz), 125.8 (d, J = 190.0 Hz),

62.0 (d, J = 5.6 Hz), 43.2, 36.1, 29.6, 16.3 (d, J = 6.6 Hz), 7.7; 31P NMR (202MHz, CDCl3) d 19.2;HRMS-EI calcd

for C15H23O4P [M]+ 299.1328, found 298.1348.

1-(4-(methylsulfonyl)phenyl)pentan-3-one (3ab).

17.3 mg, 72% yield; light yellow solid. Mp = 69–71�C; 1H NMR (500 MHz, CDCl3) d 7.84 (d, J = 8.3 Hz, 2H),

7.38 (d, J = 8.4 Hz, 2H), 3.03 (s, 3H), 2.99 (t, J = 7.4 Hz, 2H), 2.77 (t, J = 7.4 Hz, 2H), 2.42 (q, J = 7.3 Hz, 2H), 1.05

(t, J = 7.4 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 209.6, 147.9, 138.3, 129.4, 127.6, 44.5, 43.0, 36.1, 29.4, 7.7;

HRMS-EI calcd for C12H16O3S [M]+ 240.0815, found 240.0807.

1-(3,5-dimethylphenyl)pentan-3-one (3ac).

12.0 mg, 63% yield; colorless liquid; 1H NMR (500 MHz, CDCl3) d 6.84 (s, 1H), 6.81 (s, 2H), 2.83 (t, J = 7.7 Hz,

2H), 2.71 (t, J = 7.7 Hz, 2H), 2.42 (q, J = 7.3 Hz, 2H), 2.29 (s, 6H), 1.06 (t, J = 7.3 Hz, 3H); 13C NMR (126 MHz,

CDCl3) d 210.8, 141.0, 137.9, 127.7, 126.1, 44.0, 36.0, 29.7, 21.2, 7.8; HRMS-EI calcd for C13H18O [M]+

190.1352, found 190.1358.

1-(3,5-dimethoxyphenyl)pentan-3-one (3ad) (Krishnamurty and Prasad, 1975).

14.2 mg, 64% yield; colorless oil; 1H NMR (500 MHz, CDCl3) d 6.33 (d, J = 2.3 Hz, 2H), 6.30 (t, J = 2.3 Hz, 1H),

3.77 (s, 6H), 2.84 (t, J = 7.7 Hz, 2H), 2.71 (t, J = 7.7 Hz, 2H), 2.41 (q, J = 7.3 Hz, 2H), 1.05 (t, J = 7.3 Hz, 3H).

1-(3,5-difluorophenyl)pentan-3-one (3ae).

13.1 mg, 66% yield; colorless liquid; 1H NMR (500 MHz, CDCl3) d 6.74–6.65 (m, 2H), 6.62 (tt, J = 9.0, 2.4 Hz,

1H), 2.88 (t, J = 7.5 Hz, 2H), 2.72 (t, J = 7.5 Hz, 2H), 2.42 (q, J = 7.3 Hz, 2H), 1.05 (t, J = 7.3 Hz, 3H); 13C NMR

(126MHz, CDCl3) d 209.7, 163.0 (dd, J = 248.0, 13.2 Hz), 145.1 (t, J = 9.0 Hz), 111.1 (dd, J = 19.4, 5.8 Hz), 101.6

(t, J = 25.3 Hz), 42.9, 36.1, 29.3, 7.7; 19F NMR (471 MHz, CDCl3) d �110.4 (t, J = 7.6 Hz); HRMS-EI calcd for

C11H12F2O [M]+ 198.0851, found 198.0856.

1-(3,5-dichlorophenyl)pentan-3-one (3af).
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16.3 mg, 71% yield; colorless liquid; 1H NMR (500 MHz, CDCl3) d 7.18 (t, J = 1.9 Hz, 1H), 7.06 (d, J = 1.9 Hz,

2H), 2.85 (t, J = 7.3 Hz, 2H), 2.71 (t, J = 7.3 Hz, 2H), 2.41 (q, J = 7.3 Hz, 2H), 1.05 (t, J = 7.3 Hz, 3H); 13C NMR

(126MHz, CDCl3) d 209.5, 144.6, 134.8, 126.9, 126.3, 43.0, 36.1, 29.0, 7.7;HRMS-EI calcd for C11H12Cl2O [M]+

230.0260, found 230.0257.

(E)-1-(4-styrylphenyl)pentan-3-one (3ag).

16.4 mg, 62% yield; white solid. Mp = 99–101�C; 1H NMR (500 MHz, CDCl3) d 7.51 (dd, J = 8.2, 1.3 Hz, 2H),

7.44 (d, J = 8.2 Hz, 2H), 7.36 (t, J = 7.7 Hz, 2H), 7.30–7.22 (m, 1H), 7.18 (d, J = 8.2 Hz, 2H), 7.08 (d, J = 1.0 Hz,

2H), 2.92 (t, J = 7.6 Hz, 2H), 2.74 (t, J = 7.6 Hz, 2H), 2.42 (q, J = 7.3 Hz, 2H), 1.06 (t, J = 7.3 Hz, 3H); 13C NMR

(126 MHz, CDCl3) d 210.6, 140.7, 137.4, 135.2, 128.6, 128.4, 128.1, 127.5, 126.6, 126.4, 43.7, 36.1, 29.6, 7.7;

HRMS-EI calcd for C19H21O [M]+ 265.1587, found 265.1560.

1-(2,6-difluorophenyl)pentan-3-one (3ah).

12.9 mg, 65% yield; colorless liquid; 1H NMR (500 MHz, CDCl3) d 7.13 (tt, J = 8.5, 6.5 Hz, 1H), 6.83 (p, J = 6.8,

6.2 Hz, 2H), 2.94 (t, J = 7.8 Hz, 2H), 2.70 (t, J = 7.8 Hz, 2H), 2.43 (q, J = 7.3 Hz, 2H), 1.06 (t, J = 7.3 Hz, 3H); 13C

NMR (126 MHz, CDCl3) d 209.9, 161.5 (dd, J = 246.9, 8.6 Hz), 127.6 (t, J = 10.4 Hz), 116.4 (t, J = 19.9 Hz), 111.1

(dd, J = 20.1, 5.9 Hz), 41.4, 35.8, 16.7, 7.7; 19F NMR (471 MHz, CDCl3) d�110.4 (t, J = 7.2 Hz); HRMS-EI calcd

for C11H12F2O [M]+ 198.0851, found 198.0856.

1-(3,4-dichlorophenyl)pentan-3-one (3ai).

16.6 mg, 72% yield; colorless liquid; 1H NMR (500 MHz, CDCl3) d 7.32 (d, J = 8.2 Hz, 1H), 7.27 (d, J = 2.1 Hz,

1H), 7.02 (dd, J = 8.2, 2.1 Hz, 1H), 2.85 (t, J = 7.4 Hz, 2H), 2.71 (t, J = 7.4 Hz, 2H), 2.40 (q, J = 7.3 Hz, 2H), 1.04 (t,

J = 7.3 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 209.8, 141.5, 132.2, 130.3, 130.3, 130.0, 127.9, 43.2, 36.1, 28.7,

7.7; HRMS-EI calcd for C11H12Cl2O [M]+ 230.0260, found 230.0266.

1-(naphthalen-1-yl)pentan-3-one (3aj) (Zhang et al., 2013).

7.8 mg, 37% yield; Colorless liquid; 1H NMR (500 MHz, CDCl3) d 8.01 (dd, J = 8.5, 1.2 Hz, 1H), 7.87 (dd, J =

7.9, 1.7 Hz, 1H), 7.73 (d, J= 8.1 Hz, 1H), 7.55–7.47 (m, 2H), 7.43–7.36 (m, 1H), 7.34 (dd, J= 7.0, 1.2 Hz, 1H), 3.38

(t, J = 7.6 Hz, 2H), 2.86 (t, J = 7.6 Hz, 2H), 2.42 (q, J = 7.3 Hz, 2H), 1.07 (t, J = 7.3 Hz, 3H).

1-(naphthalen-2-yl)pentan-3-one (3ak) (Watanabe et al., 2013).

14.8 mg, 70% yield; white solid; 1H NMR (500 MHz, CDCl3) d 7.80 (d, J = 7.7 Hz, 1H), 7.77 (d, J = 8.2 Hz, 2H),

7.63 (d, J = 1.6 Hz, 1H), 7.48–7.41 (m, 2H), 7.33 (dd, J = 8.4, 1.7 Hz, 1H), 3.07 (t, J = 7.6 Hz, 2H), 2.82 (t, J =

7.7 Hz, 2H), 2.43 (q, J = 7.3 Hz, 2H), 1.06 (t, J = 7.3 Hz, 3H).

6-(3-oxopentyl)naphthalen-2-yl acetate (3al).

18.6 mg, 69% yield; white solid. Mp = 77–79�C; 1H NMR (500 MHz, CDCl3) d 7.77 (d, J = 8.8 Hz, 1H), 7.72 (d,

J = 8.4 Hz, 1H), 7.62 (s, 1H), 7.51 (d, J = 2.3 Hz, 1H), 7.33 (dd, J = 8.4, 1.8 Hz, 1H), 7.20 (dd, J = 8.8, 2.3 Hz, 1H),

3.05 (t, J = 7.6 Hz, 2H), 2.80 (t, J = 7.6 Hz, 2H), 2.41 (q, J = 7.3 Hz, 2H), 2.35 (s, 3H), 1.04 (t, J = 7.3 Hz, 3H); 13C

NMR (126 MHz, CDCl3) d 210.5, 169.7, 147.9, 138.6, 132.3, 131.6, 128.9, 127.8, 127.8, 126.3, 121.2, 118.3,

43.7, 36.2, 29.9, 21.2, 7.7; HRMS-EI calcd for C17H18O3 [M]+ 270.1250, found 270.1256.

