
Frontiers in Oncology | www.frontiersin.org

Edited by:
Wolfgang Link,

Autonomous University of Madrid,
Spain

Reviewed by:
Umber Cheema,

University College London,
United Kingdom
Cecilia Carubbi,

University of Parma, Italy

*Correspondence:
Durba Pal

durba.pal@iitrpr.ac.in

Specialty section:
This article was submitted to

Molecular and Cellular Oncology,
a section of the journal
Frontiers in Oncology

Received: 20 August 2020
Accepted: 29 January 2021
Published: 08 March 2021

Citation:
Arora L and Pal D (2021) Remodeling

of Stromal Cells and Immune
Landscape in Microenvironment

During Tumor Progression.
Front. Oncol. 11:596798.

doi: 10.3389/fonc.2021.596798

REVIEW
published: 08 March 2021

doi: 10.3389/fonc.2021.596798
Remodeling of Stromal Cells and
Immune Landscape in
Microenvironment During Tumor
Progression
Leena Arora and Durba Pal*

Tissue Engineering and Regenerative Medicine Lab, Indian Institute of Technology Ropar, Rupnagar, India

The molecular understanding of carcinogenesis and tumor progression rests in intra and
inter-tumoral heterogeneity. Solid tumors confined with vast diversity of genetic
abnormalities, epigenetic modifications, and environmental cues that differ at each
stage from tumor initiation, progression, and metastasis. Complexity within tumors
studied by conventional molecular techniques fails to identify different subclasses in
stromal and immune cells in individuals and that affects immunotherapies. Here we focus
on diversity of stromal cell population and immune inhabitants, whose subtypes create the
complexity of tumor microenvironment (TME), leading primary tumors towards advanced-
stage cancers. Recent advances in single-cell sequencing (epitope profiling) approach
circumscribes phenotypic markers, molecular pathways, and evolutionary trajectories of
an individual cell. We discussed the current knowledge of stromal and immune cell
subclasses at different stages of cancer development with the regulatory role of non-
coding RNAs. Finally, we reported the current therapeutic options in immunotherapies,
advances in therapies targeting heterogeneity, and possible outcomes.

Keywords: tumor microenvironment, stromal cell, immune cell, tumor progression, non coding RNAs
INTRODUCTION

“What is it that determines what organs shall suffer in the case of disseminated cancer”? (1). The
answer to this question proposed by Stephan Paget way back in 1889 led oncologists to study
different perspectives of growing tumors. Oncology is now branched to multiple disciplines starting
from early studies on genomic alterations, chromosomal aberrations, altered signaling, and cell
plasticity. Cancers are more than “just a disease of the genome” and hint clinicians to study various
aspects of tumor biology. During development, cancer cells undergo stochastic genetic and
epigenetic alterations leading to molecular and phenotypic differences that have implications in
heterogeneity, forcing the construction of their niche (2). Tumors have multiple non-cancerous
regenerative cell types that eventually differentiate into various tumor supporting cells (3). Lineage
plasticity enables cancer cells to adapt to changing environmental conditions like aberrant
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vasculature, low oxygen tension, high metabolic rates, and low
pH. It is the ability of a non-cancerous/cancerous cell to
differentiate into other cell types of distinct lineage (4).
Embryonic stem cells (ESCs), mesenchymal stem cells (MSCs),
and adult stem cells (ADCs) within the TME define routes to cell
plasticity and are the known originators of other cell types like
cancer-associated fibroblasts (CAFs), tumor endothelial cells
(TECs), tumor-associated macrophages (TAMs) to name a few.
These stem cells have the potential to differentiate into a broad
spectrum of cell types; however, the activation of pathways that
control stem cell is poorly understood (5). Studies on ESCs and
pathway analysis would help us to understand the developmental
plasticity in TME. Development of fundamental methods to
understand the role of ESCs in tumors include a) development
of organoid models from patient-derived samples, b) culture of
ESCs in the artificial stromal environment, and c) study of
activation pathways that derive stem cell characteristics. Tumor
organoids lead cancer research to study stromal and immune
cell interaction in TME but have certain limitations. Patient-
derived tumor organoids do not always recreate tumor tissue
architecture as they are anchorage-dependent (requires basement
membrane).The addition of extracellular matrix may not be a
passive bystander, but the biological consequences of this are
unexplored. Phenotypic and genotypic variations from organoid
to organoid may affect the experimental reproducibility and
enhance false-positive results. Potential contaminants like normal
epithelial cells cannot be ignored and hence affect pathway studies
in tumors. Lineage-specific transcription factors that are known to
govern embryonic cell fate specifications also plays a role in
characterizing cancer subtypes (6).

