
Medicinal Chemistry Research (2020) 29:1133–1146
https://doi.org/10.1007/s00044-020-02582-9

MEDICINAL
CHEMISTRY
RESEARCH

REVIEW ARTICLE

Rheostat positions: A new classification of protein positions relevant
to pharmacogenomics

Aron W. Fenton1
● Braelyn M. Page1 ● Arianna Spellman-Kruse2 ● Bruno Hagenbuch3

● Liskin Swint-Kruse 1

Received: 13 May 2020 / Accepted: 30 May 2020 / Published online: 7 June 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
To achieve the full potential of pharmacogenomics, one must accurately predict the functional outcomes that arise from
amino acid substitutions in proteins. Classically, researchers have focused on understanding the consequences of individual
substitutions. However, literature surveys have shown that most substitutions were created at evolutionarily conserved
positions. Awareness of this bias leads to a shift in perspective, from considering the outcomes of individual substitutions to
understanding the roles of individual protein positions. Conserved positions tend to act as “toggle” switches, with most
substitutions abolishing function. However, nonconserved positions have been found equally capable of affecting protein
function. Indeed, many nonconserved positions act like functional dimmer switches (“rheostat” positions): this is revealed
when multiple substitutions are made at a single position. Each substitution has a different functional outcome; the set of
substitutions spans a range of outcomes. Finally, some nonconserved positions appear neutral, capable of accommodating all
amino acid types without modifying function. This paper reviews the currently-known properties of rheostat positions, with
examples shown for pyruvate kinase, organic anion transporting polypeptide 1B1, the beta-lactamase inhibitory protein, and
angiotensin-converting enzyme 2. Outcomes observed for rheostat positions have implications for the rational design of drug
analogs and allosteric drugs. Furthermore, this new framework—comprising three types of protein positions—provides a
new approach to interpreting disease and population-based databases of amino acid changes. In conclusion, although a full
understanding of substitution outcomes at rheostat positions poses a challenge, utilization of this new frame of reference will
further advance the application of pharmacogenomics.
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Introduction

Many pharmacological agents exert their effects through
binding to proteins. These binding events can (i) lead to
direct inhibition of the protein’s activity via competition
with a natural, in vivo ligand or (ii) can have an agonist/
antagonist effect that propagates through the protein to alter
function at a distant site, as often occurs for receptors in

signaling pathways. Both the binding by and signaling from
pharmacological agents can be dramatically altered if the
interacting protein has amino acid changes. This compels
the field of pharmacogenomics. For example, population-
wide polymorphisms that diminish efficacy can confound
drug trials; even for drugs that pass clinical trials, sub-
stitutions that only occur in single individuals (“n-of-1”) can
cause toxicity that leads to adverse drug reactions.

Unfortunately, genome sequencing has shown that it will
be impossible to comprehensively illuminate the protein/
drug relationship with laboratory experiments. Any two
unrelated people can have >10,000 amino acid differences
among their thousands of protein sequences (Ng et al. 2008;
Lek et al. 2016); most children have a few de novo changes
relative to their parents (Acuna-Hidalgo et al. 2016).
Indeed, genome collections such as GNOMAD (Karc-
zewski et al. 2020) have revealed that polymorphisms and
n-of-1 substitutions (and everything in between) are com-
mon in many proteins. For most of these changes, effects on
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natural functions are not known, and the potential influences
on new drug candidates is beyond our current ability to
predict.

Thus, the identification of amino acid changes that are
medically and/or pharmacologically relevant is very diffi-
cult. Some “obvious” positions are in protein binding sites,
but amino acid changes far from binding sites are also
commonly observed to have large functional consequences
(e.g., (Wu et al. 2019; Swint-Kruse et al. 2003; Modi and
Ozkan 2018)). Clearly, computational methods to predict
outcomes of protein substitutions are vital. However,
despite decades of study, available algorithms still lack
reliable performance (Miller et al. 2017; Dong et al. 2015;
Andreoletti et al. 2019; Zeng and Bromberg 2019).

To advance pharmacogenomics through computation,
the necessary background knowledge originates from the
field of protein chemistry. To probe which (and how) amino
acid positions contribute to protein function, the primary
tool of this field has been mutational studies. However,
researchers in protein chemistry and biochemistry have
faced the same problem that vexes pharmacogenomics: how
to select the most relevant candidates for study. A “small”
protein has 100 amino acid positions and most human
proteins have hundreds of amino acids (Lipman et al. 2002),
making the number of choices very large.

Thus, to narrow down the candidate positions to a
tractable number, many researchers have turned to sequence
alignments of protein homologs to guide experiments (e.g.,

Fig. 1). This tool readily identifies positions that are con-
served throughout evolution, and thus are likely important.
The identification of conserved sites has facilitated high-
yield studies to determine the major functions of unknown
proteins. A second use of sequence alignments has been to
extrapolate the features known for one protein—such as an
enzyme active site—to other homologs in the alignment.

The unintended consequence of this approach is that
decades of protein mutagenesis studies have focused on
conserved positions (Gray et al. 2012) and largely ignored
the rest of protein sequence space. Nonetheless, positions
that change during evolution (nonconserved) can also be
important for function. Indeed, the outcomes of substitu-
tions at nonconserved positions can be significant, as shown
by the correlation of disease databases with sequence
alignments (e.g., Fig. 1, dark gray (Pendergrass et al.
2006)). Due to the bias towards mutating conserved posi-
tions, much less is known about mutational outcomes at
nonconserved positions. Thus, the computational algo-
rithms developed to predict outcomes of mutations have not
been trained or validated with datasets that include suffi-
cient numbers of mutations at nonconserved positions.