1-(furan-3-yl)pentan-3-one (3am).

7.9 mg, 52% yield; colorless oil; 1H NMR (500 MHz, CDCl3) d 7.33 (t, J = 1.7 Hz, 1H), 7.21 (t, J = 1.2 Hz, 1H),

6.27–6.23 (m, 1H), 2.71 (dd, J = 8.1, 4.8 Hz, 2H), 2.68–2.63 (m, 2H), 2.42 (q, J = 7.3 Hz, 2H), 1.05 (t, J = 7.3 Hz,

3H); 13C NMR (126 MHz, CDCl3) d 210.6, 142.8, 139.0, 123.9, 110.9, 42.6, 36.1, 19.0, 7.7; HRMS-EI calcd for

C9H12O2 [M]+ 152.0832, found 152.0820.

1-(thiophen-3-yl)pentan-3-one (3an) (Tamaru et al., 1979).
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10.2 mg, 61% yield; colorless oil; 1HNMR (500MHz, CDCl3) d 7.26–7.23 (m, 1H), 6.96–6.91 (m, 2H), 2.92 (t, J=

7.5 Hz, 2H), 2.73 (t, J = 7.5 Hz, 2H), 2.42 (q, J = 7.3 Hz, 2H), 1.05 (t, J = 7.3 Hz, 3H).

1-(6-methoxypyridin-3-yl)pentan-3-one (3ao).

11.6 mg, 60% yield; colorless oil; 1HNMR (500MHz, CDCl3) d 7.97 (d, J = 2.3 Hz, 1H), 7.40 (dd, J = 8.5, 2.5 Hz,

1H), 6.66 (d, J = 8.5 Hz, 1H), 3.90 (s, 3H), 2.82 (t, J = 7.4 Hz, 2H), 2.69 (t, J = 7.4 Hz, 2H), 2.40 (q, J = 7.3 Hz, 2H),

1.04 (t, J = 7.3 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 210.2, 162.8, 146.0, 139.0, 129.1, 110.5, 53.3, 43.6, 36.1,

25.9, 7.7; HRMS-EI calcd for C11H15NO2 [M]+ 193.1097, found 193.1108.

1-(6-phenylpyridin-3-yl)pentan-3-one (3ap).

16.2 mg, 68% yield; white solid. Mp = 36–38�C; 1H NMR (500 MHz, CDCl3) d 8.53 (d, J = 2.3 Hz, 1H), 7.98–

7.93 (m, 2H), 7.64 (dd, J = 8.1, 0.9 Hz, 1H), 7.58 (dd, J = 8.1, 2.3 Hz, 1H), 7.49–7.42 (m, 2H), 7.42–7.37 (m, 1H),

2.94 (t, J = 7.4 Hz, 2H), 2.77 (t, J = 7.4 Hz, 2H), 2.43 (q, J = 7.3 Hz, 2H), 1.06 (t, J = 7.3 Hz, 3H); 13C NMR (126

MHz, CDCl3) d 209.9, 155.4, 149.5, 139.1, 136.8, 135.0, 128.7, 128.7, 126.7, 120.2, 43.2, 36.1, 26.5, 7.7;HRMS-

EI calcd for C16H17NO [M]+ 239.1305, found 239.1297.

1-(6-(trifluoromethyl)pyridin-3-yl)pentan-3-one (3aq).

10.4 mg, 45% yield; white solid. Mp = 41–43�C; 1H NMR (500MHz, CDCl3) d 8.55 (d, J = 2.1 Hz, 1H), 7.70 (dd,

J = 7.9, 2.0 Hz, 1H), 7.57 (d, J = 8.0, 1H), 2.97 (t, J = 7.3 Hz, 2H), 2.77 (t, J = 7.3 Hz, 2H), 2.41 (q, J = 7.3 Hz, 2H),

1.04 (t, J = 7.3 Hz, 3H); 13CNMR (126MHz, CDCl3) d 209.1, 150.1, 146.1 (q, J = 34.7 Hz), 140.1, 137.2, 121.6 (q,

J = 274.0 Hz), 120.1 (q, J = 2.5 Hz), 42.6, 36.0, 26.5, 7.6; 19F NMR (376 MHz, CDCl3) d �67.8; HRMS-EI calcd

for C11H12F3NO [M]+ 231.0866, found 231.0852.

1-(benzofuran-5-yl)pentan-3-one (3ar).

11.7 mg, 58% yield; colorless oil; 1H NMR (500 MHz, CDCl3) d 7.59 (d, J = 2.3 Hz, 1H), 7.42–7.39 (m, 2H), 7.11

(dd, J = 8.5, 1.7 Hz, 1H), 6.71 (d, J = 2.1 Hz, 1H), 2.99 (t, J = 7.6 Hz, 2H), 2.77 (t, J = 7.6 Hz, 2H), 2.40 (q, J =

7.3 Hz, 2H), 1.04 (t, J = 7.3 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 210.8, 153.6, 145.2, 135.6, 127.6, 124.7,

120.4, 111.2, 106.4, 44.5, 36.2, 29.7, 7.7; HRMS-EI calcd for C13H14O2 [M]+ 202.0988, found 202.0984.

1-(1-acetyl-1H-indol-5-yl)pentan-3-one (3as).

12.4 mg, 51% yield; white solid. Mp = 86–88�C; 1H NMR (600 MHz, CDCl3) d 8.32 (d, J = 6.7 Hz, 1H), 7.43–

7.33 (m, 2H), 7.17 (dd, J = 8.4, 1.7 Hz, 1H), 6.58 (d, J = 3.8 Hz, 1H), 2.99 (t, J = 7.6 Hz, 2H), 2.77 (t, J = 7.7 Hz,

2H), 2.62 (s, 3H), 2.40 (q, J = 7.3 Hz, 2H), 1.03 (t, J = 7.3 Hz, 3H); 13C NMR (151 MHz, CDCl3) d 210.8, 168.5,

136.6, 134.1, 130.7, 125.6, 125.4, 120.3, 116.4, 109.0, 44.3, 36.2, 29.8, 23.9, 7.7;HRMS-EI calcd for C15H17NO2

[M]+ 243.1254, found 243.1251.

1-(benzo[b]thiophen-3-yl)pentan-3-one (3at).

11.3 mg, 52% yield; colorless oil; 1H NMR (500 MHz, CDCl3) d 7.86 (d, J = 7.9 Hz, 1H), 7.75 (d, J = 7.8 Hz, 1H),

7.43–7.32 (m, 2H), 7.10 (s, 1H), 3.14 (t, J= 7.6 Hz, 2H), 2.86 (t, J= 7.6 Hz, 2H), 2.44 (q, J= 7.4 Hz, 2H), 1.07 (t, J=

7.3 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 210.5, 140.4, 138.6, 135.4, 124.2, 123.9, 122.9, 121.5, 121.5, 41.6,

36.1, 22.4, 7.8; HRMS-EI calcd for C13H14OS [M]+ 218.0760, found 218.0760.

1-(quinolin-6-yl)pentan-3-one (3au).

10.2 mg, 48% yield; colorless oil; 1H NMR (500 MHz, CDCl3) d 8.84 (dd, J = 4.2, 1.7 Hz, 1H), 8.07 (dd, J = 8.4,

1.6 Hz, 1H), 8.01 (d, J = 8.6 Hz, 1H), 7.59 (s, 1H), 7.54 (dd, J = 8.7, 2.0 Hz, 1H), 7.36 (dd, J= 8.3, 4.2 Hz, 1H), 3.08

(t, J = 7.5 Hz, 2H), 2.82 (t, J = 7.5 Hz, 2H), 2.41 (q, J = 7.3 Hz, 2H), 1.03 (t, J = 7.3 Hz, 3H); 13C NMR (126 MHz,

CDCl3) d 210.2, 149.8, 147.0, 139.6, 135.6, 130.6, 129.4, 128.2, 126.3, 121.1, 43.4, 36.1, 29.6, 7.7; HRMS-EI

calcd for C14H15NO [M]+ 213.1148, found 213.1148.

1-(quinolin-3-yl)pentan-3-one (3av).
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9.6 mg, 45% yield; colorless oil; 1H NMR (500 MHz, CDCl3) d 8.78 (d, J = 2.1 Hz, 1H), 8.06 (d, J = 8.4 Hz, 1H),

7.94 (s, 1H), 7.75 (d, J = 8.2 Hz, 1H), 7.65 (t, J = 7.6 Hz, 1H), 7.51 (t, J = 7.5 Hz, 1H), 3.09 (t, J = 7.4 Hz, 2H), 2.84

(t, J = 7.4 Hz, 2H), 2.42 (q, J = 7.3 Hz, 2H), 1.04 (t, J = 7.3 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 209.8, 151.7,

146.8, 134.5, 133.8, 129.1, 128.8, 128.0, 127.3, 126.7, 43.2, 36.1, 26.9, 7.7; HRMS-EI calcd for C14H15NO [M]+

213.1148, found 213.1148.

1-(4-(1H-pyrazol-1-yl)phenyl)pentan-3-one (3aw).