There are several mechanisms of cellular plasticity. Differentiation
is the most common route by which a pluripotent stem cell
evolves into a mature cell type (7). Contrarily, de-differentiation
reverts the terminally differentiated cancer cells to a less
differentiated stage within its lineage. Trans-differentiation is
another such route that takes de-differentiation a step further
to a point where it delineates and differentiates to other cell
types (8). Reprogramming is a different mechanism where a
differentiated cell reverts to its pluripotent source to adapt to
any other cell type (9). Reprogramming is a less explored area in
TME but has a huge potential in regenerative medicine. It outlines
the structure for establishing different cell types and promotes the
development of stromal cells like epithelial cells, CAFs, TECs,
pericytes, and immune cells, including monocytes, TAMs,
neutrophils, NK cells, B cells, T cells (10). These cell types also
differ phenotypically and genetically as the tumor progresses to
advanced stage (11).

Non-coding RNAs function as significant players in post-
transcriptional gene regulation within diverse cell types. Cancers
are primarily regulated by a different set of non-coding RNAs,
classified according to their sizes (12). MicroRNAs (miRNAs),
piwi-interacting RNAs (piRNAs), and small interfering RNAs
(siRNAs) are generated from precursor molecules. Long non-
coding RNAs (lncRNAs) are higher than 200 nucleotides in
length produced from intergeneric regions. Circular RNAs
(circRNAs) are a class of lncRNAs generated by a process
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called back-splicing, wherein downstream exons are spliced to
upstream exons in the reverse order that acts as miRNA sponges
as well (13). Increased sequencing depth and RNA profiling
strategies have identified varied sets of non-coding RNAs
including large intergenic non-coding RNAs (lincRNAs), intron-
derived small nucleolar lincRNAs (sno-lincRNAs), enhancer
RNAs (eRNAs), along with already known miRNAs, piRNAs,
however, functional roles of many are still unknown in cancers
(14). miRNAs, lncRNAs, and circRNAs regulate cancer stem cell
characteristics, epithelial-mesenchymal transitions (EMTs), and
vice-versa by epigenetic and transcriptional modification (15).
The role of non-coding RNA players in regulating stromal
and immune cell diversity within TME is specified in the
respective sections.
STROMAL CELL HETEROGENEITY

TME is remarkably a complex ecosystem with a heterogeneous
population of cancer cells and the associated stroma, which
drives tumor initiation and growth. Stromal cells, extracellular
matrix, paracrine signaling molecules (chemokines, cytokines,
and growth factors), and immune landscape formulates TME
(16). Interactions within genetically altered cancer cells and
stromal cells regulate hallmarks of cancer, such as replicative
potentiality, sustained angiogenesis, invasion, and metastasis
(17). Understanding cell heterogeneity in TME determines
which stromal cells have the potential to contribute to tumor
development and progression (18). Intra-tumoral heterogeneity
within varied tumor types clinically fails/minimally adopts the
given therapeutics and is one of the critical reasons for post-
treatment immune-modulatory microenvironment and tumor
relapse. Therefore, understanding each component and related
phenotypic distinctions of this stromal population would
help to predict the difference in primary and advanced
tumor cell subtypes, genomic co-relations within subtypes,
population-specific markers, molecular/cellular pathways
governing developmental origins and differentiation, the source
of antitumor/inflammatory cells, and modifiers of immune
microenvironment. Stromal cells are comparatively fewer than
epithelial and immune cells (19). Single-cell RNA sequencing
(scRNAseq) gives a comprehensive blueprint of stromal and
immune cell subtypes and analyses differentiation dynamics. It
identifies rare cell populations and transcriptome responses in
specific tumor conditions in individual or collective tumor
samples. Advances in this technology enable studies on genetic
and non-genetic tumor mechanisms, microenvironmental cues,
cell-cell interactions, developmental pathways, rare tumor
subpopulations, and investigation of non-responders to cancer
treatments (20). Not only for tumor assessments, but single-cell
sequencing is also beneficial for developing next-generation
cell-based therapies. Its efficiency in providing high-resolution
genome-wide molecular readouts allows the characterization
of tumor samples at a larger scale, identifying new targets
for drug development based on repressed or activated gene
expressions (21).
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DIVERSITY IN TUMOR REMODELING
CAFS AND DISTINCT GENE PROGRAMS