Moreover, the bias toward mutating conserved positions
has influenced common thought processes in the field of
protein structure/function. Indeed, most biochemistry and
biology textbooks introduce the amino acids by their phy-
sicochemical “similarities,” and students are often taught
that similar amino acids should have similar biochemical

Fig. 1 An example sequence alignment. Sequence alignments are
represented with related protein (homologs) in horizontal rows, aligned
so that equivalent positions fall into vertical columns. Amino acids are
represented with the one letter code. When the same amino acid is
present in many homologs, that position is considered to be conserved.
Conservation is interpreted to indicated that other amino acids are not
tolerated at that position, which in corollary indicates the importance
of that particular side chain. This example shows part of the pyruvate

kinase sequence alignment. The four human isozymes are the top rows
and position numbering corresponds to RPYK; note that more
sequences and more amino acid positions are in the alignment than
shown. Light gray columns indicate positions with conserved ConSurf
scores in the full alignment (Glaser et al. 2003; Landau et al. 2005;
Ashkenazy et al. 2010). Black (conserved) and dark gray (not con-
served) cells indicate positions of RPYK disease mutations (Pender-
grass et al. 2006)
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functions in a similar protein environment. For example,
threonine and serine are presumed to be interchangeable,
since they both have side chain hydroxyls. In contrast, a
position that normally contains the hydrophobic amino acid
leucine is not expected to tolerate the charged side chain of
aspartate. The expectation that similar amino acids are tol-
erated for function and that dissimilar amino acids are cat-
astrophic to function (or structure) appears to be supported
by volumes of mutation/function studies of conserved
positions. However, the relationship has seldom been tested
at nonconserved positions.

Thus, our laboratories have been exploring the functional
consequences of amino acid substitutions at nonconserved
positions. The intent of this paper is to review the findings
of our initial efforts.

Position classifications

In addition to bias toward the study of conserved positions,
a second limitation of historical experimental studies is that
the number of substitutions per position is usually restricted
to a few amino acids, often just to alanine. However,

additional information can be gleaned by considering the
outcomes for multiple amino acids at each position. Doing
so changes the researcher’s perspective: instead of con-
sidering the role of a particular side chain at a given position
(“residue”), one considers the overall role of the position
(Zhang et al. 2011; Hodges et al. 2018).

From the perspective of a position and the assumptions
derived from studies of conserved positions, researchers are
led to expect a “toggle” outcome: Amino acids similar to
the wild-type amino acid allow function, whereas all other
destroy function (Fig. 2a). We find a useful analogy for this
substitution behavior is a light switch toggle. In contrast,
when choosing positions to substitute, researchers often
rule-out nonconserved positions, assuming they make little
contribution to function. In corollary, any substitution at a
nonconserved position should not alter function; we classify
such positions as “neutral” (Fig. 2b) (Martin et al. 2020).

However, in even our very earliest studies of non-
conserved positions, substitution outcomes seldom matched
either of these patterns. Many substitutions at nonconserved
positions did indeed alter function, but the outcomes from
alternative substitutions at individual positions varied over a
wide, continuous range (e.g., Fig. 2c). Given the continuum,

Fig. 2 Examples of toggle, neutral, and rheostat substitution outcomes
for individual positions, using three of the functional parameters
measured for human liver pyruvate kinase (LPYK). “Kd,app PEP” is the
apparent affinity for substrate phosphoenol pyruvate (corresponding to
either (i) Km if the Hill number is 1 or (ii) K1/2 if the Hill number is <
>1); “Kd,ala” and “Kd,FBP” are affinities for the two allosteric ligands.
Amino acid substitutions are listed on the x-axis in panels (a–c). a At a
toggle position, substitutions are either like wild-type or dead enzyme
(i.e., no detectable function). b At a neutral position, most substitutions
are like wild-type. c At a rheostat position, substitutions range from
better than wild-type, to wild-type, to dead. To quantitatively sum-
marize the overall substitution outcomes, data were binned for further
analyses (Hodges et al. 2018). Histograms for each type of position in

(a–c) are represented in (d–f). A white dot is used to indicate the bin
that includes wild-type data and a black dot is used to indicate the bin
corresponding to no detectable function. Note especially the binning
pattern of a rheostat position (f), which has entries in multiple bins.
Data are from (Wu et al. 2019; Hodges et al. 2018; Tang et al. 2017;
Ishwar et al. 2015; Martin et al. 2020). The RheoScale scores deter-
mined from these histograms are as follows. d Position 483: neutral
0.00, rheostat 0.16, and toggle 0.91. The toggle score is above the
significance threshold of 0.7. e Position 138: neutral 1.00, rheostat
0.03, and toggle 0.00. The neutral score is above the significance
threshold of 0.7. f Position 446: neutral 0.00, rheostat 0.58, and toggle
0.00. The rheostat score is above the significance threshold of 0.5
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we have termed positions with this type of outcome as
“rheostat” positions, in analogy to a dimmer switch. It is
interesting to note that, in several studies of rheostat posi-
tions, we frequently identify substitutions for which func-
tion is “better” than wild-type.

A second characteristic that we noted in early studies of
rheostat positions was, when the functional outcomes were
rank-ordered (e.g., Fig. 2b), the extent of functional change
did not correlate with similar amino acid chemistries
(Meinhardt et al. 2013). For example, phenylalanine and
serine substitutions could result in similar functions, but
their outcomes could differ from those of either tyrosine or
threonine. This is not the first time that such discrepancies
have been noted for the amino acid similarity rules (Pal
et al. 2006; Jonson and Petersen 2001; Gilbert et al. 2012).
Another correlation that failed for several rheostat positions
is that the substitution rank order did not correlate with
evolutionary frequency (Meinhardt et al. 2013). Again, this
lack of trend had been noted in other studies (Pal et al.
2006; Hietpas et al. 2011). Thus, the textbook assumptions
that are based on mutations of conserved positions fail to
explain a large number of substitution outcomes at non-
conserved positions.