17.1 mg, 75% yield; white solid. Mp = 63–65�C; 1H NMR (600 MHz, CDCl3) d 7.89 (d, J = 2.4 Hz, 1H), 7.71 (d,

J = 1.8 Hz, 1H), 7.61–7.57 (m, 2H), 7.28–7.24 (m, 2H), 6.45 (t, J = 2.1 Hz, 1H), 2.93 (t, J = 7.6 Hz, 2H), 2.75 (t, J =

7.5 Hz, 2H), 2.41 (q, J = 7.3 Hz, 2H), 1.05 (t, J = 7.3 Hz, 3H); 13C NMR (151 MHz, CDCl3) d 210.4, 140.9, 139.5,

138.5, 129.3, 126.7, 119.3, 107.4, 43.7, 36.2, 29.2, 7.7; HRMS-EI calcd for C14H16N2O [M]+ 228.1257, found

228.1252.

1-(4-(2H-1,2,3-triazol-2-yl)phenyl)pentan-3-one (3ax).

18.5 mg, 81% yield; white solid. Mp = 44–46�C; 1H NMR (500 MHz, CDCl3) d 7.97 (d, J = 8.5 Hz, 2H), 7.79 (s,

2H), 7.29 (d, J = 8.5 Hz, 2H), 2.95 (t, J = 7.5 Hz, 2H), 2.76 (t, J = 7.5 Hz, 2H), 2.41 (q, J = 7.3 Hz, 2H), 1.04 (t, J =

7.3 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 210.3, 140.7, 138.2, 135.3, 129.2, 119.0, 43.6, 36.2, 29.2, 7.7;HRMS-

EI calcd for C13H15N3O [M]+ 229.1210, found 229.1210.

1-(2-methylbenzo[d]oxazol-5-yl)pentan-3-one (3ay).

14.8 mg, 68% yield; yellowish oil; 1H NMR (500 MHz, CDCl3) d 7.52 (d, J = 8.1 Hz, 1H), 7.28 (s, 1H), 7.11 (d,

J = 8.1 Hz, 1H), 3.00 (t, J = 7.5 Hz, 2H), 2.76 (t, J = 7.5 Hz, 2H), 2.60 (s, 3H), 2.39 (q, J = 7.3 Hz, 2H), 1.03 (t, J =

7.3 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 210.3, 163.6, 151.2, 139.8, 138.1, 124.5, 119.0, 109.9, 44.1, 36.2,

29.9, 14.5, 7.7; HRMS-EI calcd for C13H25NO2 [M]+ 217.1097, found 217.1087.

1-(benzo[d]thiazol-5-yl)pentan-3-one (3az).

12.5 mg, 57% yield; colorless oil; 1H NMR (500 MHz, CDCl3) d 8.97 (s, 1H), 7.94 (d, J = 0.9 Hz, 1H), 7.86 (d, J =

8.2 Hz, 1H), 7.30 (dd, J = 8.2, 1.6 Hz, 1H), 3.08 (t, J = 7.6 Hz, 2H), 2.82 (t, J = 7.6 Hz, 2H), 2.43 (q, J = 7.3 Hz, 2H),

1.05 (t, J = 7.3 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 210.2, 154.2, 153.7, 139.8, 131.4, 126.6, 122.8, 121.7,

43.9, 36.2, 29.6, 7.8; HRMS-EI calcd for C12H13NOS [M]+ 219.0712, found 219.0710.

4-phenylbutan-2-one (3ba) (Jana and Tunge, 2009).

10.5 mg, 71% yield; colorless liquid; 1HNMR (500MHz, CDCl3) d 7.31–7.26 (m, 2H), 7.22–7.17 (m, 3H), 2.90 (t,

J = 7.6 Hz, 2H), 2.76 (t, J = 7.6 Hz, 2H), 2.14 (s, 3H).

1-phenylhexan-3-one (3bb) (Liao et al., 2015).

12.5 mg, 71% yield; colorless oil; 1HNMR (500MHz, CDCl3) d 7.30–7.26 (m, 2H), 7.21–7.16 (m, 3H), 2.90 (t, J=

7.6 Hz, 2H), 2.73 (t, J = 7.7 Hz, 2H), 2.37 (t, J = 7.3 Hz, 2H), 1.59 (h, J = 7.4 Hz, 2H), 0.89 (t, J = 7.4 Hz, 3H).

4-methyl-1-phenylpentan-3-one (3bc) (Kotani et al., 2011).

12.7 mg, 72% yield; colorless liquid; 1HNMR (500MHz, CDCl3) d 7.31–7.26 (m, 2H), 7.22–7.17 (m, 3H), 2.89 (t,

J = 7.6 Hz, 2H), 2.77 (t, J = 7.5 Hz, 2H), 2.57 (hept, J = 6.9 Hz, 1H), 1.07 (d, J = 7.0 Hz, 6H).

4,4-dimethyl-1-phenylpentan-3-one (3bd) (Kotani et al., 2011)

9.1 mg, 48% yield; colorless oil; 1H NMR (500 MHz, CDCl3) d 7.30–7.26 (m, 2H), 7.22–7.17 (m, 3H), 2.91–2.84

(m, 2H), 2.84–2.76 (m, 2H), 1.11 (s, 9H).

1-phenyloctan-3-one (3be) (Liao et al., 2015).
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14.3 mg, 70% yield; colorless liquid; 1HNMR (500MHz, CDCl3) d 7.32–7.25 (m, 2H), 7.22–7.16 (m, 3H), 2.90 (t,

J = 7.7 Hz, 2H), 2.73 (t, J = 7.7 Hz, 2H), 2.38 (t, J = 7.5 Hz, 2H), 1.56 (p, J = 7.5 Hz, 2H), 1.35–1.18 (m, 4H), 0.88 (t,

J = 7.1 Hz, 3H).

1,4-diphenylbutan-2-one (3bf) (Bay et al., 2020).

14.6 mg, 65% yield; colorless oil; 1H NMR (500 MHz, CDCl3) d 7.32 (t, J = 7.3 Hz, 2H), 7.26 (t, J = 7.4 Hz, 3H),

7.21–7.16 (m, 3H), 7.13 (d, J = 7.0 Hz, 2H), 3.67 (s, 1H), 2.87 (t, J = 7.2 Hz, 1H), 2.78 (t, J = 7.2 Hz, 1H).

1-cyclohexyl-3-phenylpropan-1-one (3bg) (Amani and Molander, 2017).

13.8 mg, 64% yield; colorless oil; 1HNMR (500MHz, CDCl3) d 7.30–7.26 (m, 2H), 7.21–7.16 (m, 3H), 2.88 (t, J=

7.6 Hz, 2H), 2.78–2.73 (m, 2H), 2.31 (tt, J = 11.3, 3.4 Hz, 1H), 1.84–1.73 (m, 4H), 1.68–1.61 (m, 1H), 1.37–1.16

(m, 5H).

3-phenyl-1-(tetrahydro-2H-pyran-4-yl)propan-1-one (3bh) (Amani and Molander, 2017).

12.0 mg, 55% yield; colorless oil; 1HNMR (500MHz, CDCl3) d 7.31–7.28 (m, 2H), 7.23–7.17 (m, 3H), 3.99 (ddd,

J = 11.4, 4.1, 2.7 Hz, 2H), 3.41 (td, J = 11.4, 2.9 Hz, 2H), 2.92 (t, J = 7.5 Hz, 2H), 2.82–2.76 (m, 2H), 2.52 (tt, J =

10.9, 4.3 Hz, 1H), 1.76–1.64 (m, 4H).

1-((tert-butyldimethylsilyl)oxy)-5-phenylpentan-3-one (3bi) (Hon et al., 2007).

23.4 mg, 80% yield; colorless liquid; 1HNMR (500MHz, CDCl3) d 7.31–7.27 (m, 2H), 7.22–7.18 (m, 3H), 4.15 (s,

2H), 2.94–2.90 (m, 2H), 2.86–2.81 (m, 2H), 0.91 (s, 9H), 0.07 (s, 6H).

(S)-5,9-dimethyl-1-phenyldec-8-en-3-one (3bj).

11.9 mg, 46% yield; colorless oil; 1H NMR (500 MHz, CDCl3) d 7.33–7.29 (m, 2H), 7.25–7.20 (m, 3H), 5.13–5.07

(m, 1H), 2.92 (t, J = 7.7 Hz, 2H), 2.74 (td, J = 7.8, 7.3, 2.8 Hz, 2H), 2.41 (dd, J = 15.8, 5.6 Hz, 1H), 2.23 (dd, J =

15.7, 8.2 Hz, 1H), 1.99 (ddt, J = 29.7, 14.4, 7.1 Hz, 3H), 1.71 (q, J = 1.4 Hz, 3H), 1.62 (d, J = 1.3 Hz, 3H), 1.35–

1.27 (m, 1H), 1.25–1.16 (m, 1H), 0.90 (d, J = 6.7 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 210.0, 141.2, 131.5,

128.4, 128.3, 126.0, 124.3, 50.4, 44.8, 36.9, 29.7, 28.9, 25.7, 25.4, 19.7, 17.6; HRMS-EI calcd for C18H26O

[M]+ 258.1978, found 258.1982.

1-(4-(tert-butyl)phenyl)-2-methyl-5-phenylpentan-3-one (3bk) (Liao et al., 2015).

24.9 mg, 81% yield; colorless oil; 1H NMR (500 MHz, CDCl3) d 7.30 (d, J = 8.3 Hz, 2H), 7.26 (t, J = 7.5 Hz, 2H),

7.19 (t, J = 7.4 Hz, 1H), 7.11 (d, J= 6.9 Hz, 2H), 7.06 (d, J= 8.0 Hz, 2H), 2.92 (dd, J = 13.4, 7.3 Hz, 1H), 2.86–2.78

(m, 3H), 2.76–2.68 (m, 1H), 2.59–2.51 (m, 2H), 1.32 (s, 9H), 1.08 (d, J = 6.9 Hz, 3H).