CAFs are the major stromal component of many solid tumors and
are well known phenotypic remodelers of the stromal environment
(22). They constitute a diverse cell population, but the extent of
heterogeneity is scarcely explored. Based on different expression
signatures, fibroblasts are subdivided into 1) Quiescent fibroblasts:
less tumorigenic and primarily found in non-malignant samples
and 2) myofibroblasts/CAFs that promote tumors causing tumor
resistance, relapse, and strongly enriched in malignant or metastatic
tumors (23). They secrete a unique repertoire of collagens and
elastins, maintaining the extracellular matrix, thus characterizes
desmoplasia (23). Quiescent fibroblasts secrete low levels of
collagens, specifically COL13A1 and COL14A1 and high levels of
elastins. Myofibroblasts exclusively originate from tumor tissues and
are mostly enriched in collagens and low elastins (24).
Myofibroblast subtypes have different activation mechanisms such
as TGF-b1, IL-11 stimulation, and IL-1b, IL-6 treatment that
induces upregulation of inflammatory fibroblast marker genes
(iCAFs) (25). CAF specific markers of identification include a
smooth muscle actin (aSMA) (also known as ACTA2), desmin,
S100A4, Fibroblast activated protein (FAP), express pro-
inflammatory cytokine arrays like IL-1b, IL-6, IL-8, TGF-b,
CXCL12, and collagen (18). Fibroblastic reticular cells are another
immunologically specialized myofibroblasts that are known to
attract immune cells within lymph nodes. These fibroblasts
generate ECM for the transit of potential antigens, serve as a
migration pathway for leukocytes allowing active immune
surveillance (26). CAFs are further characterized based on distinct
cellular sources: vascular CAFs (vCAFs), matrix CAFs (mCAFs),
cycling CAFs (cCAFs) and developmental CAFs (dCAFs). vCAFs
originate from perivascular areas, mCAFs and dCAFs are the
product of resident fibroblasts found in TME of genetically
engineered MMTV-PyMT mouse model of breast cancer (27).
Dominguez and co-workers found TGFb-driven LRRC15+ CAF
lineage in genetically engineered pancreatic ductal adenocarcinoma
(28). CAFs are also found to be immunomodulatory expressing
MHCII genes and induces antigen-specific ligation with CD4+ T
helper cells by showing CD74 in PDAC and named as “antigen-
presenting CAFs (apCAFs)” in human PDAC (29).CAFs in late or
metastatic tumors differ from early-stage tumors (phenotype
diversification presented in Figure 1) in having high metabolic
synthesis and dysregulated transcriptional profiling. Among the
various known functions, CAFs produce ECM components,
mediate collagen crosslinking increasing stiffness, and direct
cancer cells survival signals. They immunomodulate the TME
evading tumor surveillance (22). Table 1 describes the CAF
subtypes and related gene signatures found in TME.

Non-Coding RNAs Involved in Fibroblast
Differentiation to CAFs and Its Subtypes
Despite being highly researched, CAFs are still a mystery
and can be a great tumor-targeting cell if explored. It is a
dynamic population in TME that is pluripotent and is known
for differentiating into other cell types. Various reviews have
Frontiers in Oncology | www.frontiersin.org 3
highlighted the miRNAs involved in fibroblast differentiation,
tumor progression, and metastasis (12, 22). In breast, ovarian,
and endometrial cancers downregulation of miR-31, miR-214,
miR-148a, miR-205, miR-200b, miR-200c, miR-141, miR-101,
miR-342-3p, let-7g, miR-26b, miR-15a, miR-16, and upregulation
of miR-155, miR-221-5p, miR-221-3p miRNAs have shown
significant regulation in the tumor microenvironment. Reversal
of these microRNAs reversed the CAFs’ phenotypic and
genotypic characteristics (35). Recently identified non-coding
RNAs miR877-3p, and miR-133a targets TGF-b axis causing
myofibroblast differentiation (36, 37). Twist1 induced miR-199a-
3p suppress caveolin-2 and activates myofibroblast differentiation
via TGF-b pathway (38). LncRNAs further plays a significant role
in determining fibroblast subtypes. LINC00092 long non-coding
RNA upregulation is co-related with CXCL14-mediated CAF
progression in ovarian cancer cells. LINC00092 overexpression
is related to poor clinical prognosis and increased glycolysis
leading to metastasis (39). Tong and co-workers discovered the
role of exosomal lncRNA POU3F3 in esophageal squamous cell
carcinoma (ESCC). POU3F3 regulates fibroblast differentiation
to CAFs and causes cisplatin resistance in ESCC. Many
lncRNAs with similar roles in different cancers are known:
CASC9, PART1, CCAT1, TTN-AS1, DNM3OS, FMR1-AS1,
LINC01419, NMR, PCAT1, ROR (40). Aberrant circRNA
expression is co-related with myofibroblast differentiation
and tumorigenesis. circHIPK3 regulates lung fibroblast-to-
myofibroblast transition by functioning as a competing
endogenous RNA. circHIPK3 functions as an endogenous miR-
338-3p sponge and inhibit miR-338-3p activity, increasing SOX4
and COL1A1 expression and fibroblast differentiation (41).
Advances in recent research and use of circRNA databases (for
example, MiOncoCirc) are required further to identify the role of
circRNA in cellular plasticity variations and using them as
therapeutic options.
PROFILING OF PHENOTYPICALLY
ABNORMAL TUMOR ENDOTHELIAL
CELLS

