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Abstract

Associations between endosymbiotic bacteria and their hosts represent a complex ecosys-

tem within organisms ranging from humans to protozoa. Drosophila species are known to

naturally harbor Wolbachia and Spiroplasma endosymbionts, which play a protective role

against certain microbial infections. Here, we investigated whether the presence or absence

of endosymbionts affects the immune response of Drosophila melanogaster larvae to infec-

tion by Steinernema carpocapsae nematodes carrying or lacking their mutualistic Gram-

negative bacteria Xenorhabdus nematophila (symbiotic or axenic nematodes, respectively).

We find that the presence of Wolbachia alone or together with Spiroplasma promotes the

survival of larvae in response to infection with S. carpocapsae symbiotic nematodes, but not

against axenic nematodes. We also find that Wolbachia numbers are reduced in Spiro-

plasma-free larvae infected with axenic compared to symbiotic nematodes, and they are

also reduced in Spiroplasma-containing compared to Spiroplasma-free larvae infected with

axenic nematodes. We further show that S. carpocapsae axenic nematode infection

induces the Toll pathway in the absence of Wolbachia, and that symbiotic nematode infec-

tion leads to increased phenoloxidase activity in D. melanogaster larvae devoid of endosym-

bionts. Finally, infection with either type of nematode alters the metabolic status and the fat

body lipid droplet size in D. melanogaster larvae containing only Wolbachia or both endo-

symbionts. Our results suggest an interaction between Wolbachia endosymbionts with the

immune response of D. melanogaster against infection with the entomopathogenic nema-

todes S. carpocapsae. Results from this study indicate a complex interplay between insect

hosts, endosymbiotic microbes and pathogenic organisms.
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Introduction

The soil dwelling nematode parasite Steinernema carpocapsae together with the Gram-negative

bacteria Xenorhabdus nematophila form a mutualistic complex that is pathogenic to insects

[1]. X. nematophila bacteria are localized in the gut of S. carpocapsae nematodes, which com-

plete their life cycle in insect hosts [2]. The nematodes cause infections at the infective juvenile

(IJ) stage, which is the developmentally arrested third larval stage analogous to the dauer stage

of the non-pathogenic nematode, Caenorhabditis elegans [3]. Upon entry into the insect host,

the nematodes release their bacteria into the hemolymph (insect blood), where the latter divide

and produce a wide range of toxins and virulence factors that kill the host [4,5]. Although little

is known about the contribution of nematode virulence factors to this process, we and others

have shown that entomopathogenic (or insect pathogenic) nematodes lacking their mutualistic

bacteria are still pathogenic to insects [6–10]. Recent studies have demonstrated that the nema-

todes produce certain molecules that suppress or promote evasion of certain insect immune

responses allowing them to survive and reproduce in the insect host [11–13].

Insects have developed a diverse range of immune defenses to combat infection by nema-

tode parasites [14]. Most studies have mainly focused on the immune response of insect larvae

against entomopathogenic nematodes and the immune response of mosquitoes and black flies

against filarial nematodes [9,10,14–17]. Insects activate both humoral and cellular immune

responses to nematode infections as well as phenoloxidase (PO) and coagulation cascades that

lead to melanotic encapsulation of the parasites [10,18–20]. Certain entomopathogenic nema-

todes have developed strategies to evade or suppress the insect immune system by preventing

or disrupting the activation of immune responses to promote their survival in the host [14,21–

23]. The fruit fly Drosophila melanogaster is an outstanding model for innate immunity stud-

ies. Its major benefit is the availability of a wide range of genetic tools that permit dissection of

the molecular basis of the innate immune response to a range of pathogens [24–26]. Recent

transcriptomic studies have demonstrated the power of using D.melanogaster for identifying

the molecular components of the insect immune system that are directed against entomo-

pathogenic nematode infections [9,15]. It was recently shown that Steinernema nematodes are

able to upregulate the expression of certain antimicrobial peptide (AMP) genes and induce the

melanization pathway, the activation of which is suppressed by Xenorhabdus bacteria [10].

Wolbachia and Spiroplasma are the most common and widespread maternally-transmitted

facultative endosymbiotic bacteria in insects, and they are naturally harbored by certain D.

melanogaster strains [27–30]. Recent studies have led to the proposition of endosymbiont-

based strategies for the control of vector borne diseases [31–35]. D.melanogaster is an excellent

system to investigate the effect of endosymbionts on host immune function. Previous studies

have shown that the presence of certainWolbachia strains in D.melanogaster confers resis-

tance to infection by various RNA viruses, fungi and parasitoid wasps [36–41], but not by

entomopathogenic bacteria [42–45]. The presence of Spiroplasma endosymbionts in D.mela-
nogaster flies does not activate the fly immune system, but induction of Toll or immune defi-

ciency (Imd) immune signaling increases Spiroplasma numbers in the fly hemolymph [46].