Rheostatic outcomes affect various aspects of
protein function

Using our own and other published datasets, we have now
identified rheostat positions in a wide range of proteins,
including (but not limited to) prokaryotic transcription
factors (Meinhardt et al. 2013), human liver pyruvate kinase
(LPYK; Fig. 2; (Wu et al. 2019; Hodges et al. 2018)), a
drug uptake transport protein (OATP1B1; Fig. 3; (Ohnishi
et al. 2014)), the Angiotensin-converting enzyme 2 (ACE2)
to which the SARS-Cov-2 spike protein binds (Fig. 4;
(Procko 2020)), and the β-lactamase inhibitory protein
(“BLIP”; Fig. 5; (Adamski and Palzkill 2017)).

In addition, many of the “deep mutational scanning” data
show evidence of rheostat positions (e.g., (Hodges et al.
2018; Roscoe et al. 2013)). In the experimental design of
this technique (Fowler and Fields 2014; Roscoe et al. 2013),
a region of the gene encoding a protein is subjected to
saturating mutagenesis to create a library of variants. This
library is then transformed (or transfected) into cells in
culture, followed by biological competition in conditions
that require the protein function of interest. After some
number of generations, the library is re-sequenced with next
generation sequencing to infer the frequency of each var-
iant. In turn, clone frequency is used to infer the level of
protein function for each variant, using the assumption that
the two correlate. Some variations on this method use other
readouts, such as cell sorting of fluorescent tags, prior to
sequencing.

The interpretation of deep mutational scanning results
raises an interesting question: which functional parameter(s)
are affected by substitutions at rheostat positions? Many
deep mutational scanning studies detect alterations in phe-
notypes that comprise multiple aspects of the protein
function (such as binding, catalysis, and/or allosteric cou-
pling) as well as the amount of stable protein present in the
cell. Thus, unless corresponding biochemical experiments
are available, the origins of rheostatic substitution outcomes
in deep mutational scanning data are not known.

In biochemical studies, we have detected rheostatic
outcomes on Kd for binding (e.g., Fig. 2; (Wu et al. 2019;
Hodges et al. 2018; Zhan et al. 2006; Meinhardt et al.
2013)), the magnitude of allosteric coupling (“Q”, (Wu
et al. 2019; Hodges et al. 2018)), and substrate transport
(Fig. 3a; (Ohnishi et al. 2014)). We fully expect that enzyme
catalytic rates can also be modulated by substitutions at
rheostat positions (Swint-Kruse 2016). Alternatively, some

Fig. 3 Rheostat behavior in the drug uptake transport protein,
OATP1B1. a Relative to wild-type OATP1B1, substitutions at posi-
tion L545 show a range of diminished function depending on the
amino acid substitution. Amino acid substitutions are listed on the x-
axis. The measure of function, esterone-3-sulfate uptake, is on the y-
axis. b Histogram of OATP1B1 functional data. The upper bin limit is
shown along the x-axis. The number of amino acid substitutions that
occupy each bin is shown along the y-axis. A white and black dot are
used to denote the bin that contains the wild-type and dead values,
respectively. Data are from Ohnishi et al. (2014). The RheoScale
scores determined from these histograms are neutral 0.00, rheostat
0.63, and toggle 0.00. The rheostat score falls above the significance
threshold of 0.5
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rheostat positions may impact protein stability: intermediate
effects of substitutions, a hallmark of rheostat positions, on
protein stability have long been known (e.g., (Karp et al.
2010; Klein et al. 2019; Chiti et al. 1999; Hargrove et al.
1994; Matsuura et al. 2018)). We also identified rheostat
positions in results from deep mutational scanning experi-
ments designed to detect altered stability in TIM barrels
(Chan et al. 2017; Hodges et al. 2018). While we have to-
date focused our own experimental studies on substitutions
that alter protein function, it will be interesting to dissect the
effects of rheostat position substitutions on function and
stability in future studies, as discussed previously (Swint-
Kruse 2016).

Notably, among our studies, we have identified a subset
of rheostat positions that can simultaneously modulate two
or more functional parameters (Wu et al. 2019; Zhan et al.
2006). LPYK has a catalytic site for substrate and two
allosteric sites that bind different ligands (Fig. 6a). In high-
throughput enzymatic studies, we simultaneously monitored
five functional parameters—the apparent binding affinity
for substrate (“Kd,app PEP”; see the legend to Fig. 2), the
binding affinity for each of the two allosteric ligands (“Kd,ala”

and “Kd,FBP”), and allosteric coupling between binding
substrate and each of the allosteric ligands (“Qala” and
“QFBP”). We identified several rheostat positions in the
allosteric binding sites for which substitutions altered two or
three of these parameters. Furthermore, the modulations did
not correlate with each other. That is, the amino acid rank
order for allosteric ligand binding did not correlate with the
amino acid rank order for allosteric coupling (Fig. 6b–d;
(Wu et al. 2019)).

Similar “multi-rheostat” positions, with uncorrelated para-
meter changes, have been found by examining the whole-
protein substitution study of the lactose repressor protein
(“LacI”; (Suckow et al. 1996; Markiewicz et al. 1994). Both

Fig. 4 Example rheostat position from human ACE2; data were taken
from Procko (2020). a Functional data for position 330 of ACE2.
Amino acid substitutions are listed on the x-axis. A measure of the
binding of ACE2 and the SARS-CoV-2 spike protein is shown on the
y-axis. Negative values indicate that binding is weaker than wild-type,
whereas positive values indicate “better” function. b Histogram ana-
lyses of the functional data for ACE2 position 330. The upper bin
value for each bin is shown along the x-axis. Bins that contain the
“dead” and “wild-type” values are shown with a black and white dot,
respectively. All data with scores above 3.00 were reset to this limit,
following the example of Procko (2020). The nonfunctional “dead”
protein value of −1.5 was calculated from (average+ standard
deviation) derived from all nonsense mutations (all replicates) plus the
standard deviation. The Rheoscale scores calculated from this histo-
gram were: neutral 0.05, rheostat 0.78, and toggle 0.21. The rheostat
score is well above the significance threshold of 0.5