Endothelial cells are in a constant mode of activation, quiescence,
and re-activation, depending on the growing tumors’ metabolic
needs and requirements (42). Individual endothelial cells
adopt different phenotypes and functions according to the
tumor requirements. Endothelial cell phenotypes are primarily
divided into tip cells and stalk cells that exhibit distinct
genotypes (42). With advances in technologies and the
advent of scRNA seq techniques, different subpopulations are
discovered. The first parameter to distinguish ECs from the rest
of the tumor cells is a separation through a pan-hematopoietic
marker (CD45−) combined with CD31, CD144, and vWF. CD31
is a transmembrane glycoprotein that forms the intercellular
junctions, CD144 (VE-Cadherin) is an endothelial adhesion
molecule and vWF (von Willebrand Factor), a glycoprotein
that mediates platelet adhesion in the endothelium (43). All
these are preliminary markers to separate endothelial cell
March 2021 | Volume 11 | Article 596798
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population. Other EC identification markers include tip genes
(ESM1, NID2, KCNE3, DLL4, RAMP3, EDNRB, CLDN5),
capillary markers (CA4, CD36), ACKR1 gene expression by
high endothelial venules, arterial (FBLN5, GJA5), lymphatic
markers (PROX1, PDPN), pericyte marker RGS5, non-myeloid
specific marker AIF1 in different cancer types (44). Stalk
endothelial cells generally express VWF, SELP, ACKR, and
TMEM252. Several pro-angiogenic factors, metabolic
signatures, and transcription factors have differential
expression in tumor endothelial cells compared to non-tumor
cells like HSFG2 (44). Lambrechts and co-workers classified
tumor endothelial cells in different clusters based on the
marker genes identified; Lymphatic endothelial cells (PDPN+,
PROX1+), tumor-derived blood endothelial cells (FLT1+,
IGFBP3+, and SPRY1+), malignant, and non-malignant
endothelial cells (23) (Figure 1). Transcriptional and
epigenetic dysregulation in TME triggers the formation of
these angiogenic candidates and their subtypes from healthy
blood endothelial cells. TEC subtypes lead to loss of vascular
Frontiers in Oncology | www.frontiersin.org 4
integrity, structure fragile and leaky blood vessels, and migration
of immune cells, thus contributing to the growing complexity of
tumors (45). Goveia and co-workers extend the endothelial
heterogeneity by discovering previously unknown functionally
validated endothelial phenotypes across patients and in-vitro/in-
vivo models. Non-malignant lung (hpNECs) tissues have a
comparatively high abundance of postcapillary, alveolar type II,
scavenging, and lymphatics endothelial cells than aggressive
tumors. TEC phenotypes were majorly immature ECs, tip cells,
patient-specific and lymphatics hTECs. Arterial, activated
postcapillary veins, and alveolar type II phenotypes are
common in non-tumor and tumor tissues (46). They have also
identified top-ranked markers of each phenotype and specified
roles in tumor progression (listed in Table 2). The top-ranked
marker genes have significant roles in regulating immune
surveillance, EC migration, matrix remodeling, VEGF
signaling, and angiogenesis by increasing growth factors and
chemical stimuli that triggers angiogenic cascade within
TME, including vascular endothelial growth factor (VEGF),
FIGURE 1 | Stromal cell types in early and late-stage tumors. (A) early tumors consist of non-aggressive quiescent fibroblasts in the Tumor microenvironment (TME).
(B) Factors such as hypoxia lead to tumor inflammation and trigger environmental clues that participate in the paracrine signaling loop (cytokines, chemokines,
growth factors) and angiogenic switches (VEGF, PDGF-b, FGF, and EGF) which causes stromal cell polarization or reprogramming. Together all these factors are
responsible for the diversification of stromal cell types during cancer development. (C) Cytokines growth factors such as TGF-b, IL-6 released from tumor cells
activate quiescent fibroblasts. (D) Activated fibroblasts further reprogram to secretory phenotypes specialized in ECM remodeling and immuno-modulation. These
fibroblasts have enhanced proliferative and matrix secreting (desmoplasia) capabilities. Some of these aggressive cancer-associated fibroblasts (CAF) subtypes found
in different types of cancers include antigen-presenting CAFs (apCAFs), inflammatory CAFs (iCAFs) and myofibroblastic CAFs (myCAFs). These subtypes are
explored through single-cell RNA sequencing transcriptomics and are named according to the secretory factors and roles which these phenotypes play in the TME.
(E) Different types of endothelial cells found in tumor tissues: common endothelial cell types found in core or adjacent tumor areas are known as tumor endothelial
cells. Apart from conventional tip and stalk cells, various subpopulations have been identified that express gene signatures related to the basement membrane
breaching (triggering metastasis), immune cell recruitment, and immuno-modulation (causing immunosuppressive TME). Identifying such angiogenic candidates with
activated angiogenic transcription factors and enzymes responsible for angiogenesis will be a potential source to develop anti-angiogenic strategies.
March 2021 | Volume 11 | Article 596798
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TABLE 1 | Cancer-associated fibroblast subtypes found in tumor tissues as revealed by single cell RNA sequencing.