Furthermore, mushroom-feeding flies D. neotestacea carrying Spiroplasma have increased tol-

erance against their natural nematode parasite Howardula aoronymphium [47], which is prob-

ably due to an unknown mechanism that reduces the growth and reproduction of the

nematodes in the Spiroplasma-carrying flies. Alternatively, flies carrying Spiroplasma are more

sensitive to some Gram-negative bacterial pathogens [42, 46].

The goal of this research is to investigate whether the presence of heritable endosymbiont

Wolbachia alone or together with Spiroplasma can modulate the D.melanogaster immune and

metabolic response against S. carpocapsae nematodes that either carry (symbiotic) or lack
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(axenic) their associated X. nematophila bacteria. For this, we use D.melanogaster strains with

or without their heritable endosymbionts for infections with S. carpocapsae symbiotic or axe-

nic nematodes. We explore certain aspects of the immune response and estimate levels of tri-

glyceride, glucose, trehalose, and glycogen in all D.melanogaster strains in the presence or

absence of nematode infection. We also investigate the involvement of lipid droplets in the D.

melanogaster anti-nematode immune response in the context of host endosymbionts. We find

that the presence ofWolbachia in D.melanogaster larvae enhances the survival ability against

S. carpocapsae symbiotic nematodes,Wolbachia numbers are reduced in larvae responding to

symbiotic nematodes while Xenorhabdus numbers are unaffected, the absence ofWolbachia
induces Toll pathway activation in response to axenic nematodes, and that endosymbionts can

affect the metabolic state, and in particular the lipid droplet size, of D.melanogaster during

parasitic nematode infection. Current findings reveal thatWolbachia and Spiroplasma interact

closely with the D.melanogaster immune system and are able to modulate certain aspects of

the larval response to infection against a potent nematode parasite.

Results

Presence of Wolbachia in Drosophila enhances the survival response to

symbiotic nematode infection

We first estimated the survival ability of D.melanogasterW+S-, W+S+ and W-S- larvae in

response to S. carpocapsae symbiotic or axenic nematodes. We found significant differences in

the survival between each D.melanogaster strain infected by either symbiotic or axenic nema-

todes and the uninfected controls (Fig 1). We also found that W+S+ larvae infected with sym-

biotic nematodes survived significantly better than W-S- larvae (Log-rank test, P<0.0001; Fig

1A), and this result was reversed upon infection with axenic nematodes (log-rank test,

P<0.0001; Fig 1A). We further observed that the W+S- larvae survived the infection with sym-

biotic nematodes longer than the W-S- individuals (log-rank test, P<0.0001; Fig 1B), but there

were no statistically significant differences in survival between W-S- and W+S- larvae upon

infection with axenic nematodes (log-rank test, P = 0.6154, Fig 1B). These results suggest that

the presence of Spiroplasma does not affect the survival of D.melanogaster against symbiotic S.
carpocapsae whenWolbachia is also present; however, the presence of Spiroplasma together

withWolbachia is detrimental to the larvae upon axenic nematode infection.

Wolbachia numbers are reduced in Drosophila responding to symbiotic

nematodes while Xenorhabdus numbers are unaffected

To estimate whether infection by S. carpocapsae nematodes affects the numbers of endosymbi-

otic bacteria in D.melanogaster, we infected W+S-, W+S+ and W-S- larvae with S. carpocapsae
symbiotic or axenic nematodes and estimated the endosymbiont numbers at different time

points post infection. Interestingly,Wolbachia numbers were significantly reduced in W+S-

larvae infected with axenic nematodes compared to symbiotic nematodes at 36 h post-infec-

tion (P = 0.0076; Fig 2A), and they were also significantly lower than those in W+S+ larvae

infected with axenic nematodes at 36 h post infection (P = 0.0143; Fig 2A). There were no sig-

nificant changes in the numbers of Spiroplasma in W+S+ larvae infected by either symbiotic

or axenic nematodes at any time-point (P>0.05; Fig 2B). These results imply that the presence

of X. nematophila bacteria in S. carpocapsae and the presence of Spiroplasma in D.melanoga-
ster larvae can affect the number ofWolbachia endosymbionts at late times after infection with

the nematode parasites.

Drosophila endosymbiont-based anti-nematode immunity
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Fig 1. Survival of Drosophilamelanogaster larvae carrying or lacking endosymbionts in response to nematode infection. Survival of D.melanogaster third-instar

larvae upon infection with Steinernema carpocapsae symbiotic (Sy) or axenic (Ax) nematodes. Sterile distilled water served as control (C) treatment. (A) Survival

response ofD.melanogaster strains lacking bothWolbachia and Spiroplasma (W-S-) and strains carrying both endosymbionts (W+S+), (B) Survival response of D.

melanogaster strains lacking both endosymbionts (W-S-) and strains carryingWolbachia only (W+S-). Survival was tracked every 12 h for 96 h and is represented as

percent survival on the graph. Data were analyzed using the Log-Rank test (GraphPad Prism7 software). The experiment was repeated three times and bars represent

standard errors (����P<0.001, ����P<0.0001).