1,3-diphenylpropan-1-one (3bl) (Liao et al., 2015).

12.2 mg, 58% yield; white solid; 1H NMR (500 MHz, CDCl3) d 7.97 (dd, J = 8.3, 1.4 Hz, 2H), 7.58–7.54 (m, 1H),

7.48–7.44 (m, 2H), 7.33–7.28 (m, 2H), 7.28–7.25 (m, 2H), 7.24–7.19 (m, 1H), 3.33–3.29 (m, 2H), 3.11–3.05 (m,

2H).

1-(3-methoxyphenyl)-3-phenylpropan-1-one (3bm) (Zhang et al., 2017).

13.2 mg, 55% yield; colorless oil; 1H NMR (500 MHz, CDCl3) d 7.54 (dt, J = 7.7, 1.2 Hz, 1H), 7.50 (dd, J = 2.7,

1.6 Hz, 1H), 7.36 (t, J = 7.9 Hz, 1H), 7.31 (t, J= 7.4 Hz, 2H), 7.26 (d, J = 6.6 Hz, 2H), 7.24–7.19 (m, 1H), 7.11 (ddd,

J = 8.2, 2.7, 0.9 Hz, 1H), 3.85 (s, 3H), 3.32–3.27 (m, 2H), 3.07 (t, J = 7.7 Hz, 2H).

1-(4-fluorophenyl)-3-phenylpropan-1-one (3bn) (Zhang et al., 2017).

12.3 mg, 54% yield; white solid; 1H NMR (500 MHz, CDCl3) d 8.01–7.96 (m, 2H), 7.31 (t, J = 7.5 Hz, 2H), 7.27–

7.24 (m, 2H), 7.22 (td, J = 7.0, 1.5 Hz, 1H), 7.12 (t, J = 8.6 Hz, 2H), 3.31–3.24 (m, 2H), 3.07 (t, J = 7.7 Hz, 2H).
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1-(4-chlorophenyl)-3-phenylpropan-1-one (3bo) (Zhang et al., 2017).

13.9 mg, 57% yield; white solid; 1H NMR (500 MHz, CDCl3) d 7.91 (d, J = 8.6 Hz, 2H), 7.44 (d, J = 8.6 Hz, 2H),

7.32 (t, J = 7.4 Hz, 2H), 7.27 (d, J = 7.0 Hz, 2H), 7.25–7.21 (m, 1H), 3.31–3.26 (m, 2H), 3.09 (t, J = 7.7 Hz, 2H).

3-phenyl-1-(4-(trifluoromethyl)phenyl)propan-1-one (3bp) (Zhang et al., 2017).

18.1mg, 65%yield;white solid; 1HNMR (500MHz,CDCl3) d8.06 (d, J=8.1Hz, 2H), 7.72 (d, J=8.2Hz, 2H), 7.32 (t,

J = 7.5 Hz, 2H), 7.26 (d, J = 6.8 Hz, 2H), 7.23 (t, J = 7.2 Hz, 1H), 3.34 (t, J = 7.6 Hz, 2H), 3.09 (t, J = 7.6 Hz, 2H).

4-(3-phenylpropanoyl)benzonitrile (3bq) (Das et al., 2019).

16.0 mg, 68% yield; white solid; 1H NMR (500 MHz, CDCl3) d 8.02 (d, J = 8.5 Hz, 2H), 7.75 (d, J = 8.4 Hz, 2H),

7.30 (t, J = 7.5 Hz, 2H), 7.25–7.20 (m, 3H), 3.31 (t, J = 7.6 Hz, 2H), 3.08 (t, J = 7.6 Hz, 2H).

1-(naphthalen-2-yl)-3-phenylpropan-1-one (3br) (Zhang et al., 2017).

13.8 mg, 53% yield; white solid; 1H NMR (500 MHz, CDCl3) d 8.47 (d, J = 1.7 Hz, 1H), 8.05 (dd, J = 8.6, 1.8 Hz,

1H), 7.94 (d, J = 8.0 Hz, 1H), 7.89 (t, J = 8.8 Hz, 2H), 7.60 (ddd, J = 8.2, 6.8, 1.4 Hz, 1H), 7.55 (ddd, J = 8.2, 6.8,

1.3 Hz, 1H), 7.34–7.31 (m, 3H), 7.25–7.21 (m, 1H), 3.45 (t, J = 7.5 Hz, 2H), 3.14 (t, J = 7.5 Hz, 2H).

1-(furan-3-yl)-3-phenylpropan-1-one (3bs).

6.4 mg, 32% yield; white solid. Mp = 60–62�C; 1H NMR (500 MHz, CDCl3) d 7.99 (t, J = 1.0 Hz, 1H), 7.43 (t, J =

1.7 Hz, 1H), 7.30 (t, J = 7.5 Hz, 2H), 7.25–7.19 (m, 3H), 6.77 (d, J = 1.8 Hz, 1H), 3.10–3.06 (m, 2H), 3.05–3.01 (m,

2H). 13C NMR (126 MHz, CDCl3) d 194.0, 147.1, 144.2, 141.0, 128.5, 128.4, 127.6, 126.2, 108.5, 42.1, 30.0;

HRMS-EI calcd for C11H11N3O [M]+ 200.0832, found 200.0823.

3-phenyl-1-(thiophen-3-yl)propan-1-one (3bt) (Nicholson et al., 2021).

6.5 mg, 30% yield; white solid; 1H NMR (500 MHz, CDCl3) d 8.03 (dd, J = 2.9, 1.3 Hz, 1H), 7.56 (dd, J =

5.1, 1.3 Hz, 1H), 7.33–7.29 (m, 3H), 7.27–7.24 (m, 2H), 7.24–7.19 (m, 1H), 3.22 (t, J = 7.7 Hz, 2H), 3.06 (t,

J = 7.7 Hz, 2H).

2-methyl-1-phenylpentan-3-one (3bu) (Kaku et al., 2013).

15.8 mg, 90% yield; colorless liquid; 1H NMR (500 MHz, CDCl3) d 7.29–7.25 (m, 2H), 7.21–7.17 (m, 1H), 7.16–

7.12 (m, 2H), 2.97 (dd, J = 13.4, 7.2 Hz, 1H), 2.84 (h, J = 7.0 Hz, 1H), 2.57 (dd, J = 13.4, 7.4 Hz, 1H), 2.43 (dq, J =

17.9, 7.2 Hz, 1H), 2.26 (dq, J = 17.9, 7.2 Hz, 1H), 1.08 (d, J = 7.0 Hz, 3H), 0.97 (t, J = 7.3 Hz, 3H).

4-phenylpentan-2-one (3bv-1) (Funabiki et al., 2009).

9.1 mg, 56% yield; colorless liquid; 1H NMR (500 MHz, CDCl3) d 7.30 (t, J = 7.6 Hz, 2H), 7.24–7.17 (m, 3H),

3.31 (h, J = 7.0 Hz, 1H), 2.76 (dd, J = 16.3, 6.5 Hz, 1H), 2.66 (dd, J = 16.3, 7.9 Hz, 1H), 2.07 (s, 3H), 1.27 (d, J =

6.9 Hz, 3H).

3-phenylpentan-2-one (3bv-2) (Méndez-Sánchez et al., 2016).

4.2 mg, 26% yield; colorless liquid; 1H NMR (500 MHz, CDCl3) d 7.33 (t, J = 7.5 Hz, 2H), 7.28–7.24 (m, 1H),

7.21 (d, J = 7.7 Hz, 2H), 3.51 (t, J = 7.4 Hz, 1H), 2.11–2.02 (m, 4H), 1.71 (dp, J = 14.9, 7.5 Hz, 1H), 0.83 (t, J =

7.4 Hz, 3H).

4-methyl-5-phenylhexan-3-one (3bw) (Oi et al., 2002).

9.7 mg, 51% yield; colorless liquid; 1H NMR (500 MHz, CDCl3) d 7.26 (t, J = 7.6 Hz, 2H), 7.19–7.14 (m, 3H),

2.99 (dq, J = 9.0, 7.0 Hz, 1H), 2.76 (dq, J = 9.0, 6.9 Hz, 1H), 2.23 (dq, J = 17.9, 7.2 Hz, 1H), 1.95 (dq, J = 17.9,

7.3 Hz, 1H), 1.25 (d, J = 7.0 Hz, 3H), 1.10 (d, J = 6.9 Hz, 3H), 0.79 (t, J = 7.2 Hz, 3H).
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3-phenylpropanal (7a) (Huang et al., 2017).

7.5 mg, 56% yield; colorless liquid; 1H NMR (500MHz, CDCl3) d 9.83 (t, J = 1.5 Hz, 1H), 7.30 (t, J = 7.5 Hz, 2H),

7.24–7.18 (m, 3H), 2.97 (t, J = 7.6 Hz, 2H), 2.79 (td, J = 7.6, 1.4 Hz, 2H).

3-(2-chlorophenyl)propanal (7b) (Huang et al., 2017).

12.1 mg, 72% yield; colorless liquid; 1H NMR (500 MHz, CDCl3) d 9.83 (t, J = 1.3 Hz, 1H), 7.35 (dd, J = 7.5,

1.8 Hz, 1H), 7.25 (dd, J= 7.3, 2.1 Hz, 1H), 7.22–7.14 (m, 2H), 3.06 (t, J= 7.5 Hz, 2H), 2.81 (td, J= 7.6, 1.3 Hz, 2H).

3-(3-methoxyphenyl)propanal (7c) (Huang et al., 2017).