Significance References

Present majorly in early-stage tumor tissues (30, 31)
Immunologically specialized myofibroblasts that gather immune cells into the
lymph node, support T cell, and B cell survival but prevent their activation,
maintains dendritic cell migration

HOPX Found primarily adjacent to the cancer cells, Smooth muscle contraction,
focal adhesion, ECM organization, collagen formation

(32)

(matrix Found in desmoplastic areas away from tumors, activate inflammatory
pathways such as IFNg response, TNF/NF-kB, IL2/STAT5, IL6/JAK/STAT3,
and the complement pathway

LA-DPA1, Have immunomodulatory capacity (activate CD4+ T cells), involved in antigen
presentation and processing, fatty-acid metabolism, MYC targets, and
MTORC1 signaling

(28, 29)

Lipid droplet–containing fibroblasts, express lipid metabolism genes
Key player in immunosuppression, promote differentiation of CD4+CD25+ T
lymphocytes into CD25+FOXP3+ cells, characterized by cell adhesion, ECM
organization, and immune response

(33)

Mainly present in LumA tumors
Detected mainly in juxta-tumors
Activated CAF subset, detected in all tumor types LumA, TNBC, HER2,
characterized by muscle contraction, regulation of actin cytoskeleton, and
oxidative metabolism

2F2), Originated from perivascular location, significant role in vascular development
and angiogenesis

(27)

eins
d matrix-

Found mainly in normal tissues or early tumors, Resident fibroblasts, involved
in ECM production, regulates tumor immune response

enes Majority cells were in G2, M or S phase of cell cycle unlike others which are
in G1 phase
Originated from malignant cells undergone EMT, involved in differentiation,
development, and morphogenesis
Chemoresistance, poor survival (34)
TGF-b driven cell population, high expression is associated with poor anti-
PD-L1 therapy response

(28)
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Cancer type/models CAF subtypes Markers/gene signature

Lung adenocarcinoma Matrix fibroblasts COL13A1+, COL14A1+
Fibroblastic reticular
cells

PDPN, PDGFRA

PDAC (Human+Mouse) Myofibroblasts a-SMA++, TAGLN, MYL9, TPM1, TPM2, MMP11, POSTN,
(contractile proteins)

Inflammatory CAFs
(iCAFs)

CLEC3B, PDGFRa, CFD, LMNA, DPT, AGTR1, HAS1, HAS2
proteins)
IL6, IL8, chemokines CXCL1, CXCL2, CCL2, and CXCL12

PDAC (Human) Antigen-presenting
CAFs (apCAFs)

COL1A1, COL1A2, DCN, PDPN, MHCII genes (HLA-DRA, H
and HLA-DQA), CD74

Lipofibroblasts FABP4, CAR3
Breast Cancer CAF-S1 CD29+ FAP++ FSP1+ aSMA++PDGFRb+ CAV1low

CAF-S2 CD29low FAP- FSP1−/lowaSMA- PDGFRb- CAV1−

CAF-S3 CD29+ FAP- FSP1++aSMA-/low PDGFRb+ CAV1-/low

CAF-S4 CD29++ FAP- FSP1+ aSMA++ PDGFRb+ CAV1low

Breast Cancer
(MMTV-PyMTmouse
model)

Vascular CAFs (vCAFs) vascular regulatory genes (NOTCH3, EPAS1, COL18A1, NR
desmin, Nidogen-2

Matrix CAFs (mCAFs) ECM-related genes (DCN, LUM, AND VCAN), structural prot
(COL14A1), matricellular proteins (FBLN1, FBLN2,SMOC), an
modifying enzymes (LOX, LOXL1), CXCL14

Cycling CAFs (cCAFs) Similar to vCAFs but have differentially expressed cell cycle g

Developmental CAFs
(dCAFs)

stem cell genes (SCRG1, SOX9, AND SOX10),

Breast and lung cancer CD10+GPR77+ CAFs CD10, GPR77
PDAC LRRC15+ CAFs leucine-rich repeat-containing 15 (LRRC15), PDPN
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TABLE 2 | Molecular profiling of endothelial cell heterogeneity in tumor human/mouse tissue samples.

Major functions/activated signaling pathways References

ytoskeleton remodeling, involved in VEGF signaling, EC migration,
tracellular matrix formation, collagen production

(30, 46, 47)

nown to originate from tip cells, maintains endothelial cell polarity,
men formation

(47, 48)

ecrete SEMA4C promoting metastasis (46, 49)

ot known
press chemokines and cytokines such as IL6, IL33, IFNGR1,
NGR2, role in macrophage homeostasis, express neutrophil
emoattractants
ot known
ot known
ot known
press chemokines and cytokines such as IL6, IL33, IFNGR1,
NGR2, role in macrophage homeostasis, express neutrophil
emoattractants
romote vascular regeneration and repair (50)

otch signaling (46)
volved in vascular integrity, homeostasis, and vasotonus (46, 51)
nti-microbial defense (46)
soregulation (46)
ukocyte recruitment, regulation of blood pressure and perfusion (46, 52)
munomodulatory functions (46, 51)
ukocyte recruitment, tissue perfusion, and pulmonary blood
essure, involved in immune cell recruitment

(46)

volved in antigen presentation (46, 51)
dhesion, antigen presentation, pathogen clearance, inhibition of
mor angiogenesis

(46)

asement-membrane breaching, immune cell recruitment, and semi-
ofessional antigen presentation, tumor angiogenesis