https://doi.org/10.1371/journal.pone.0192183.g001
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Fig 2. Numbers for endosymbiotic and pathogenic bacteria in Drosophila melanogaster larvae responding to nematode infection. D.melanogaster third instar

larvae carrying no endosymbionts (W-S-), both endosymbionts (W+S+) or onlyWolbachia (W+S-) were infected with Steinernema carpocapsae symbiotic (Sy) or axenic

(Ax) nematodes. Relative number of cells for (A)Wolbachia at 12 and 36 h, and (B) Spiroplasma at 12, 36 and 60 h were determined using quantitative PCR. (C)

Numbers of colony forming units of Xenorhabdus nematophila were estimated at 12, 36 and 60 h post infection using quantitative PCR. Data were analyzed using an

unpaired two-tailed t-test. Means from three independent experiments are shown and standard deviations are represented by error bars (�P<0.05, ��P<0.01).

https://doi.org/10.1371/journal.pone.0192183.g002
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To estimate whether X. nematophila replication is affected in the presence or absence of the

endosymbionts in D.melanogaster, we infected W-S-, W+S+ and W+S- larvae with S. carpo-
capsae symbiotic nematodes and estimated the X. nematophila numbers at three time-points

post infection. We found no significant differences in the number of X. nematophila Colony

Forming Units (CFUs) in W+S+ larvae between the different time-points post infection

(P>0.05; Fig 2C). In W-S- larvae, the increase in X. nematophila CFUs was not statistically dif-

ferent (P>0.05; Fig 2C). In addition, larvae carrying onlyWolbachia (W+S-) contained fewer

X. nematophila CFUs at 60 h post symbiotic nematode infection compared to 12 and 36 h, but

again no statistically significant difference was observed (P>0.05; Fig 2C). These results sug-

gest that the presence ofWolbachia and Spiroplasma endosymbionts in D.melanogaster does

not have a significant impact on X. nematophila load during S. carpocapsae nematode

infection.

Absence of Wolbachia in Drosophila can induce Toll pathway activation in

response to axenic nematode infection

The transcriptional activation of immune signaling pathway read-out genes forms the hall-

mark of the D.melanogaster humoral immune response. Here, we followed this approach to

examine immune signaling pathway activation upon infection with S. carpocapsae symbiotic

or axenic nematodes in the presence or absence of endosymbionts (Fig 3). For this, we used

real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and gene-

specific primers to determine the transcript levels of Diptericin as a readout for the Imd path-

way, Drosomycin for the Toll pathway, Turandot A (TotA) for the Jak/Stat pathway and Puck-
ered for the Jnk pathway [48–51]. We found that induction of Diptericin was higher in W-S-

larvae infected with symbiotic nematodes at all three time points post infection, but this induc-

tion was not statistically significant compared to axenic nematode infections (Fig 3A, 3B and

3C). We also found no changes in Drosomycin transcript levels between the different strains at

12 and 60 h post nematode infection (P>0.05; Fig 3D and 3F), but Drosomycin transcript levels

were significantly higher in W-S- larvae than in W+S+ and W+S- individuals infected with

axenic nematodes at 36 h (P = 0.0165 and P = 0.0141, respectively) and compared to control

uninfected larvae (P = 0.0212; Fig 3E). There were no significant differences in TotA and Puck-
ered transcript levels among the three D.melanogaster strains infected by either symbiotic or

axenic nematodes compared to uninfected controls (P>0.05; Fig 3G–3I and 3J–3L). These

results suggest that the absence ofWolbachia endosymbionts in D.melanogaster larvae can

activate Toll signaling in the context of axenic nematode infection.

Endosymbionts do not affect the PO response to nematode infection in

Drosophila
We first examined the melanization response of each D.melanogaster strain carrying or lack-

ing endosymbionts after heat treatment [52], and observed that larvae developed dark spots

indicating PO activation in crystal cells (Fig 4A). Upon nematode infection, PO activity in

W-S- larvae was significantly higher in response to symbiotic nematodes compared to axenic

nematodes and uninfected controls (P = 0.0392; Fig 4B). In W+S+ larvae, PO activity was also

significantly higher upon symbiotic nematode infection compared to uninfected larvae

(P = 0.0111; Fig 4B). However, in W+S- larvae, PO activity was higher upon infection with axe-

nic nematodes compared to symbiotic nematode infections, but this difference was not statisti-

cally significant (P = 0.9972; Fig 4B). These results suggest that S. carpocapsae symbiotic

nematode infection in D.melanogaster larvae can induce PO activity, which is not significantly

affected by the presence or absence of endosymbiotic bacteria.