Fig. 5 BLIP position 50 is a rheostat position. In this study, BLIP
position 50 was substituted with 18 amino acids (the 19th could not be
purified) and binding was assessed for the three different beta-
lactamases noted on the plot. The amino acid rank order for the left-

most data is preserved in the middle and right datasets; the jagged
patterns show that rank order changes for these two binding partners.
Note that even the tightest and weakest substitutions differ among the
datasets. Data were taken from Adamski and Palzkill (2017)
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LPYK and LacI show coincidence between the locations of
their multi-rheostat positions and regions of the protein

involved in allosteric coupling, suggesting that multi-rheostat
positions are enriched in and near allosteric sites. Given the
uncorrelation and (as of yet) unpredictable outcomes on
multiple functional parameters, these types of rheostat posi-
tions could be one thing that confounds predictions about
substitutions of rheostat positions. For medicinal chemistry,
this has implications for the rational design of allosteric drugs
(e.g., (Guarnera and Berezovsky 2020; Daura 2019)).

Another function of particular interest to medicinal
chemists is that of specificity. Specificity—which ligand is
most preferred—is defined by the rank order of binding
affinities for alternative ligands. Changes in specificity due
to amino acid substitutions are defined by differences in the
fold-change observed for each ligand, and/or a change in
the rank order of preferred ligand (Creighton 1993; Tungtur
et al. 2019); enzymologists often monitor changes in the
ratio of Vmax/Km. Since binding affinity is at the core of
specificity, we would expect and have observed specificity
changes arising from amino acid substitutions at rheostat
positions (Zhan et al. 2008; Tungtur et al. 2019).

An important, related observation is that the amino acid
rank order for a rheostat position can also be substrate
specific. For example, the Palzkill lab studied BLIP binding
to three beta-lactamases. BLIP position 50 is clearly a
rheostat position, as seen from the series of substitutions
generated at this position. However, the rank order of the
variant proteins was dependent on which of the three beta-
lactamases was used as the binding partner (Fig. 5;
(Adamski and Palzkill 2017)). This change in rank order
provides another means to assess altered specificity. Such
observations have significant implications for pharmaco-
genomics when protein targets interact with more than one
drug or when designing drug analogs.

Quantifying the toggle, rheostat, and neutral
character of a position

As we continued to identify rheostat positions, it quickly
became apparent that not all positions neatly fell into the
three classifications of toggle, neutral, and rheostat. For
example, in LPYK, substitution effects on PEP affinities
were seldom easily classified (e.g., Fig. 7a, b). Some posi-
tions showed substitution patterns that were close—but not
strictly—neutral (e.g., Fig. 7a). Others showed substitution
patterns that were in between rheostat and toggle (e.g., Fig. 7b).
Thus, we have realized that each position’s substitution
pattern also falls on a continuum that is bounded by the
idealized neutral, rheostat, and toggle outcomes.

To better interpret the “in between” patterns, we devel-
oped a histogram analysis to determine (i) the fraction of
wild-type-like substitutions, which is reported as a “neutral
score”, (ii) the fraction of substitutions that abolish function,
which is reported as a “toggle score”, and (iii) the number

Fig. 6 a Protein monomer extracted from a structure of the LPYK
homo-tetramer. This figure was rendered with UCSF chimera (Pet-
tersen et al. 2004) using the pdb 4ip7 (Holyoak et al. 2013). Black
spheres at the top of the structure highlight positions in the catalytic
site; dark gray spheres indicate the allosteric site for alanine inhibitor
binding; black spheres at the bottom of the structure indicate the
allosteric site for fructose-1-6-bisphosphate activator binding. Binding
affinities for the allosteric effectors are denoted with “Kd,ala” and “Kd,

FBP”, respectively. Arrows indicate the allosteric coupling (“Q”) that
occurs between the catalytic site and each of the allosteric sites. Both
allosteric effectors alter the apparent affinity for substrate phosphoenol
pyruvate binding (“Kd,app PEP”; see the legend to Fig. 2). b–d LPYK
functional parameters altered by substitutions at rheostat positions do
not correlate. For the example rheostat position 514, the values of three
functional parameters with rheostat scores ≥0.5 were compared for
each amino acid substitution (individual dots). (Note that two sub-
stitutions have estimates for Kd,ala, but binding was too weak to esti-
mate Qala; this leads to a different number of data points on (b) and
(c)). No correlation was observed among the parameters for this or
other LPYK rheostat positions, which indicates that each substitution
has independent effects on the different functional parameters. Data
were taken from Wu et al. (2019)
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and range of different outcomes sampled by all substitu-
tions, which is used to calculate a “rheostat score” (Wu
et al. 2019; Hodges et al. 2018; Martin et al. 2020).
Example histograms are shown in Figs. 2d–f, 5b, 7c, d. At
an ideal rheostat position, all bins should be occupied by at
least one substitution, allowing access to the full range of
functional outcomes and generating a score of 1.0. For
lower scores (reflecting the nonideal outcomes described
above), empirical thresholds have been devised to deter-
mine which positions have dominant neutral (Martin et al.
2020), rheostat (Wu et al. 2019; Hodges et al. 2018), and
toggle substitution behaviors (Wu et al. 2019). Simulations
with these thresholds have shown that 10–12 substitutions
per position are sufficient to classify the rheostat, toggle, or
neutral character of many protein positions (Hodges et al.
2018); although it would be optimal to have all 19 sub-
stitutions, this is often cost and time prohibitive.