9.2 mg, 56% yield; colorless liquid; 1H NMR (500MHz, CDCl3) d 9.82 (t, J = 1.4 Hz, 1H), 7.21 (t, J = 7.7 Hz, 1H),

6.80–6.73 (m, 3H), 3.80 (s, 3H), 2.94 (t, J = 7.6 Hz, 2H), 2.78 (td, J = 7.3, 1.2 Hz, 2H).

3-(3-(trifluoromethyl)phenyl)propanal (7d) (Airoldi et al., 2020).

10.9 mg, 54% yield; colorless liquid; 1H NMR (500 MHz, CDCl3) d 9.83 (t, J = 1.2 Hz, 1H), 7.49–7.44 (m, 2H),

7.43–7.37 (m, 2H), 3.02 (t, J = 7.5 Hz, 2H), 2.83 (td, J = 7.5, 1.1 Hz, 2H).

4-(3-oxopropyl)phenyl acetate (7e) (Christensen et al., 2015).

12.5 mg, 65% yield; colorless liquid; 1H NMR (500 MHz, CDCl3) d 9.82 (s, 1H), 7.20 (d, J = 8.3 Hz, 2H), 7.00 (d,

J = 8.3 Hz, 2H), 2.95 (t, J = 7.5 Hz, 2H), 2.78 (t, J = 7.5 Hz, 2H), 2.29 (s, 3H).

ethyl 4-(3-oxopropyl)benzoate (7f) (Soni et al., 2015).

14.0 mg, 68% yield; colorless oil; 1H NMR (500 MHz, CDCl3) d 9.82 (t, J = 1.3 Hz, 1H), 7.97 (d, J = 8.3 Hz, 2H),

7.26 (d, J = 8.1 Hz, 2H), 4.36 (q, J = 7.1 Hz, 2H), 3.01 (t, J = 7.5 Hz, 2H), 2.81 (td, J = 7.6, 1.2 Hz, 2H), 1.38 (t, J =

7.1 Hz, 3H).

3-(4-(2H-1,2,3-triazol-2-yl)phenyl)propanal (7g).

14.7 mg, 73% yield; yellowish colloid; 1H NMR (600 MHz, CDCl3) d 9.84 (t, J = 1.4 Hz, 1H), 7.99 (d, J = 8.4 Hz,

2H), 7.79 (s, 2H), 7.31 (d, J = 8.2 Hz, 2H), 3.01 (t, J = 7.5 Hz, 2H), 2.82 (td, J = 7.5, 1.3 Hz, 2H). 13C NMR (151

MHz, CDCl3) d 201.1, 139.9, 138.3, 135.4, 129.2, 119.2, 45.1, 27.5; HRMS-EI calcd for C11H11N3O [M]+

201.0897, found 201.0898.

3-(6-phenylpyridin-3-yl)propanal (7h).

14.3 mg, 68% yield; white solid; Mp = 61–63�C; 1H NMR (500 MHz, CDCl3) d 9.85 (s, 1H), 8.56 (d, J = 2.3 Hz,

1H), 7.95 (d, J = 7.3 Hz, 2H), 7.66 (d, J = 8.1 Hz, 1H), 7.61 (dd, J = 8.2, 2.3 Hz, 1H), 7.47 (t, J = 7.5 Hz, 2H), 7.43–

7.38 (m, 1H), 3.00 (t, J = 7.4 Hz, 2H), 2.85 (t, J = 7.4 Hz, 2H). 13C NMR (151 MHz, CDCl3) d 200.6, 155.7, 149.5,

139.0, 136.8, 134.3, 128.8, 128.7, 126.8, 120.4, 44.8, 24.9;HRMS-EI calcd for C14H13NO [M]+ 211.0992, found

211.0994.

3-(2-chlorophenyl)butanal (7i-1 or 7l-2) (Larionov et al., 2014).

8.0 mg, 44% yield; colorless oil; 1H NMR (500 MHz, CDCl3) d 9.73 (t, J = 2.1 Hz, 1H), 7.37 (d, J = 8.0 Hz, 1H),

7.25 (d, J = 4.2 Hz, 2H), 7.16 (dt, J = 8.0, 4.4 Hz, 1H), 3.89 (dq, J = 13.7, 6.9 Hz, 1H), 2.78 (ddd, J = 16.7, 6.0,

1.8 Hz, 1H), 2.64 (ddd, J = 16.7, 8.3, 2.4 Hz, 1H), 1.32 (d, J = 6.9 Hz, 3H).

2-(2-chlorophenyl)butanal (7i-2).

7.1 mg, 39% yield; colorless oil; 1H NMR (500 MHz, CDCl3) d 9.71 (d, J = 0.9 Hz, 1H), 7.45 (dd, J = 7.8, 1.6 Hz,

1H), 7.31–7.23 (m, 2H), 7.13 (dd, J = 7.5, 1.9 Hz, 1H), 4.06–3.99 (m, 1H), 2.22–2.12 (m, 1H), 1.82–1.72 (m, 1H),
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0.92 (t, J = 7.4 Hz, 3H). 13C NMR (126MHz, CDCl3) d 200.2, 134.9, 134.5, 130.0, 129.7, 128.7, 127.3, 56.7, 22.4,

11.6; HRMS-EI calcd for C10H11ClO [M]+ 182.0493, found 182.0482.

3-(2-chlorophenyl)-2-methylpropanal (7j).

16.0 mg, 88% yield; colorless oil; 1H NMR (500 MHz, CDCl3) d 9.73 (d, J = 1.4 Hz, 1H), 7.38–7.34 (m, 1H),

7.23–7.15 (m, 3H), 3.24 (dd, J = 13.7, 6.3 Hz, 1H), 2.85–2.76 (m, 1H), 2.69 (dd, J = 13.7, 8.1 Hz, 1H), 1.12

(d, J = 7.1 Hz, 3H). 13C NMR (126 MHz, CDCl3) d 203.9, 136.7, 134.1, 131.4, 129.7, 128.0, 126.8, 46.3, 34.3,

13.3; HRMS-EI calcd for C10H11ClO [M]+ 182.0493, found 182.0493.

4-(2-fluorophenyl)butanal (7k-1).

9.1 mg, 55% yield; colorless liquid; 1H NMR (500 MHz, CDCl3) d 9.77 (t, J = 1.6 Hz, 1H), 7.22–7.15 (m, 2H),

7.07 (td, J = 7.5, 1.3 Hz, 1H), 7.04–6.99 (m, 1H), 2.70 (t, J = 7.5 Hz, 2H), 2.47 (td, J = 7.3, 1.6 Hz, 2H), 1.96 (p, J =

7.4 Hz, 2H). 13C NMR (151 MHz, CDCl3) d 202.1, 161.1 (d, J = 245.0 Hz), 130.7 (d, J = 4.7 Hz), 128.0 (d, J =

15.4 Hz), 127.9 (d, J = 8.2 Hz), 124.0 (d, J = 3.9 Hz), 115.3 (d, J = 22.0 Hz), 43.1, 28.2, 22.4; 19F NMR (471

MHz, CDCl3) d �118.8; HRMS-EI calcd for C10H11FO [M]+ 166.0788, found 166.0782.

3-(2-fluorophenyl)butanal (7k-2) (Bräuer et al., 2017).

3.8 mg, 23% yield; colorless oil; 1H NMR (500 MHz, CDCl3) d 9.73 (t, J = 2.0 Hz, 1H), 7.24–7.17 (m, 2H), 7.10

(td, J = 7.5, 1.3 Hz, 1H), 7.02 (ddd, J = 10.7, 8.1, 1.3 Hz, 1H), 3.66 (h, J = 7.1 Hz, 1H), 2.80 (ddd, J = 16.9, 6.6,

1.8 Hz, 1H), 2.70 (ddd, J = 16.9, 7.8, 1.9 Hz, 1H), 1.33 (d, J = 6.9 Hz, 3H).

4-(2-chlorophenyl)butanal (7l-1) (Stockwell and Welsch, 2017).

11.8 mg, 65% yield; colorless oil; 1H NMR (500 MHz, CDCl3) d 9.78 (t, J = 1.6 Hz, 1H), 7.34 (dd, J = 7.5, 1.3 Hz,

1H), 7.22–7.13 (m, 3H), 2.81–2.74 (m, 2H), 2.49 (td, J = 7.3, 1.6 Hz, 2H), 1.98 (tt, J = 9.2, 6.8 Hz, 2H).

4-(3-methoxyphenyl)butanal (7m-1).

9.8 mg, 55% yield; colorless oil; 1H NMR (500 MHz, CDCl3) d 9.76 (t, J = 1.6 Hz, 1H), 7.21 (t, J = 7.8 Hz, 1H),

6.80–6.71 (m, 3H), 3.80 (s, 3H), 2.64 (t, J = 7.6 Hz, 2H), 2.46 (td, J = 7.3, 1.6 Hz, 2H), 1.96 (p, J = 7.4 Hz, 2H). 13C

NMR (151 MHz, CDCl3) d 202.3, 159.7, 142.8, 129.4, 120.8, 114.2, 111.3, 55.1, 43.1, 35.0, 23.5;HRMS-EI calcd

for C11H14O2 [M]+ 178.0988, found 178.0986.

3-(3-methoxyphenyl)butanal (7m-2) (Itooka et al., 2003).