Drosophila endosymbiont-based anti-nematode immunity
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Endosymbionts can alter the metabolic state of Drosophila upon nematode

infection

To estimate whether the presence or absence of endosymbionts affects the metabolic functions

of D.melanogaster in response to nematode infection, we infected W-S-, W+S+ and W+S- lar-

vae with S. carpocapsae symbiotic or axenic nematodes and measured various metabolic pro-

cesses 24 h post infection. We found that upon axenic or symbiotic nematode infection,

changes in triglyceride concentrations were not statistically significant (P>0.05; Fig 5A). Also,

trehalose levels were not statistically different among the various treatments (P>0.05; Fig 5B).

Interestingly, the amount of glucose was significantly higher in W+S+ larvae compared to W

+S- larvae upon infection with symbiotic or axenic nematodes (P = 0.0251 and P = 0.0469,

respectively) as well as in uninfected controls (P = 0.0422; Fig 5C). We further found a signifi-

cant increase in glucose levels in W-S- larvae compared to W+S- larvae when responding to

axenic nematodes (P = 0.0032; Fig 5C). In the context of symbiotic nematode infection, the

amount of glycogen in W+S- larvae was significantly higher than in W+S+ larvae (P = 0.0324;

Fig 5D). These findings indicate thatWolbachia and Spiroplasma can affect glucose and glyco-

gen levels in D.melanogaster larvae upon S. carpocapsae nematode infection, but have no effect

on triglyceride or trehalose levels.

Presence of both endosymbionts can alter lipid droplet size in Drosophila
larvae responding to parasitic nematodes

Recent studies have demonstrated an interaction between the host and pathogen metabolism.

The supply of metabolites from the commensal bacteria to its host can be consumed by the

pathogen, which leads to an increase in the lipid droplet size in the insect fat body [53]. Here,

we evaluated whether the presence or absence of endosymbionts influences the size of lipid

droplets in D.melanogaster during infection with entomopathogenic nematodes. We found

that in uninfected individuals, the size of lipid droplets was significantly larger in W+S+ larvae

compared to W-S- individuals (P = 0.0081; Fig 6A and 6B). We also found that W+S+ larvae

contained lipid droplets of larger size upon infection with symbiotic nematodes compared to

W-S- and W+S- larvae (P<0.0001) and to uninfected controls (P<0.0001; Fig 6A and 6B). In

contrast, W+S+ larvae contained reduced size lipid droplets upon axenic nematode infection

compared to controls (P = 0.0066; Fig 6A and 6B). The lipid droplet size in W+S- larvae was

unaffected by nematode infection. These results suggest that the presence or absence of both

endosymbionts might alter the lipid droplet size in response to S. carpocapsae axenic or symbi-

otic infections. On the contrary, the presence ofWolbachia alone has no effect on the size of

lipid droplets upon nematode infection.

Discussion

Previous studies in D.melanogaster adult flies have shown a protective role forWolbachia, but

not Spiroplasma, in response to certain viral infections [36,37], but not against bacterial infec-

tions [42,43,46,54]. Here, we explore the modulation of the D.melanogaster immune and met-

abolic responses, in the presence ofWolbachia alone or together with Spiroplasma, against S.
carpocapsae nematodes. We find that the presence ofWolbachia alone or together with

Fig 3. Transcript levels of immune genes in Drosophila melanogaster larvae carrying or lacking endosymbionts upon nematode infection. Gene transcript levels for

(A, B and C) Diptericin, (D, E and F) Drosomycin, (G, H and I) Turandot-A (Tot-A), and (J, K and L) Puckered inD.melanogaster larvae containing no endosymbionts

(W-S-), bothWolbachia and Spiroplasma (W+S+), orWolbachia only (W+S-) at 12, 36 and 60 h after infection with Steinernema carpocapsae symbiotic (Sy) or axenic

(Ax) nematodes. Sterile distilled water served as control (C) treatment. The experiment was repeated three times and error bars show standard deviations. Data were

analyzed using one way analysis of variance with a Tukey post hoc test (�P<0.05).

https://doi.org/10.1371/journal.pone.0192183.g003
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Fig 4. Phenoloxidase activity and melanization response in uninfected and nematode-infected Drosophila melanogaster larvae carrying or lacking endosymbionts.

(A) Melanization response in D.melanogaster larvae containing no endosymbionts (W-S-), bothWolbachia or Spiroplasma (W+S+), orWolbachia only (W+S-)

following heat treatment. (B) Relative phenoloxidase (PO) activity was measured in the larval hemolymph of the threeD.melanogaster strains at 24 h post-infection with

Steinernema carpocapsae symbiotic (Sy) or axenic (Ax) nematodes. Sterile distilled water served as control (C) treatment. The experiment was repeated three times and

error bars show standard deviations. Data analysis was performed using one way analysis of variance with a Tukey post hoc test (�P<0.05).

https://doi.org/10.1371/journal.pone.0192183.g004
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Spiroplasma in D.melanogaster larvae increases their survival upon infection with symbiotic S.
carpocapsae; whereas the presence of both endosymbionts reduces larval survival in response