(46, 51)

pregulates expression of tip cell markers, initiation of vessel
routing, involved in collagen remodeling and basement membrane
gradation

(46)

otch signaling, develop into tumor ECs (46)

press both capillary and arterial markers, VEGFA, Notch signaling (46, 53)
press both capillary and venous markers, VEGFA, Notch signaling (46, 53)
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Endothelial cell
phenotype

Transcriptional profiling

Tip cells ESM1, APLN, ADM, MMP14, ANGPTL2, INSR, PDGFB, CXCR4, PGF, KCNE3, DLL4, RAMP3,
EDNRB, LXN, CD34

C
ex

Stalk cells VWF, SELP, ACKR1, SPINT2, VEGFR2, K
lu

Lymphatic ECs (LECs)
and subtypes

LYVE1, CCL21, TFF3, MMRN1, ADIRF, AKAP12, FABP4, CD9, ANXA2, SNCG, GYPC, S100A10,
VIM, PPF1BP1, EFEMP1, PROX1, PDPN

S

LEC I: ACKR4, NT5E N
LEC II: TNFRSF9, MARCO, IFNGR, CSF1, CXCL1-CXCL5 Ex

IF
ch

LEC III : ACKR4, NT5E, LYVE1, MFAP4 N
LEC IV : PDPN, LYVE1,CCL21 N
LEC V:CLDN11 N
LEC VI : MARCO, LYVE1, CSF1, CXCL1-CXCL5 Ex

IF
ch

Endothelial progenitor
cells

TIE2, FGF3, VEGRF2, CD34 P

Tumor ECs VEGF N
Arterial ECs GJA4, GJA5, SOX17, EFNB2, DKK2, CXCL12, FBLN5, JAM2, FBLN5, CYTL1 In
Type I alveolar capillaries EMCM, VWF (low), podoplanin, aquaporin5 A
Type II alveolar capillaries FCN3, SLC6A4, TMEM100, IL7R, BTNL9, TNFSF10, VIPR1, CD14, NOSTRIN, HIF3A, VWF Va
Postcapillary veins VWF1, ACKR1, SELP, VCAM1 Le
Large vein ECs VWF, CYTL1, PI16, NOS3, LCN2, SLC38A5 Im
Post capillary vein ECs ACKR1, SELP, VCAM1, CCL14, POSTN, ACTN1, PRCP, NPC2, DUSP23 Le

pr
Capillary ECs MHC-II, MFSD2A, RGCC In
Scavenging capillary AIF1, APOC1, APOE, CCL18, CD36, CD52, CD68, CD74, CRIP1, CYBA, FCER1G, FCGR3A, FTH1,

FTL, LST1, LYZ, MARCO, MNDA, MSR1, OLR1, TREM1, TYROBP
A
tu

Proliferating ECs TOP2A, MKI67, CCDC34, CDKN1A, CENPA, CKS1B, CKS2, EZH2, FEN1, H2AFZ, HMGB2,
HMGN2, HSP90AA1, LGALS1, LIG1, LMNB1, NRM, PCNA, RRM1, SMC2, SPC24, STMN1,
TUBA1B, TYMS

B
pr

Breaching ECs Tip cell markers (DLL4, CXCR4, APLN), collagen remodeling markers (COL4A1, COL4A2, COL18A),
HSPG2, IGFBP3, LAMB1, MCAM, PXDN, LAMA4, NID2

U
sp
de

Immature ECs ID2, ID3, ENG, PLVAP, GSPG2, APLNR, VWA1, RBP7, GSN, MMP2, VEGF receptors (KDR, FLT1,
TIE1)

N

Capillary-arterial ECs TGFB2, GLUL Ex
Capillary-venous ECs TFRC, CAR4 Ex
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fibroblast growth factor (FGF), platelet-derived growth factor
(PDGF), angiopoietins (Ang), hepatocyte growth factor (HGF),
hypoxia-inducible factor (HIF), insulin-like growth factor
(IGF), transforming growth factor-beta (TGFb), matrix
metalloproteinase (MMP), and tumor necrosis factor (TNF)
(54). Blood vessels built of TECs have loose interconnecting
tight junctions, irregularly shaped, tortuous with high interstitial
pressure, and ill-organized. TEC release pro-angiogenic factors
such as VEGF, PDGF-b, FGF, and EGF show chromosomal
abnormalities and are resistant to anticancer drugs (55).
TEC derived cadherin-2 induces HIF-1a/VEGF mediated
angiogenesis by regulating MAPK/ERK and MAPK/JNK
signaling pathways (56).