4.1 mg, 23% yield; colorless oil; 1H NMR (500 MHz, CDCl3) d 9.71 (t, J = 2.0 Hz, 1H), 7.23 (td, J = 7.6, 0.9 Hz,

1H), 6.82 (dt, J = 7.4, 1.3 Hz, 1H), 6.78–6.74 (m, 2H), 3.80 (s, 3H), 3.33 (h, J = 7.0 Hz, 1H), 2.75 (ddd, J = 16.6,

6.9, 1.8 Hz, 1H), 2.65 (ddd, J = 16.7, 7.7, 2.2 Hz, 1H), 1.31 (d, J = 7.0 Hz, 3H).

4-(4-chlorophenyl)butanal (7n-1) (Sakaguchi et al., 2019).

10.0 mg, 55% yield; colorless oil; 1H NMR (500 MHz, CDCl3) d 9.76 (t, J = 1.5 Hz, 1H), 7.25 (d, J = 7.9 Hz, 2H),

7.10 (d, J = 8.4 Hz, 2H), 2.62 (t, J = 7.3 Hz, 2H), 2.45 (td, J = 7.3, 1.5 Hz, 2H), 1.93 (p, J = 7.4 Hz, 2H).

3-(4-chlorophenyl)butanal (7n-2) (Ren et al., 2016).

4.2 mg, 23% yield; colorless oil; 1H NMR (500 MHz, CDCl3) d 9.70 (t, J = 1.9 Hz, 1H), 7.27 (d, J = 8.5 Hz, 2H),

7.15 (d, J = 8.5 Hz, 2H), 3.35 (h, J = 7.0 Hz, 1H), 2.73 (ddd, J = 16.9, 7.0, 1.8 Hz, 1H), 2.66 (ddd, J = 16.9, 7.5,

2.0 Hz, 1H), 1.29 (d, J = 7.0 Hz, 3H).

4-(4-(trifluoromethyl)phenyl)butanal (7o-1) (Lu and Guo, 2019).

7.8 mg, 36% yield; colorless oil; 1H NMR (500 MHz, CDCl3) d 9.78 (t, J = 1.5 Hz, 1H), 7.54 (d, J = 8.0 Hz, 2H),

7.29 (d, J = 8.0 Hz, 2H), 2.71 (t, J = 7.7 Hz, 2H), 2.48 (td, J = 7.2, 1.4 Hz, 2H), 1.97 (p, J = 7.3 Hz, 2H).
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3-(4-(trifluoromethyl)phenyl)butanal (7o-2) (You et al., 2018).

3.2 mg, 15% yield; colorless oil; 1H NMR (500 MHz, CDCl3) d 9.72 (t, J = 1.8 Hz, 1H), 7.56 (d, J = 8.1 Hz, 2H),

7.34 (d, J = 8.1 Hz, 2H), 3.44 (h, J = 7.1 Hz, 1H), 2.78 (ddd, J = 17.1, 6.9, 1.6 Hz, 1H), 2.71 (ddd, J = 17.1, 7.5,

1.8 Hz, 1H), 1.33 (d, J = 7.0 Hz, 3H).

4-(naphthalen-2-yl)butanal (7p-1) (Grissom and Klingberg, 1993).

10.1 mg, 51% yield; colorless oil; 1H NMR (600 MHz, CDCl3) d 9.78 (t, J = 1.6 Hz, 1H), 7.83–7.77 (m, 3H), 7.62

(s, 1H), 7.48–7.42 (m, 2H), 7.33 (dd, J = 8.4, 1.8 Hz, 1H), 2.83 (t, J = 7.5 Hz, 2H), 2.49 (td, J = 7.3, 1.6 Hz, 2H),

2.06 (p, J = 7.4 Hz, 2H).

3-(naphthalen-2-yl)butanal (7p-2) (You et al., 2018).

4.8 mg, 24% yield; colorless oil; 1HNMR (500MHz, CDCl3) d 9.75 (t, J= 2.0 Hz, 1H), 7.84–7.78 (m, 3H), 7.66 (d,

J = 1.7 Hz, 1H), 7.50–7.43 (m, 2H), 7.38 (dd, J = 8.5, 1.8 Hz, 1H), 3.54 (h, J = 7.0 Hz, 1H), 2.86 (ddd, J = 16.7, 6.9,

1.8 Hz, 1H), 2.75 (ddd, J = 16.7, 7.6, 2.2 Hz, 1H), 1.41 (d, J = 6.9 Hz, 3H).

4-(thiophen-3-yl)butanal (7q-1).

6.3 mg, 41% yield; yellowish oil; 1HNMR (500MHz, CDCl3) d 9.76 (t, J= 1.6 Hz, 1H), 7.28–7.25 (m, 1H), 6.97–6.91

(m, 2H), 2.69 (t, J = 7.5 Hz, 2H), 2.47 (td, J = 7.3, 1.6 Hz, 2H), 1.97 (p, J = 7.4 Hz, 2H). 13C NMR (151 MHz, CDCl3)

d 202.2, 141.5, 128.0, 125.6, 120.6, 43.2, 29.4, 22.8;HRMS-EI calcd for C8H10OS [M]+ 154.0447, found 154.0434.

3-(thiophen-3-yl)butanal (7q-2) (Schlosser and Michel, 1996).

4.2 mg, 27% yield; yellowish oil; 1H NMR (500 MHz, CDCl3) d 9.73 (t, J = 2.0 Hz, 1H), 7.30–7.27 (m, 1H), 7.00–

6.97 (m, 2H), 3.49 (h, J = 7.0 Hz, 1H), 2.75 (ddd, J = 16.6, 6.7, 1.9 Hz, 1H), 2.63 (ddd, J = 16.7, 7.5, 2.1 Hz, 1H),

1.33 (d, J = 7.0 Hz, 3H).

4-(quinolin-6-yl)butanal (7r-1).

7.2 mg, 36% yield; yellowish colloid; 1H NMR (500 MHz, CDCl3) d 9.77 (t, J = 1.6 Hz, 1H), 8.86 (dd, J = 4.3,

1.8 Hz, 1H), 8.09 (d, J = 8.0 Hz, 1H), 8.04 (d, J = 8.6 Hz, 1H), 7.58 (d, J = 1.9 Hz, 1H), 7.55 (dd, J = 8.6, 2.0 Hz,

1H), 7.37 (dd, J = 8.3, 4.2 Hz, 1H), 2.83 (t, J = 7.7 Hz, 2H), 2.49 (td, J = 7.2, 1.5 Hz, 2H), 2.05 (p, J = 7.3 Hz, 2H).
13C NMR (126 MHz, CDCl3) d 202.0, 149.7, 147.0, 139.7, 135.7, 130.8, 129.3, 128.3, 126.3, 121.2, 43.0, 34.8,

23.3; HRMS-EI calcd for C13H13NO [M]+ 199.0992, found 199.0975.

3-(quinolin-6-yl)butanal (7r-2).

4.0 mg, 20% yield; yellowish colloid; 1H NMR (500 MHz, CDCl3) d 9.74 (s, 1H), 8.89 (s, 1H), 8.12 (d, J = 8.3 Hz,

1H), 8.08 (d, J = 8.6 Hz, 1H), 7.66–7.58 (m, 2H), 7.39 (dd, J = 8.3, 4.2 Hz, 1H), 3.57 (h, J = 7.1 Hz, 1H), 2.87 (dd,

J = 17.1, 6.8 Hz, 1H), 2.77 (ddd, J = 17.0, 7.5, 2.0 Hz, 1H), 1.41 (d, J = 7.0 Hz, 3H). 13C NMR (126 MHz, CDCl3)

d 201.2, 150.0, 147.2, 143.8, 135.9, 129.8, 129.0, 128.3, 124.9, 121.3, 51.5, 34.1, 22.0; HRMS-EI calcd for

C13H13NO [M]+ 199.0992, found 199.0982.

4-(2-chlorophenyl)-3-methylbutanal (7s).

14.7 mg, 75% yield; colorless oil; 1H NMR (500 MHz, CDCl3) d 9.71 (t, J = 2.2 Hz, 1H), 7.35 (dt, J = 7.4, 1.2 Hz,

1H), 7.20–7.14 (m, 3H), 2.71 (qd, J = 13.4, 7.2 Hz, 2H), 2.53–2.41 (m, 2H), 2.30 (ddd, J = 16.2, 8.0, 2.5 Hz, 1H),

1.01 (d, J= 6.6 Hz, 3H). 13CNMR (126MHz, CDCl3) d 202.5, 137.7, 134.2, 131.4, 129.6, 127.7, 126.6, 50.2, 40.5,

28.8, 19.9; HRMS-EI calcd for C11H13ClO [M]+ 196.0649, found 196.0650.

4-(2-chlorophenyl)-3-phenylbutanal (7t).

17.5 mg, 68% yield; colorless oil; 1H NMR (500 MHz, CDCl3) d 9.59 (t, J = 2.1 Hz, 1H), 7.35 (dd, J = 7.9, 1.4 Hz,

1H), 7.29 (t, J = 7.3 Hz, 2H), 7.23–7.17 (m, 3H), 7.14 (td, J = 7.6, 1.8 Hz, 1H), 7.08 (td, J = 7.4, 1.4 Hz, 1H), 6.96
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(dd, J = 7.5, 1.8 Hz, 1H), 3.63 (dtd, J = 8.8, 7.6, 6.0 Hz, 1H), 3.10–2.99 (m, 2H), 2.84 (ddd, J = 16.7, 8.9, 2.3 Hz,

1H), 2.74 (ddd, J= 16.7, 6.0, 1.9 Hz, 1H). 13CNMR (126MHz, CDCl3) d 201.6, 142.9, 136.9, 134.2, 131.5, 129.6,

128.6, 127.9, 127.4, 126.8, 126.6, 48.6, 41.0, 40.1; HRMS-EI calcd for C16H15ClO [M]+ 258.0806, found

258.0800.