Fig 5. Metabolic activity in Drosophila melanogaster larvae carrying or lacking endosymbionts following nematode infection.D.melanogaster third instar larvae

lacking both endosymbionts (W-S-), carrying bothWolbachia and Spiroplasma (W+S+), or containingWolbachia only (W+S-) were infected with Steinernema
carpocapsae symbiotic (Sy) or axenic (Ax) nematodes. Application of sterile distilled water served as control (C) treatment. The relative amount of (A) Triglycerides, (B)

Trehalose, (C) Glucose and (D) Glycogen was estimated 24 h post-infection. The experiment was repeated three times and error bars show standard deviations. Data

were analyzed using one way analysis of variance with a Tukey post hoc test (�P<0.05, ��P<0.01).

https://doi.org/10.1371/journal.pone.0192183.g005

Drosophila endosymbiont-based anti-nematode immunity

PLOS ONE | https://doi.org/10.1371/journal.pone.0192183 February 21, 2018 10 / 20

https://doi.org/10.1371/journal.pone.0192183.g005
https://doi.org/10.1371/journal.pone.0192183


Drosophila endosymbiont-based anti-nematode immunity

PLOS ONE | https://doi.org/10.1371/journal.pone.0192183 February 21, 2018 11 / 20

https://doi.org/10.1371/journal.pone.0192183


to axenic worms. Interestingly, Drosophila neotestacea flies carrying Spiroplasma show delayed

mortality when parasitized with Howardula aoronymphium nematodes; however,Wolbachia
does not participate in the survival response to these nematodes [55,56]. Similarly, the pres-

ence ofWolbachia in Aedes pseudoscutellaris has no effect on the mosquito survival to Brugia
pahangi filarial nematodes [57]. Our current results indicate that the effect ofWolbachia alone

or together with Spiroplasma on S. carpocapsae during infection of D.melanogaster larvae

depends on the presence or absence of the mutualistic X. nematophila bacteria in the nematode

parasites.

We then investigated whether infection of D.melanogaster with S. carpocapsae alters the

number of endosymbiotic bacteria in the infected larvae. Although compared to larvae not

exposed to nematodes, Spiroplasma numbers remain unaffected in W+S+ larvae upon infec-

tion with S. carpocapsae, infection with either type of nematode (symbiotic or axenic) reduces

Wolbachia numbers in W+S+ and W+S- D.melanogaster larvae. This could imply thatWolba-
chia, but not Spiroplasma, forms a target for S. carpocapsae pathogenesis. In agreement with

the current findings, we have found previously that infection of D.melanogaster adult flies

with Photorhabdus luminescens, the mutualistic bacterium of the entomopathogenic nema-

todesHeterorhabditis bacteriophora, has no effect on Spiroplasma numbers [42]. Interestingly,

P. luminescens infection caused a reduction inWolbachia numbers in flies carrying this endo-

symbiont only. This suggests that certain entomopathogenic nematodes and their mutualistic

bacteria employ currently unknown strategies to interfere with the growth of endosymbionts

in certain insect hosts. Microbial infection can also increase endosymbiont numbers in D.mel-
anogaster, as demonstrated by the rise of Spiroplasma in flies infected withMicrococcus luteus
or Erwinia cartovora [46]. Together these findings indicate species-specific interactions

between exogenous microbes and endosymbiotic bacteria in D.melanogaster.
Previous studies have also estimated the impact of endosymbionts on pathogen load in

infected flies and found that the presence ofWolbachia does not influence the replication of Pseu-
domonas aeruginosa [54]. Similarly, we have observed recently that the presence of endosymbi-

onts inD.melanogaster adult flies do not affect P. luminescens numbers [42]. Our current data are

in agreement with these findings since we also find no changes in X. nematophila cell numbers in

any of the strains used in the experiments, suggesting that the growth of this entomopathogenic

bacterium is independent of the presence ofWolbachia alone, the simultaneous presence ofWol-
bachia and Spiroplasma, or the absence of both endosymbionts inD.melanogaster.

The transcriptional induction of genes encoding antimicrobial peptides or other effector

molecules serves as an indicator of immune signaling activation in D.melanogaster [58]. We

have investigated whether endosymbionts in D.melanogaster larvae can affect the induction of

immune-related genes in the context of nematode infection. Our results demonstrate that the

absence of both endosymbionts upregulates the Toll pathway in response to S. carpocapsae
axenic nematodes. It was previously shown that infection withH. bacteriophora axenic nema-

todes also upregulated Drosomycin transcript levels compared to symbiotic nematodes in D.

melanogaster flies [6]. These results show that induction of Toll signaling is not specific to S.
carpocapsae nematodes only. In addition, failure of S. carpocapsae symbiotic and axenic

Fig 6. Lipid droplet size in Drosophilamelanogaster larvae carrying or lacking endosymbionts upon nematode

infection. (A) Representative images of lipid droplets (LD) labeled with Nile Red (red) and DAPI (blue) in fat body tissues

of D.melanogaster third instar larvae lacking both endosymbionts (W-S-), containing bothWolbachia and Spiroplasma (W