Non-coding RNAs Regulation in Tumor
Angiogenesis
Controlling vascular inflammation and angiogenesis is a
limiting step to control tumor metastasis. Activation of tumor
endothelial cells involves a cascade of events involving
regulation by non-coding RNAs. They regulate transcriptional
factors and governance mechanisms of neighboring genes.
Various miRNAs are long known to regulate angiogenesis in
tumor microenvironment. A comprehensive overview of pro-
angiogenic and anti-angiogenic miRNAs is given in Table 3.
lncRNA acts as molecular decoys of RNA binding proteins and
are known to regulate protein-coding genes via interaction with
transcriptional factors and other binding proteins (65). MVIH
was the first lncRNA known that accounts for tumor angiogenesis
in hepatocellular carcinoma (66). lncRNA regulate angiogenesis
by activating oncogenic signaling pathways like NF-kb, STAT-3,
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AKT, mTOR, WNT. Man and co-workers reported a set of
endothelial cells enriched with lncRNAs and identified the
role of spliced-transcript endothelial-enriched lncRNA (STEEL)
in angiogenic potential, macrovascular/microvascular identity,
and shear stress responsiveness (67). STEEL upregulates
eNOS and transcription factor Kruppel-like factor 2 (KLF2)
in endothelial cells. Some of the other known lncRNAs include
MALAT1, MANTIS, PUNISHER, MEG3, MIAT, SENCR,
GATA6-AS, WTAPP1, CCDST, PVT1, CamK-A, UBE2CP3,
HULC, OR3A4, LINC01410 each having specific roles in tumor
angiogenesis (68). Wang and co-workers recently discovered a
lncRNA named HITT (HIF-1a inhibitor at translation level) that
is down-regulated in multiple human cancers (69). In hypoxic
conditions, miR-205 upregulation causes HITT degradation and
that allows YB-1 (Y-box binding protein) translational regulator
binding on 5′UTR HIF-1a mRNA region leading to tumor
angiogenesis. circRNA is another group of lncRNAs regulating
angiogenesis (69). Multiple circRNAs acts as miRNA sponges and
regulate the mRNA expression of targeted angiogenic and
vascular sequences. Yang and co-workers identified an
inhibitory role of forkhead DNA-binding protein-Foxo3
circRNA on tumor growth and angiogenesis. circFoxo3 binds
to miR-22, miR-136, miR-138, miR-149, miR-433, miR-762,
miR-3614–5p, miR-3622b–5p and promotes translation of
Foxo3 mRNA, which is a tumor suppressor gene (70).
Similarly, circ_0003575, circ_0003204, circ_002136, and circ-
001971/miR-29c-3p plays an important role in angiogenesis
(71–73),circ_001621/miR-578 regulates VEGF/HIF-1a axis
controlling breast cancer angiogenesis (74), circ_0007059/miR-
378 regulates EMT transition in lung cancer cells (75). Also, long
TABLE 3 | List of miRNAs regulating angiogenesis in tumor microenvironment.

miRNAs Targeted signaling pathways References

Proangiogenic miR-9, miR-21, miR-874, miR-16, miR-34a, miR-590-5p, miR-
132, miR-296, miR-210, miR-568, miR-25-3p, miR-150, miR-499

VEGF signaling (57–59)

miR-210, miR-155, miR-21, miR-200c, miR-199 HIF signaling (57, 58, 60, 61)
miR-375, miR-296, miR-146a PDGF (57, 62)
miR126, miR-382, miR-26a, miR-145 RTK signaling (57, 62)
miR-9, miR-26-3p, miR-146a-5p, miR-98, miR-181a-5p MMP signaling (57, 62)
miR-503 FGF signaling (57, 62)
miR-204 Angiopoietin (60, 61)
miR-494 Akt/eNOS pathway (60, 61)
miR-93 Integrin-b8 (63)

Anti-angiogenic miR-15a, miR-16, miR-29b, miR-29c, miR-128, miR-497, miR-
126, miR-503, miR-204, miR-195, miR-124, miR138, miR-134,
miR-107, miR-206, miR-622

VEGF signaling (57, 59, 61, 62)

miR-519c, miR-22, miR-107, miR-204, miR-128, miR-145, miR-
206

HIF signaling (57, 61, 62)

miR-125b VE-cadherin (57, 62)
miR-29b, miR-204, miR-200c PDGF (57, 62)
miR-21, miR-218, miR-18a, miR-145 RTK signaling (60, 61)
miR-29b MMP signaling (57, 62)
miR-503, miR-148b-3p FGF signaling (57, 62)
miR-542-3p, miR-543 Angiopoietin (57, 62)
miR-206 Akt/eNOS pathway (60, 61)

Pro/Anti-angiogenic miR-27b VEGF, AMPK, Semaphorin 6A (57, 62, 64)
miR-17-92 HIF-1a, VEGF
miR-19a MMP9, VEGF
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intergenic non-coding RNA-p21 (lincRNA-p21) is regulated by
TP53 and angiogenesis-related genes (76).
IMMUNE LANDSCAPE