5-(naphthalen-2-yl)pentanal (7u) (Nicolaou et al., 2009).

4.5 mg, 21% yield; yellowish oil; 1HNMR (500MHz, CDCl3) d 9.76 (t, J = 1.9 Hz, 1H), 7.82–7.75 (m, 3H), 7.61 (s,

1H), 7.47–7.40 (m, 2H), 7.32 (dd, J = 8.4, 1.6 Hz, 1H), 2.81 (t, J = 7.2 Hz, 2H), 2.47 (td, J = 7.1, 1.7 Hz, 2H), 1.80–

1.67 (m, 4H).

4-(3-oxopentyl)-N,N-dipropylbenzenesulfonamide (8a).

(26.3 mg, 81% yield; colorless oil; 1H NMR (500MHz, CDCl3) d 7.68 (d, J = 8.2 Hz, 2H), 7.28 (d, J = 8.2 Hz, 2H),

3.06–3.01 (m, 4H), 2.94 (t, J = 7.5 Hz, 2H), 2.74 (t, J = 7.5 Hz, 2H), 2.39 (q, J = 7.3 Hz, 2H), 1.53 (h, J = 7.4 Hz,

4H), 1.02 (t, J = 7.3 Hz, 3H), 0.85 (t, J = 7.4 Hz, 6H); 13C NMR (126 MHz, CDCl3) d 209.8, 146.0, 137.8, 128.9,

127.2, 50.0, 43.1, 36.1, 29.4, 22.0, 11.1, 7.7; HRMS-EI calcd for C17H27NO3S [M]+ 325.1706, found 325.1699.

1-(6-(3-((3r,5r,7r)-adamantan-1-yl)-4-methoxyphenyl)naphthalen-2-yl)pentan-3-one (8b).

25.8 mg, 57% yield; white solid. Mp = 151–153�C; 1H NMR (500 MHz, CDCl3) d 7.95 (d, J = 1.7 Hz, 1H), 7.82

(d, J = 8.4 Hz, 2H), 7.72 (dd, J = 8.5, 1.9 Hz, 1H), 7.63 (d, J = 1.6 Hz, 1H), 7.59 (d, J = 2.4 Hz, 1H), 7.53 (dd, J =

8.4, 2.3 Hz, 1H), 7.34 (dd, J= 8.4, 1.8 Hz, 1H), 6.99 (d, J= 8.4 Hz, 1H), 3.90 (s, 3H), 3.08 (t, J= 7.6 Hz, 2H), 2.84 (t,

J = 7.6 Hz, 2H), 2.44 (q, J = 7.3 Hz, 2H), 2.20 (d, J = 2.9 Hz, 6H), 2.15–2.08 (m, 4H), 1.82 (d, J = 3.7 Hz, 6H), 1.07

(t, J = 7.3 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 210.7, 158.4, 138.8, 138.4, 138.3, 133.1, 132.3, 128.2, 127.8,

127.4, 126.1, 125.8, 125.8, 125.5, 124.7, 112.0, 55.1, 43.8, 40.6, 37.1, 37.1, 36.2, 30.0, 29.1, 7.8;HRMS-EI calcd

for C32H36O2 [M]+ 452.2710, found 452.2709.

14-methyl-10-(3-oxopentyl)-13-tosyl-8,13,13b,14-tetrahydroindolo[20,3’:3,4]pyrido[2,1-b]quinazolin-5(7H)-
one (8c).

31.4 mg, 58% yield; white solid. Mp = 137–139�C; 1H NMR (500 MHz, CDCl3) d 8.19 (d, J = 8.6 Hz, 1H), 8.09

(dd, J= 7.8, 1.6 Hz, 1H), 7.83 (d, J= 8.5 Hz, 2H), 7.48 (ddd, J= 8.0, 7.3, 1.6 Hz, 1H), 7.32 (d, J= 1.7 Hz, 1H), 7.27

(t, J = 8.6 Hz, 3H), 7.16 (td, J = 7.6, 1.1 Hz, 1H), 7.05 (dd, J = 8.0, 1.0 Hz, 1H), 6.31 (d, J = 1.5 Hz, 1H), 4.85 (ddd,

J = 12.7, 5.1, 1.6 Hz, 1H), 3.13–3.03 (m, 1H), 3.01 (t, J = 7.5 Hz, 2H), 2.93–2.88 (m, 1H), 2.79 (t, J = 7.5 Hz, 2H),

2.77–2.71 (m, 1H), 2.42 (q, J = 7.4 Hz, 2H), 2.39 (s, 3H), 2.16 (s, 3H), 1.05 (t, J = 7.3 Hz, 3H); 13C NMR (126 MHz,

CDCl3) d 210.4, 164.4, 150.7, 145.0, 137.1, 136.0, 135.8, 133.1, 129.4, 129.2, 129.0, 128.2, 127.0, 126.6, 123.6,

123.0, 122.9, 120.4, 118.6, 115.2, 67.8, 44.0, 38.3, 36.1, 35.2, 29.5, 21.6, 20.8, 7.7; HRMS-EI calcd for

C31H31N3O4S [M]+ 541.2030, found 541.2052.

3,3,5-trimethylcyclohexyl 2-acetoxy-5-(3-oxopentyl)benzoate (8d).

29.1 mg, 75% yield; colorless oil; 1HNMR (500MHz, CDCl3) d 7.77 (d, J = 2.3 Hz, 1H), 7.35 (dd, J = 8.2, 2.3 Hz,

1H), 6.97 (d, J= 8.2 Hz, 1H), 5.09 (tt, J= 11.6, 4.4 Hz, 1H), 2.91 (t, J= 7.6 Hz, 2H), 2.73 (t, J= 7.6 Hz, 2H), 2.42 (q,

J = 7.3 Hz, 2H), 2.33 (s, 3H), 2.11–2.05 (m, 1H), 1.81–1.72 (m, 2H), 1.40–1.34 (m, 1H), 1.22 (t, J = 12.2 Hz, 1H),

1.05 (t, J = 7.3 Hz, 3H), 0.97 (d, J = 2.2 Hz, 7H), 0.92 (d, J = 6.4 Hz, 3H), 0.82 (t, J = 12.7 Hz, 1H); 13C NMR (126

MHz, CDCl3) d 210.0, 169.7, 164.1, 148.6, 139.1, 133.6, 131.3, 123.8, 123.6, 72.0, 47.5, 44.0, 43.5, 40.4, 36.1,

33.0, 32.3, 28.9, 27.1, 25.5, 22.3, 21.1, 7.7; HRMS-EI calcd for C23H32O5 [M]+ 388.2244, found 388.2242.

(8R,9S,13S,14S,17S)-13-methyl-2-(3-oxobutyl)-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phe-

nanthren-17-yl acetate (8e).

22.8 mg, 62% yield; white solid. Mp = 99–101�C; 1H NMR (500 MHz, CDCl3) d 7.12 (s, 1H), 7.00 (d, J = 7.7 Hz,

1H), 6.94 (d, J = 7.7 Hz, 1H), 4.69 (dd, J = 9.2, 7.8 Hz, 1H), 2.88–2.82 (m, 4H), 2.78–2.71 (m, 2H), 2.37–2.28 (m,

1H), 2.27–2.19 (m, 2H), 2.15 (s, 3H), 2.07 (s, 3H), 1.94–1.85 (m, 2H), 1.79–1.72 (m, 1H), 1.59–1.25 (m, 7H), 0.83

(s, 3H); 13C NMR (126 MHz, CDCl3) d 208.1, 171.2, 140.2, 138.1, 134.3, 129.1, 125.5, 125.3, 82.6, 49.8, 45.4,
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44.2, 42.8, 38.3, 36.8, 30.0, 29.6, 29.1, 27.5, 27.1, 25.9, 23.2, 21.2, 12.0; HRMS-EI calcd for C24H32O3 [M]+

368.2346, found 368.2350.

(8R,9S,13S,14S,17S)-2-(2-bromo-3-oxobutyl)-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclo-

penta[a]phenanthren-17-yl acetate (9).

33.8 mg, 76%; white solid; Mp = 126–128�C; 1H NMR (500 MHz, CDCl3) d 7.11 (s, 1H), 7.01 (d, J = 7.8 Hz, 1H),

6.95 (d, J = 7.7 Hz, 1H), 4.72–4.67 (m, 1H), 4.44 (td, J = 7.5, 1.3 Hz, 1H), 3.39 (dd, J = 14.4, 7.5 Hz, 1H), 3.12

(ddd, J = 14.3, 7.4, 3.9 Hz, 1H), 2.83 (dd, J = 9.1, 4.2 Hz, 2H), 2.33 (d, J = 1.0 Hz, 3H), 2.32–2.29 (m, 1H), 2.27–

2.18 (m, 2H), 2.06 (s, 3H), 1.94–1.85 (m, 2H), 1.80–1.70 (m, 1H), 1.59–1.51 (m, 1H), 1.50–1.31 (m, 5H), 1.31–1.22

(m, 1H), 0.83 (s, 3H); 13CNMR (126MHz, CDCl3) d 201.4, 171.2, 140.5, 135.5, 134.1, 129.2 (d, J = 4.3 Hz), 126.3

(d, J = 7.7 Hz), 126.2, 82.6, 53.5 (d, J = 9.2 Hz), 49.9, 44.2, 42.8, 39.5 (d, J = 8.1 Hz), 38.2, 36.8, 29.1, 27.5, 27.1,

26.9 (d, J = 7.8 Hz), 26.0 (d, J = 4.0 Hz), 23.2, 21.2, 12.0; HRMS (ESI-TOF) calcd for C24H35NO3Br [M + NH4]
+

464.1795, found 464.1800.