+S+), or carryingWolbachia only (W+S-) followed infection with Steinernema carpocapsae symbiotic (Sy) or axenic (Ax)

nematodes. Sterile distilled water served as control (C) treatment. Magnification: 40X. (B) Quantification of LD area in the

fat body tissues obtained from 10D.melanogaster larvae per treatment using ImageJ. Values show the means from three

independent experiments and error bars show standard deviations. Data were analyzed using one way analysis of variance

with a Tukey post hoc test (�P<0.05, ��P<0.01, ����P<0.0001).

https://doi.org/10.1371/journal.pone.0192183.g006
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nematodes to provoke immune gene upregulation in larvae containingWolbachia only or

bothWolbachia and Spiroplasma suggests a potential interference with the activation of

immune signaling in response to nematode attack. The nature of the molecular mechanism

through which endosymbionts might interact with the D.melanogaster immune signaling dur-

ing nematode infection requires further investigation.

PO is the primary enzyme that regulates melanization at the wound sites and around invad-

ing microbes in the hemolymph [59]; however, X. nematophila bacteria released from S. carpo-
capsae nematodes can suppress the melanization response [10]. Here we show that in the

absence of bothWolbachia and Spiroplasma, S. carpocapsae nematodes and their associated X.

nematophila bacteria fail to suppress the PO activity in D.melanogaster larvae, but they are

able to suppress the activity of the enzyme either in the presence ofWolbachia only or for both

endosymbionts. This implies that the suppression of PO activity by this nematode-bacteria

complex is strongly dependent on the presence ofWolbachia and probably Spiroplasma endo-

symbiotic bacteria. Of note, the introduction of certainWolbachia strains into D.melanogaster
and Drosophila simulans flies as well as Aedes aegyptimosquitoes triggers hemolymph melani-

zation in the absence of infection with exogenous pathogenic microbes [60].

Dietary macronutrients are one of the essential factors that promote host-endosymbiont

interactions [61] and that the host metabolism may be altered in the presence of endosymbi-

onts and in the context of nematode infection. D.melanogaster flies carryingWolbachia have

elevated insulin signaling [62], and in Brugia malayi that containWolbachia, the endosymbi-

ont relies on the nutrients (glucose) and energy stores (glycogen) of its host filarial nematode

[63]. Here we show that D.melanogaster larvae carryingWolbachia have increased levels of

glycogen and trehalose, whereas levels of triglyceride and glucose are unchanged. Our results

are consistent with the notion that these endosymbionts confer little to no beneficial fitness

effect to their host. Spiroplasma also relies on host lipid availability for its own proliferation

[64]. Lipid metabolism and storage in D.melanogaster occurs in lipid droplets, which are

mainly localized in the fat body tissue, although recent evidence indicates that lipid droplets

perform additional functions through interactions with pathogenic microbes [65]. We show

that the presence of bothWolbachia and Spiroplasma, but notWolbachia alone, increases the

number and size of lipid droplets in the fat body, suggesting increased lipid accumulation in

the fat body. We also show that larvae carrying or lacking both endosymbionts have increased

lipid droplet size upon symbiotic nematode infection, which correlates with higher levels of tri-

glycerides, whereas infection with axenic nematodes has the opposite effect. These results sug-

gest that despite the presence or absence ofWolbachia and Spiroplasma, X. nematophila
mutualistic bacteria may affect fatty acid concentrations during infection; however, these

changes in the host do not promote pathogen replication.

In spite of recent advances in the insect innate immunity field, our understanding of the role of

endosymbiotic bacteria in the host immune response to entomopathogenic nematode infections

remains largely unexplored. Results from the research presented here will improve our under-

standing of the complex symbiotic interactions between eukaryotic hosts and microbial organisms

in the context of parasitic infections. From the practical point of view, a better understanding of

insect-endosymbiont relationships could potentially lead to the development of alternative strate-

gies for the efficient management of agricultural insect pests and vectors of human diseases.

Materials and methods

Fly stocks

Drosophila melanogaster third instar larvae carrying bothWolbachia pipientis (strain wMel)

and Spiroplasma poulsonii (strain MSRO, designated as W+S+), no endosymbiotic bacteria
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(W-S-), orWolbachia only (W+S-) were used in all experiments, as previously described [42].

All fly strains were amplified for experimentation with approximately 2.5 g of Carolina For-

mula 4–24 Instant Drosophila media (Carolina Biological Supply, USA), 10 ml of deionized

water, and a few granules (approximately 0.003 g) of dry baker’s yeast. All fly strains were

grown at 25˚C and a 12:12-hour light:dark cycle.