The application of the neutral score warrants additional
discussion here. On a practical level, one must have a good

estimation for the error associated with the scores, and
particularly for the wild-type score, in order to properly
ascertain which substitutions are neutral (Martin et al.
2020). If all (or most) substitutions for a given position are
similar to wild-type for a given functional parameter, the
position is described as neutral for that parameter. However,
if a protein has multiple functional parameters (such as
LPYK, above), a position must be neutral in all parameters
in order to be neutral for the overall protein function. As
extensively discussed in Martin et al. (2020), it is impos-
sible to assess all possible functional parameters, particu-
larly when unknown protein–protein interactions might
occur in vivo. Nevertheless, the identification of bio-
chemically neutral and near-neutral positions provides a
critical comparison set for understanding the contributions
of rheostat positions.

Because they aggregate data from multiple substitutions
at one position, the neutral, rheostat, and toggle scores are
also useful for mapping functional outcomes onto structures

Fig. 7 Example of a near-neutral position and a part-toggle-part-
rheostat position in LPYK. Amino acid substitutions are listed on the
x-axis in panels a, b. a Position 55 shows a substitution pattern that is
between neutral and rheostatic. Most of the substitutions have activ-
ities close to that of wild-type, but some substitutions result in “dead”
protein variants. b Position 494 shows a substitution pattern that is
partially that of a rheostat position and partially that of a toggle
position. Some of the amino acid substitutions improve the function to
different degrees whereas other substitutions result in wild-type-like or
“dead” values. c Binned data further demonstrates the near-neutral data
for position 55, with the wild-type like data shown in the bin with the
white dot. Substitutions that result in no detectable function are
denoted by the black dot as a “dead” bin. The RheoScale scores

determined from this histogram are as follows: neutral 0.08, rheostat
0.28, and toggle 0.08. None of these scores fall above the relevant
significance thresholds; this position is best described as “weakly
rheostatic”. d Binned data further demonstrates the range of behaviors
exhibited by substitutions at position 494. The RheoScale scores
determined from this histogram are as follows: neutral 0.00, rheostat
0.41, and toggle 0.21. None of these scores fall above the relevant
significance thresholds; this position is best described as “weakly
rheostatic”. Substitutions show both (i) toggle behavior, acting closely
to the wild-type behavior (white circle) or showing no detectable
function (black circle), and (ii) rheostat behavior, falling into a range
of bins between wild-type and dead. Data were taken from (Tang et al.
2017; Ishwar et al. 2015; Wu et al. 2019; Hodges et al. 2018)
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and for comparing substitution outcomes with results from
sequence analyses. Deep mutational scanning studies have
also grappled with how to aggregate data from multiple
substitutions. In such studies, one approach has been to
calculate a “conservation score” for each position by aver-
aging the functional outcomes of all its substitutions.
However, as shown in the ACE2 example of Procko (2020)
(Fig. 8), conservation scores likely correlate with toggle
scores. In contrast, rheostat scores showed low correlation
with conservation scores. Indeed, some positions with
strong rheostat scores had modest/low conservation scores
and thus might be overlooked even though several of their
substitutions had large effects on function. Rheostat score
calculations can quickly identify rheostat positions in the
large datasets generated by deep mutational scanning
experiments. In turn, this will (i) identify a new group of
functionally critical positions in the proteins of interest that
might otherwise be hidden within these large datasets and
(ii) provide the new examples required for studies that
determine new substitution rules for rheostat positions.

Rheostat positions might be identified by
comparing disease and genome/exome databases

We have also considered whether the data collected to build
various databases might be useful for discriminating rheo-
stat, toggle, and neutral positions. As an example, non-
spherocytic hemolytic anemia is caused by a range of point
mutations in the pyruvate kinase isozyme that is expressed
in erythrocytes (RPYK). A database of 215 disease-causing
mutations has been assembled by several groups (Pender-
grass et al. 2006; Secrest et al. 2020; Canu et al. 2016). We
assume that these mutations either greatly reduced or
abolished enzyme function. In contrast, recent efforts to
curate natural protein variants in the human population via
genome/exome sequencing may include amino acid chan-
ges that are not connected to disease. The GNOMAD
database (Karczewski et al. 2020) reports an additional
270 substitutions in RPYK. Since the latter are absent from
the disease database, many of these GNOMAD substitu-
tions are expected to have little effect on phenotype.

Any attempt to use patient and population databases to
understand the outcomes of amino acid substitutions
requires first considering the distinct definitions of biolo-
gical change and biochemical change. The detectable limit
of biochemical change is defined by the detectable limit of
change for each biochemical assay. Biological change is
defined by a biochemical change that is large enough to
exert a phenotype. However, the thresholds for biological
change are condition dependent (e.g., (Soskine and Tawfik
2010)) because altered conditions can arise from other
changes in the genome or various environmental exposures.
For example, many glucose-6-phosphate dehydrogenase

substitutions are perfectly benign unless the individual takes
a certain class of drugs or eats fava beans (Luzzatto and
Arese 2018; Bubp et al. 2015). Thus, biochemical experi-
ments remain of critical importance for interpreting sub-
stitution outcomes observed in biological databases.