(8R,9S,13S,14S,17S)-2-(3-((4-methoxyphenyl)amino)butyl)-13-methyl-7,8,9,11,12,13,14,15,16,17-decahy-

dro-6H-cyclopenta[a]phenanthren-17-yl acetate (10).

46.5 mg, 98%; yellow sticky foam; 1H NMR (500MHz, CDCl3) d 7.12 (d, J = 2.3 Hz, 1H), 7.02 (d, J= 7.8 Hz, 1H),

6.96 (dd, J = 7.8, 1.7 Hz, 1H), 6.78 (d, J = 8.9 Hz, 2H), 6.55 (dd, J = 8.9, 1.4 Hz, 2H), 4.72 (t, J = 8.4 Hz, 1H), 3.77

(s, 3H), 3.42 (h, J = 6.3 Hz, 1H), 2.90–2.83 (m, 2H), 2.70 (t, J = 7.8 Hz, 2H), 2.33–2.20 (m, 3H), 2.09 (d, J = 1.7 Hz,

3H), 1.95–1.84 (m, 3H), 1.81–1.70 (m, 2H), 1.63–1.52 (m, 1H), 1.53–1.35 (m, 5H), 1.33–1.26 (m, 1H), 1.21 (d, J =

6.2 Hz, 3H), 0.86 (d, J = 4.9 Hz, 3H); 13C NMR (126 MHz, CDCl3) d 171.1, 151.8, 141.7, 140.0 (d, J = 3.7 Hz),

139.1, 133.9, 129.0, 125.6 (d, J = 4.6 Hz), 125.4, 114.8, 114.7, 82.6, 55.7, 49.8, 48.9 (d, J = 11.2 Hz), 44.3 (d, J =

5.4 Hz), 42.8, 39.0 (d, J = 5.2 Hz), 38.3, 36.9, 32.3, 29.1, 27.5, 27.2, 25.9 (d, J = 9.2 Hz), 23.2, 21.1, 20.8, 12.0;

HRMS (ESI-TOF) m/z Calcd for C31H42NO3 [M + H]+ 476.3159, found 476.3158.

(8R,9S,13S,14S,17S)-13-methyl-2-((2-methyl-1H-indol-3-yl)methyl)-7,8,9,11,12,13,14,15,16,17-decahydro-

6H-cyclopenta[a]phenanthren-17-yl acetate (11).

36.2 mg, 82%; yellowish solid; m.p. 113–115�C; 1H NMR (500 MHz, CDCl3) d 7.83 (s, 1H), 7.45 (d, J = 7.8 Hz,

1H), 7.27 (d, J = 8.3 Hz, 1H), 7.23 (s, 1H), 7.11 (t, J = 7.5 Hz, 1H), 7.04 (t, J = 7.5 Hz, 1H), 6.95 (s, 2H), 4.70 (t, J =

8.5 Hz, 1H), 4.04 (s, 2H), 2.85–2.79 (m, 2H), 2.40 (s, 3H), 2.30–2.20 (m, 3H), 2.08 (s, 3H), 1.92–1.85 (m, 2H), 1.78–

1.72 (m, 1H), 1.60–1.53 (m, 1H), 1.50–1.43 (m, 2H), 1.41–1.34 (m, 2H), 1.32–1.24 (m, 2H), 0.84 (s, 3H); 13C NMR

(126 MHz, CDCl3) d 171.2, 139.8, 138.8, 135.2, 133.8, 131.4, 128.9, 128.9, 125.4, 125.2, 120.8, 119.1, 118.3,

110.7, 110.0, 82.7, 49.8, 44.3, 42.8, 38.3, 36.9, 29.9, 29.1, 27.5, 27.2, 25.9, 23.2, 21.2, 12.0, 11.8;HRMS-EI calcd

for C30H35NO2 [M]+ 441.2662, found 441.2657.

(8R,9S,13S,14S,17S)-13-methyl-2-((2-methyl-4-phenylquinolin-3-yl)methyl)-7,8,9,11,12,13,14,15,16,17-dec-

ahydro-6H-cyclopenta[a]phenanthren-17-yl acetate (12).

45.2 mg, 85%; white solid; Mp = 123–125�C; 1H NMR (500 MHz, CDCl3) d 8.08 (d, J = 8.4 Hz, 1H), 7.65 (ddd,

J = 8.3, 5.8, 2.2 Hz, 1H), 7.43 (d, J = 6.4 Hz, 3H), 7.36 (d, J = 6.0 Hz, 2H), 7.27–7.20 (m, 2H), 6.92–6.88 (m, 2H),

6.67 (d, J = 7.8 Hz, 1H), 4.67 (t, J = 8.5 Hz, 1H), 3.98 (s, 2H), 2.84–2.77 (m, 2H), 2.63 (s, 3H), 2.26–2.09 (m, 3H),

2.05 (s, 3H), 1.90–1.80 (m, 2H), 1.78–1.68 (m, 1H), 1.59–1.48 (m, 1H), 1.47–1.37 (m, 2H), 1.38–1.32 (m, 2H),

1.32–1.19 (m, 2H), 0.82 (s, 3H); 13C NMR (126 MHz, CDCl3) d 171.1, 159.5, 147.6, 146.4, 140.0, 137.1,

136.7, 134.1, 129.6, 129.3, 128.9, 128.6, 128.4, 128.3, 128.3, 127.8, 126.9, 126.4, 125.6, 125.1, 125.0, 82.6,

49.8, 44.2, 42.8, 38.2, 36.8, 35.9, 29.0, 27.5, 27.1, 25.9, 24.4, 23.2, 21.1, 12.0; HRMS (ESI-TOF) m/z Calcd

for C37H40NO2 [M + H]+ 530.3054, found 530.3064.

(8R,9S,13S,14S,17S)-13-methyl-2-(6-methyl-2-phenylpyrimidin-4-yl)-7,8,9,11,12,13,14,15,16,17-decahydro-

6H-cyclopenta[a]phenanthren-17-yl acetate (13).

24.5mg, 53%; white solid; Mp = . 147–149�C; 1HNMR (600MHz, CDCl3) d 8.57 (d, J= 7.1 Hz, 2H), 8.17 (s, 1H),

7.94 (dd, J = 7.8, 1.7 Hz, 1H), 7.54–7.47 (m, 3H), 7.44 (s, 1H), 7.22 (d, J = 7.9 Hz, 1H), 4.73 (t, J = 8.4 Hz, 1H),

2.98–2.91 (m, 2H), 2.64 (s, 3H), 2.55–2.48 (m, 1H), 2.40–2.32 (m, 1H), 2.28–2.19 (m, 1H), 2.08 (s, 3H), 2.00–1.92

(m, 2H), 1.82–1.74 (m, 1H), 1.67–1.60 (m, 1H), 1.59–1.53 (m, 1H), 1.51–1.41 (m, 3H), 1.37–1.29 (m, 2H), 0.87
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(s, 3H); 13CNMR (151MHz, CDCl3) d 171.2, 167.4, 164.1, 164.0, 140.8, 139.8, 138.2, 134.6, 130.4, 129.5, 128.4,

128.3, 124.4, 124.2, 113.7, 82.6, 49.9, 44.3, 42.9, 38.3, 36.9, 29.5, 27.5, 27.0, 26.0, 24.6, 23.2, 21.2, 12.1; HRMS

(ESI-TOF) m/z Calcd for C31H35N2O2 [M + H]+ 467.2693, found 467.2694.

(8R,9S,13S,14S,17S)-13-methyl-2-(3-methyl-1-phenyl-1H-pyrazol-5-yl)-7,8,9,11,12,13,14,15,16,17-decahy-

dro-6H-cyclopenta[a]phenanthren-17-yl acetate (14).

26.1 mg, 57%; white solid; Mp = 86–88�C; 1H NMR (500 MHz, CDCl3) d 7.34–7.26 (m, 5H), 7.10 (s, 1H), 6.99–

6.94 (m, 2H), 6.29 (s, 1H), 4.67 (t, J = 8.4 Hz, 1H), 2.84 (dd, J = 8.9, 4.2 Hz, 2H), 2.37 (s, 3H), 2.25–2.11 (m, 2H),

2.06 (s, 3H), 1.98–1.92 (m, 1H), 1.91–1.85 (m, 1H), 1.84–1.76 (m, 1H), 1.78–1.69 (m, 1H), 1.60–1.49 (m, 1H),

1.45–1.38 (m, 2H), 1.37–1.30 (m, 2H), 1.30–1.22 (m, 2H), 0.80 (s, 3H); 13C NMR (126 MHz, CDCl3) d 171.2,

149.3, 144.1, 140.4, 140.2, 136.7, 128.9, 128.8, 127.8, 127.0, 125.8, 125.7, 125.4, 107.1, 82.6, 49.9, 44.0,

42.8, 38.2, 36.8, 29.2, 27.5, 27.0, 25.6, 23.2, 21.2, 13.6, 12.0; HRMS (ESI-TOF) m/z Calcd for C30H35N2O2

[M + H]+ 455.2693, found 455.2697.
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