Nematode stocks

The entomopathogenic nematode Steinernema carpocapsae harboring the Gram-negative bac-

teria Xenorhabdus nematophila (symbiotic nematodes) were amplified in the larvae of the wax

moth Galleria mellonella. Nematodes lacking X. nematophila (axenic nematodes) were gener-

ated as described [8]. Prior to use, axenic nematodes were surface sterilized in 1% bleach and

washed five times with sterile distilled water to remove any residual bacteria from their surface.

Infective Juvenile (IJ) stage nematodes 2–4 weeks old were used in all experiments.

Larval survival

To each well of a 96-well plate (Corning), 100 μl of 1.25% agarose were added. Sterile water

(10 μl) suspensions containing 100 S. carpocapsae symbiotic or axenic nematodes were trans-

ferred to each well together with an individual D.melanogaster third instar larva. To remove

any food particles from the cuticle, each larva was washed with sterile distilled water prior to

infection. The wells were covered with a Masterclear real-time PCR film (Eppendorf, USA)

and two holes were pierced for ventilation. For control treatment, 10 μl of sterile water were

applied to each larva and survival was monitored every 12 h for up to 108 h post-infection.

Twenty larvae per strain per treatment were used and the experiment was repeated three

times.

Endosymbiont numbers

Four larvae from each fly strain were infected with S. carpocapsae symbiotic or axenic nema-

todes and subsequently frozen at 12, 36 and 60 h post infection. DNA samples were extracted

from the frozen larvae using DNeasy Blood and Tissue kit (Qiagen) following the manufactur-

er’s protocol. For estimation of endosymbiont load, all DNA samples were normalized to 300

ng. Quantitative PCR was performed in twin-tech. semi skirted- 96 well plates (Eppendorf) in

a Mastercycler1 ep realplex2 (Eppendorf). The experiments were repeated three times and

samples were run as technical duplicates.Wolbachia and Spiroplasma CFUs were determined

using the standard curves generated using plasmid DNA and PCR conditions were followed as

described [42]. Relative numbers ofWolbachia and Spiroplasma cells were determined as a

ratio of the endosymbiont number in larvae infected with S. carpocapsae symbiotic or axenic

nematodes and in control larvae treated with water.

Xenorhabdus nematophila standard curve

DNA from X. nematophila bacteria was extracted using the Invitrogen™ Ambion™ TRIzol™
Reagent. PCR amplifications were performed using the X. nematophila 16S rRNA primer

sequences (Table 1). The cycling protocol used was described [42]. The samples were run as

technical duplicates. Standard curve for X. nematophila 16S rRNA was used to estimate bacte-

rial load in infected larvae using the same method as described before [42].
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Xenorhabdus nematophila quantification

Four larvae from each fly strain were infected with S. carpocapsae symbiotic IJs and frozen at

12, 36 and 60 h post infection. DNA samples were extracted from the frozen larvae using the

Invitrogen™ Ambion™ TRIzol™ Reagent. DNA samples (300 ng) were used in a total reaction

volume of 20 μl. The cycling protocol was the same as described [42]. X. nematophila CFUs

were calculated using the standard curve. The experiment was repeated three times.

Immune gene signaling

Four larvae from each fly strain were infected with S. carpocapsae symbiotic or axenic IJs and fro-

zen at 12, 36, and 60 h after infection. Controls were treated with water. Total RNA was extracted

using the PrepEase RNA spin kit (Affymetrix USB) following the manufacturer’s instructions and

adjusted to 300 ng. Complementary DNA (cDNA) synthesis and qRT-PCR were performed as

described [42]. Primers were purchased from Eurofin MWG Operon (Table 1). Relative gene

transcript levels are calculated relative to the housekeeping ribosomal gene, RpL32, and expressed

as a ratio compared to mRNA values of uninfected control samples. The experiment was repeated

three times and values represent mean and error bars show standard deviations.

Melanization and PO response

For assessing melanization, 10 larvae from each strain were heat treated to visualize blackening

of the crystal cells, as described previously [52]. For estimating PO activity, larvae from each

fly strain were infected with 10 S. carpocapsae symbiotic or axenic nematodes. Larvae were col-

lected 24 h post infection, washed with 1X cold PBS and hemolymph was collected in 2.5X pro-

tease inhibitor (Sigma) by puncturing the larvae with a needle. The hemolymph was then

loaded onto a spin column (Pierce, ThermoFisher) and spun at 13,000 rpm at 4˚C for 10 min.

Protein concentrations were estimated using a BCA test (Pierce, ThermoFisher) and a mixture

of 15 μg of protein (diluted in 2.5X protease inhibitor) with 5 mM CaCl2 was added to

L-DOPA (15 mM in phosphate buffer, pH 6.6) for a final volume of 200 μl. The samples were

measured at absorbance 492 nm after 34 min of incubation at 29˚C in the dark and compared

to a blank. Each experiment was run in technical duplicates and repeated three times.

Metabolic activity

Ten-fifteen larvae from each fly strain were infected with 10 S. carpocapsae symbiotic or axenic

nematodes, or treated with sterile distilled water and larvae were collected 24 h later. Samples

Table 1. Primer sequences and annealing temperatures used for quantitative RT-PCR (qRT-PCR).