Fig. 8 Toggle and conservation scores agree whereas rheostat scores
yield a different view of substitution data. Experimental data were
obtained from Procko (2020) and comprised saturating mutagenesis
for 117 positions in and near the binding site for the spike SARS-CoV-
2 protein (for a total of 2223 variants plus wild-type). Conservation
scores are shown along the x-axis. According to Procko, “Conserva-
tion scores are calculated from the average of the log2 enrichment
ratios for all amino acid substitutions at each residue position.” Posi-
tive conservation scores show that most substitutions at a position lead
to enriched binding of the SARS-CoV-2 spike protein, whereas
negative values indicate that most substitutions at a position dimin-
ished binding. a Comparison between toggle scores and conservation
scores. Toggle scores were calculated from the substitution data for
each of the 117 positions, using the RheoScale calculator and the
“nCov-S-High sorts” log2 enrichment ratios of replicate 1. Further
details to the calculation are in the legend to Fig. 4. The dashed line at
y= 0.7 indicates the empirical significance threshold for toggle scores
that was previously determined (Wu et al. 2019). b Comparison
between rheostat scores and conservation scores. Rheostat scores were
calculated simultaneously with toggle scores. The dashed line at
y= 0.5 indicates the empirical significance threshold for rheostat
scores that was previously determined (Hodges et al. 2018). As seen
by the low Pearson correlation coefficient, rheostat and conservation
scores reveal different aspects of the aggregate substitution data for
each position. This can be understood by considering two hypothetical
examples, one with the set of functional values [−2, −1, 0, 1, 2] and
one with the set of functional values [−1, −1, 0, 1, 1]. Both positions
have a conservation score of 0, but the first position has a stronger
rheostat score than the second position. In the ACE2 data, positions
with common conservation scores have a wide variety of
rheostat scores
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In the RPYK example, several relevant biological con-
ditions could impact interpretation of patient and population
databases. First, some substitutions may be so catastrophic
that they cannot support life and thus are never detected in a
living person; these would be absent from both databases.
Second, some intermediate changes in RPYK biochemical
function may not be enough to cause disease and would fall
into the population database rather than the patient database,
although in a biochemical study they would be classified as
having a significant change. Third, RPYK is a tetramer.
When the protein is expressed from two wild-type alleles,
RPYK forms a homo-tetramer. However, if one allele
contains a mutation, the protein can assemble into a hetero-
tetramer which, in turn, can enhance or diminish the effect
of the changed amino acid. Finally, genetic differences
outside of the pklr gene that codes for RPYK could impact
the phenotypes of individuals.

With these definitions and caveats in mind, we compared
the patient and population database information for RPYK.
We identified twelve positions (Table 1) with at least one
substitution in the disease-causing database and two sub-
stitutions in the GNOMAD dataset (excluding any listed in
the disease database). By definition, rheostat positions

should have substitutions that fall into both datasets; thus,
these positions could be enriched for rheostat positions.
Positions that contain no disease-causing mutations, yet
have multiple substitutions in the GNOMAD database, are
candidates for near-neutral and neutral positions. In RPYK,
42 positions were identified to have at least two mutations
in the GNOMAD database and no known disease-causing
substitutions (Table 2). Finally, positions for which only
disease-causing mutations are known may very well be
candidate toggle (or near-toggle) positions; 19 such posi-
tions were identified by this criterion in RPYK (Table 3).

Next, we compared the patient and population RPYK
databases to a biochemical database comprising a whole-
protein, alanine scan of LPYK (Tang and Fenton 2017).
LPYK is a second gene product from the pklr gene, and
LPYK and RPYK only differ by the loss of 31 amino acids
on the N-terminus of LPYK. In the alanine-scanning study,
the five LPYK functional parameters (Fig. 6) were mon-
itored for the alanine substitution at almost every position
that was not alanine or glycine in wild-type LPYK. The
fold-change in each of the five LPYK functions, relative to
wild-type, was determined; the maximal observed fold-
change was compared with the sets of positions extracted
from the disease and GNOMAD databases. (For ~10% of
the alanine substituted positions, all enzymatic activity was
lost and parameters could not be measured; these “dead”
variants are reported as having “100” fold change.) Our
reasoning was the maximal fold-change was likely to cause
the largest biological effect, although this assumption
should be more deeply considered in future studies. (For
example, a fourfold effect in substrate binding might have a
smaller biological outcome than a fourfold effect in allos-
teric regulation.) Next, we made the following
approximations:

(i) A rheostat position, by definition, has the possibility
of presenting a range of functional outcomes. Thus,
we would expect the alanine scan data in Table 1
(Disease+GNOMAD) to span a wide range of
values.

(ii) In contrast, because substitutions at neutral positions
are defined by having functions similar to wild-type,
the alanine substitution data in Table 2 (GNOMAD
only) should show small values of maximal fold
change if these positions are enriched for neutral
positions. The application of this assumption has
several caveats: first, one must define a threshold for
“small change”. For initial estimations herein, we
defined “small” as less than fourfold. Second, some
positions in Table 2 may be weakly rheostatic
(substitutions led to biochemical changes that were
not large enough to cause biological disease), and
their alanine values could be intermediate. Third,

Table 1 Pyruvate kinase positions with substitutions in both disease
and GONMAD databases

LPYK position
numbera

Disease
mutationb

GNOMAD
mutationc

Ala scan max
fold changed

L42 P F, H 3.12

P51 H A, L 2.73

R55 P G, H 100e

I188 T F, V 1.47

R306 P, Q, W G, T 100

D308 N, Q G, H, Y 100

D359 N C, G 100

G375 R A, E N/Af

V429 M A, L 1.91

V459 W G, L, Q 7.64

R487 S C, H 2

M537 V I, T 100

aPositions numbers in LPYK scheme are reported here for consis-
tencies among our studies; original reports and GNOMAD used RPYK
numbers
bAny overlap between the two datasets has been removed from the
GNOMAD column
cPositions that include only a single variant in GNOMAD are not
included; at least two variants were required for inclusion
dData taken from (Tang and Fenton 2017)
eA fold-change of 100 was assigned for a catastrophic loss of any one
of the five functional parameters, including substitutions that lost all
catalytic activity
fNot available. Wild-type LPYK was either alanine or glycine at this
position
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disease mutations may not yet have been observed for
some of these positions.

(iii) Finally, if the “disease only” positions (Table 3) are
enriched for toggle positions, then the alanine fold-
change should either be very large or similar to wild-
type (if it is one of the few tolerated amino acids).
Again, we recognize caveats: In this case, we need to
define “very large”. As a first approximation, we used
≥10-fold. Second, the loss of function required to
cause disease could be smaller than the “dead”
function used to define a biochemical toggle position
and thus alanine substitutions are not obligated to be
biochemically catastrophic.

Despite heavy reliance on many caveats, the comparison
of alanine scan results for the three sets of positions is
intriguing. As predicted, the alanine results in Table 1 do
span a range. In Table 2, 52% of positions again matched

Table 3 Pyruvate kinase positions for which all substitutions are in the
disease dataset

LPYK
positiona

Disease
mutations

GNOMAD
mutationsb

Ala scan
max fold
changec

Match
expectationd

S99 P, T, Y 4.73

R104 D, W 2.55 Yes

A106 T, V N/Ae

R132 C, L 100f Yes

L241 P, V 100 Yes

F256 L, V 100 Yes

D262 N, V 100 Yes

A264 I, V N/A

V289 L, M 10.82 Yes

G310 A, D N/A

G327 E, R N/A

R354 G, W 8.46

N362 D, K, S 100 Yes

A363 D, S, V N/A

E376 G, K 100 Yes

K379 D, E 2.93 Yes

E396 A, D, N 100 Yes

A464 T, V N/A

G480 E, R N/A

% Matched: 53

aPositions numbers in LPYK scheme are reported here for consis-
tencies among our studies; original reports and GNOMAD used RPYK
numbers
bNo additional GNOMAD variants were identified for these positions
cData taken from (Tang and Fenton 2017)
dFor the alanine substitution, maximum fold-change for any of five
biochemical parameters was either (i) greater than ten-fold (very
deleterious) or (ii) less than fourfold (similar to wild-type)
eNot available. Wild-type LPYK was either alanine or glycine at this
position
fA fold-change of 100 was assigned for a catastrophic loss of some
functionality, including substitutions that lost all catalytic activity

Table 2 Pyruvate kinase positions with GNOMAD-only substitutions

LPYK
positiona

Disease
mutation

GNOMAD
mutationb

Ala scan
max fold
changec

Match
expectationd

M34 T, V 10.00

R68 C, H 4.73

R72 A, C, G, S 3.00 Yes

E94 A, Q 2.00 Yes

N102 I, K 1.52 Yes

S116 C, T 1.15 Yes

G138 E, R, W N/Ae

V144 A, M 1.95 Yes

V156 A, M 3.45 Yes

N167 K, N 2.45 Yes

N175 Q, S 2.73 Yes

V180 L, M 4.36

P181 L, S 2.34 Yes

G212 S, V N/A

G213 D, S N/A

R218 Q, W 2.18 Yes

A226 S, T, V N/A

D229 E, H, N 8.18

L230 F, W 12.73

R242 C, H 1.57 Yes

V245 M, W 2.45 Yes

V266 I, L 1.29 Yes

P272 A, L 2.18 Yes

G276 R, S, V N/A

K282 Q, R 100f

R291 M, S 2.45 Yes

D293 E, G 2.11 Yes

L296 P, Q, V 9.09

E312 K, Q 9.09

R351 Q, W 5.27

P352 A, S 100

I371 T, V 100

N381 K, T 1.39 Yes

A394 D, S, T, V N/A

R404 G, P, Q, W 2.09 Yes

R411 C, H 7.27

R412 Q, W 3.09 Yes

A414 E, V N/A

V462 D, I 2.53 Yes

P489 L, T 1.10 Yes

R516 C, H 2.09 Yes

G532 C, S N/A

% Matched: 52

aPositions numbers in LPYK scheme are reported here for consistencies
among our studies; original reports and GNOMAD used RPYK numbers
bPositions that include only a single variant in GNOMAD are not
included; at least two variants were required for inclusion
cData taken from (Tang and Fenton 2017)
dFor the alanine substitution, maximum fold-change for any of five
biochemical parameters was less than four
eNot available. Wild-type LPYK was either alanine or glycine at this
position
fA fold-change of 100 was assigned for a catastrophic loss of any one
of the five functional parameters, including substitutions that lost all
catalytic activity
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expectation for a dataset enriched in neutral positions.
Furthermore, in Table 3 53% of positions matched expec-
tations for a dataset enriched in toggle positions. The latter
two successes are greater than the 33% chance that would
be expected for randomly making the correct assignment if
one assumes that “perfect” rheostat/neutral/toggle behavior
can be assigned to each position. Unfortunately, Tables 1
and 3 contain too few positions to determine whether the
differences among Tables 1, 2, and 3 are statistically sig-
nificant. Since RPYK has one of the largest sets of database
and experimental data available, this illustrates another
challenge of using databases to robustly identify the loca-
tions of rheostat, neutral, and toggle positions.

Nevertheless, these results support the hypothesis that
databases can be used to generate sets of positions enriched
for rheostat, neutral, and toggle positions for future study.
Furthermore, in some cases, there may already be evidence
of intermediate functional effects arising from known
polymorphisms. For example, the SLCO1B1 gene encoding
the OATP1B1 drug transporter is highly polymorphic. The
most frequent, single nucleotide polymorphisms are
c.388A>G (p.N130D, 48% frequency according to GNO-
MAD), c.521T>C (p.V174A, 13%), c.463C>A (p.P155T,
11%), c.1929A>C (p.L643F, 4.6%), and c.733A>G
(p.I245V, 0.64%). Some of these SNPs are known to alter
OATP1B1 protein expression and/or function.

For example, OATP1B1 N130D has reduced, increased
or unchanged function, depending on the transported sub-
strate (Niemi et al. 2011). This altered specificity would be
consistent with the behavior of a rheostat position similar to
that at BLIP position 50 (Fig. 5). The protein product of
another polymorphism, OATP1B1 P155T appears to have
unchanged function, whereas OATP1B1 V174A has
decreased membrane expression (Niemi et al. 2011). Phar-
macologically, OATP1B1 V174A has been linked to statin-
induced adverse effects; almost 20% of patients with the CC
genotype developed myopathy at high doses of simvastatin
within the first 5 years of treatment (Link et al. 2008). If the
locations of these polymorphisms could be identified as
either rheostat, toggle, or neutral positions, it would help
understand whether additional substitutions at these loca-
tions would lead to adverse drug reactions: outcome pre-
dictions for substitutions at rheostat positions are currently
extremely unreliable, but substitution predictions for toggle
positions are much more reliable (Miller et al. 2017) and
substitutions at neutral positions can be disregarded.