Gene Accession No Primer Sequence (5’-3’) Tm (˚C)

Diptericin CG10794 Forward

Reverse

TGCGCAATCGCTTCTAC
GTGGAGTGGGCTTCATG

56

Drosomycin CG10810 Forward

Reverse

TGAGAACCTTTTCCAATATGATG
CCAGGACCACCAGCAT

56

Turandot-A CG31509 Forward

Reverse

AGATCGTGAGGCTGACAAC
CCTGGGCGTTTTTGATAA

61

Puckered CG7850 Forward

Reverse

GGCCTACAAGCTGGTGAAAG
AGTTCAGATTGGGCGAGATG

61

RpL32 CG7939 Forward

Reverse

GATGACCATCCGCCCAGCA
CGGACCGACAGCTGCTTGGC

61

X. nematophila 16s rRNA Forward

Reverse

GCTTGCTGTTTTGCTGACGA
CCGAAGGTCCCCCACTTTAC

61

https://doi.org/10.1371/journal.pone.0192183.t001
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were processed using a previously published protocol [66]. Protein quantification was per-

formed using the PierceTM BCA protein assay kit (ThermoFisher Scientific) following manu-

facturer’s instructions. The plate containing the samples and BCA reagents was covered and

placed in a 37˚C incubator for 20 min. Absorbance was measured at 562 nm and protein con-

centrations of samples were calculated from the standard curve.

For estimating triglycerides in nematode-infected and uninfected larvae, samples were

diluted 1:1 in PBS-Tween to which 200 μl of the InfinityTM Triglycerides Liquid Stable Reagent

(ThermoFisher Scientific) had been added. The 96-well plate containing the samples was cov-

ered and incubated at 37˚C for 30 min, and absorbance was measured at 540 nm. Standard

curve was generated using the Glycerol Standard Solution (Sigma) and Triglyceride content in

samples was calculated using the glycerol standard curve.

For estimating trehalose levels in the larvae, samples were diluted 1:8 in Trehalase Buffer (5

mM Tris pH 6.6, 137 mM NaCl, 2.7 mM KCl). Free glucose was estimated from samples

diluted in Trehalase Buffer (TB) whereas trehalose content was calculated from samples

digested in Trehalase Stock (3 μl of porcine trehalase in 1 ml of TB) by subtracting the amount

of free glucose from the standard curve.

For estimating glucose and glycogen levels, samples were diluted 1:3 in PBS. Samples were

further divided into two sets; the first set was diluted 1:1 in amyloglucosidase stock (1.5 μl of

amyloglucosidase in 1 ml of PBS) and the second set was diluted 1:1 in PBS. Samples (30 μl)

from each set were added to individual wells of a 96-well plate and allowed to incubate at 37˚C

for 60 min. To each well, 100 μl of HK (Glucose Assay Reagent, Sigma) were added and absor-

bance was measured at 340 nm after 15 min at room temperature. The amount of glucose was

calculated from the samples in PBS using the glucose standard curve. For glycogen, the absor-

bance of glucose in PBS was subtracted from the absorbance of the samples digested with amy-

loglucosidase (Sigma). Glycogen content was calculated from the glycogen standard curve.

For all metabolic assays, each experiment was run in technical duplicates and repeated four

times. The amounts of triglyceride, trehalose, glucose and glycogen are expressed relative to

the total protein content in each sample.

Lipid droplet (LD) staining

Ten larvae from each fly strain were infected with 10 S. carpocapsae symbiotic or axenic nema-

todes and samples were collected 24 h post-infection. Dissections were performed in 1X PBS, and

fat body tissues were separated from the rest of the larval carcass. They were then fixed in 4% par-

aformalydehyde prepared in PBS for 30 min at room temperature followed by rinsing with 1X

PBS twice. They were then incubated in the dark for 30 min in 1:1000 dilution of 0.05% Nile Red

in 1 mg/ml of methanol. These tissues were then mounted in ProLongTM Diamond AntiFade

Mountant with DAPI (Life Technologies). Images were obtained using a Confocal Olympus Fluo-

ViewTM FV1000 imaging system. Data were collected from fat body tissues of each of the 10 lar-

vae. LD area was assessed using ImageJ software (National Institutes of Health). A minimum of

five random regions were selected for LD size quantification from each fat body tissue.

Statistical analysis

All values were expressed as means ± standard deviation. Survival experiments were analyzed

using a log-rank (Mantel-Cox) and Chi square tests. Bacterial load and endosymbiont num-

bers were analyzed using unpaired two-tailed t-test. Gene expression, PO activity, metabolic

activity and lipid droplet sizes were analyzed using one-way analysis of variance (ANOVA)

with a Tukey post-hoc test for multiple comparisons. All figures were generated using Graph-

Pad Prism7 software.
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