Do toggle, rheostat, and neutral positions correlate
with evolutionary conservation patterns?

Based on our original study (Meinhardt et al. 2013), it is
tempting to associate rheostat positions with nonconserved
positions (those that change during evolution) and toggle

positions with conserved positions (those that do not change
during evolution). However, these may not be obligate
associations. Furthermore, since nonconserved positions are
also associated with neutral positions, an important question
that follows for each type of position is “How nonconserved
is nonconserved?”

In fact, nonconservation does not necessarily mean that
the position experiences random change during evolution.
First, there are established methods to calculate the degree
of conservation (Shannon 1948). In addition, nonconserved
positions1 in a protein sequence can be classified by other
criteria. Two ways of grouping positions are: (i) the extent
to which one position co-evolves with another position
(e.g., (Parente and Swint-Kruse 2013) and references
therein) or with multiple positions (e.g., (Lee et al. 2012;
Parente et al. 2015)); and (ii) the extent to which substitu-
tions follow the division of subfamilies within a phyloge-
netic tree (“phylogenetic” positions) (e.g., (Ye et al. 2008;
Mihalek et al. 2006; Gu et al. 2013)). Like the degree of
conservation, these two classifications of positions are
evaluated using sequence alignments (Fig. 1). The presence
of these evolutionary patterns implies an evolutionary
constraint that (i) is related to the structural or functional
requirements of the protein and thus (ii) indicates a position
that is sensitive to amino acid substitutions.

The current challenge to assessing whether rheostat
positions have a particular bioinformatic signature is
developing experimental datasets large enough for analysis.
Addressing this question requires the availability of large
(preferably whole-protein) substitution studies, in combi-
nation with sequence analyses. To date, our most clear-cut
observation is that the locations of rheostat positions are not
readily identified by co-evolutionary analyses. Furthermore,
several new questions can already be asked. For example, is
a position that is rheostatic in one homolog obligatorily
rheostatic in other homologs? Indeed, a study of engineered
transcription factors showed that the classification of a
position can differ among paralogs (Meinhardt et al. 2013;
Hodges et al. 2018). This indicates a limit to how much
information can be gleaned from sequence analyses.

In contrast to the challenges associated with identifying
rheostat positions via sequence alignments, the locations of

1 Note that analyses to describe the evolutionary features of a protein’s
positions (e.g., position 55 is a highly conserved position) differ from
the class of computer algorithms designed to predict the outcome of
particular amino acid substitutions (e.g., V55D is a catastrophic sub-
stitution). Substitution algorithms almost universally incorporate
sequence alignments, and sometimes position analyses, along with
other types of information; see (Miller et al. 2017) for an overview of
various techniques. Both substitution and position analyses require
careful attention to which sequences are used to build the protein
family. For further discussion about the issues of family size and score
thresholding, we refer the reader to a Perspective devoted to these
issues (Swint-Kruse 2016).
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neutral positions may correlate well with those positions
that have low sequence conservation (i.e., high sequence
entropy) and that lack all types of evolutionary patterns. In
one such example, we used several sequence analyses to
generate a composite “least patterned” score and used it to
successfully identify neutral and near-neutral positions in
LPYK (Martin et al. 2020). The LPYK findings match those
determined by the SNAP algorithm (Hecht et al. 2015),
which has performed well at discriminating individual,
neutral substitutions (e.g., (Wang and Bromberg 2019)).
The Bromberg lab is now working to develop a predictor for
the locations of rheostat, toggle, and neutral positions
(Miller et al. 2019). Our findings for LPYK (Martin et al.
2020) indicate that one way to further improve the success
at predicting neutral positions might be to include more
types of sequence analyses in the predictor.

Structural characteristics of rheostat positions do
not (yet) show clear features

Finally, rheostat positions must have some structural char-
acteristic(s) that lead to the noncanonical substitution out-
comes. By definitions, positions that modulate (rather than
abolish) function must tolerate a wide range of substitutions
without grossly altering the protein structure. To date, we
have observed rheostat positions in globular soluble proteins
(e.g., LPYK of Fig. 2) and in integral membrane proteins
(e.g., OATP1B1 of Fig. 3); efforts are ongoing to determine
whether rheostat positions exist in intrinsically disordered
proteins. We have observed rheostat positions to have both
near- and long-range effects on various functions, but no
obvious correlation with proximity to binding/active sites
(e.g., (Meinhardt et al. 2013; Wu et al. 2019)). As noted
above, “multi-rheostat” positions may be enriched in allosteric
regions of the protein. An intriguing possibility is that rheostat
positions modulate protein dynamics, as hypothesized by
Meinhardt et al. (2013). Finally, as has long been expected,
the locations of neutral and near-neutral positions in LPYK
were enriched on their surfaces; however, a large fraction of
their surface positions were not neutral (Martin et al. 2020).

Conclusion

Rheostat positions will impact the field of pharmacoge-
nomics in a myriad of ways. Rheostat positions are present
in a wide variety of proteins and they do not follow cano-
nical substitution rules. Substitutions at rheostat positions in
allosteric sites will have (as yet) highly unpredictable out-
comes on the activities of allosteric drugs and on drug
specificity. Efforts to correlate signature patterns with the
locations of rheostat positions are ongoing: they may be
more likely to have intermediate evolutionary conservation

levels and they might be identified by comparing disease
and genome/exome databases. Structurally, rheostat posi-
tions may be located at key dynamic nodes. More studies
are needed on rheostat positions in order to formulate new
substitution rules and prediction algorithms, in order to
advance the field of pharmacogenomics.
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