Immune cells are prime in TME that initially guards the body
but eventually turns into a tumor supporting population (10).
Both myeloid and lymphoid lineage have pro-tumoral and
anti-tumoral roles depending upon the stage of cancer. For
instance, macrophages promote T cells’ activation to clear
tumor cells at early stages but prevent T cells from even
recognizing the tumor cells as a tumor progresses (41).
Immune cells communicate among each other and regulate
mechanisms linked to tissue homeostasis and altered patient
survival. Secretions from immune cells also shape the activity
within TME. The secretion of CCL5 and XCL1 from NK cells
attract antigen-presenting dendritic cells. IFNg secretion
promotes macrophage polarization and Th1 cell activation
that triggers the immune microenvironment against tumor
cells (77). In response, tumor cells secrete factors such as pro-
inflammatory cytokines like IL8 and CXCL-1, 2, 8 that attract
neutrophils. Neutrophils produce neutrophil extracellular
traps (NETs) that shield the tumor cells from cytotoxic CD8+
T cells, NK cells, and minimize the effect of immunotherapies
(78). Therefore, growing tumors are continuously combating the
body’s immunity, which they eventually defeat. Immune cells are
highly complex and consist of several distinct lineages that make
them hard to study and target (79). Recognizing each immune
cell’s indispensable role in supporting tumor proliferation, it
would help us curb immunosuppressive reactions and promote
immuno-stimulatory functions. scRNA-seq is a high-throughput
approach that analyses the immune cells that typically display
diverse phenotypes in-vivo (80). It identifies transcriptomics at
single cell level by applying data processing pipelines including
demultiplexing, sequence QC, alignment, and transcript
quantification (81).
MONOCYTES AND MACROPHAGES ARE
PHENOTYPIC MARKERS OF AGGRESSIVE
TUMORS

Monocytes/macrophages are the major components of the tumor
ecosystem (23). Human monocytes are divided into 3 largest
clusters: classical (CD14++, CD16−), intermediate (CD14+
CD16+), and non-classical (CD14+ CD16++) (82). Recent
mass cytometry (CyTOF) and single-cell studies have identified
new monocytic markers in tumor cells: CD68, CSF1-R, CSF2-R,
CD11C, CD1C, CD141, and HLA-DR surface markers (83). A
subset of monocytes expressing angiopoietin receptor TIE2 play
a significant role in tumor angiogenesis. TIE2 monocytes are
CD54+ CD11b+ CD16+ CD14low L-selectin-CCR2− and its
expression is upregulated in response to hypoxia (84).
Monocytes uniquely differentiate into immunosuppressive
macrophages rather than into immunostimulatory DCs
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stimulated by the tumor secretions (85). Macrophages differ
from monocytes by having a unique set of markers (D68,
MSR1, MRC1) (44). Monocytes are recruited to the TME by
chemoattractants like CCL2, CCL4 which further differentiate
into TAMs. Conventionally, macrophages are divided into two
major groups CD14+ S100A8/9+ M1-like (classical macrophages)
having anti-tumor functions and CD16+(FCGR3A) M2-like
(alternate macrophages) with pro-tumorigenic phenotypes (86).
The percentage of TAM infiltration is a marker of aggressive
disease and poor prognosis (87). Thorsson and colleagues
characterized the dominance of monocytes/M2 macrophages
associated with the worst prognosis while evaluating the
immunogenomic signature in around 33 cancer types (88). M2
macrophages shows aggressive tumor phenotype associated with
tumor growth, angiogenesis, immune evasion and cancer
stemness. It also support mutagenic microenvironment and
cancer initiation by producing pro-inflammatory cytokines
(IL6, TNF-a, IFN-g), growth factors (VEGF, EGF), proteases
and reactive oxygen species (30). Tumor tissues are enriched in
recruited macrophages known as mo-Macs that are ontogenically
different from resident macrophages and are both anti and pro-
inflammatory (30). The macrophage population varies spatially
depending upon its location in growing tumors (tumor and juxta-
tumoral regions), and tissue specificity. Tumor-specific subtypes
as revealed by single-cell technology include early immigrant
macrophages (HLA-DR+CD192+), monocyte resembling
immature macrophages (CCR2+), tissue-resident macrophages
(CD206+HLA-DR+), TAMs (CD64+HLA-DR+), and myeloid-
derived suppressor cells (MDSC; HLA-DR−/low) (19, 44) (Figure
2). Quin and co-workers precisely identified the types of M2 type
macrophages in heterogeneous tumor microenvironment based
on gene expression: PPARG+ macrophages exclusive to normal
lung tissue, CCL18+ macrophages cluster and GPNMB, MMP9+
cluster having a role on tumor remodeling, CX3CR1+ cluster
involved in pathogen and apoptotic cell clearance (44). The recent
subtype identification by Qian and colleagues demonstrated
the role of macrophages in tumor progression, promoting
angiogenesis and invasion, and suppressing T cell responses
(44). Many reports have also indicated the presence of PD-L1 in
pro and anti-inflammatory markers (19, 89). PD-L1 TAMs are
phenotypically heterogeneous and express CD38, pro-tumor
markers CD204, CD206, CD169, and CD163, and the anti-
tumor marker CD169 (19). Some monocyte and macrophage
subsets are mentioned in Table 3.
Regulation of TAM Phenotype by
Non-Coding RNAs
TAMs association with immunosuppressive and tumor
supporting M2 phenotype necessitates TAM reprogramming
that would act inversely and help cure tumors. The potential
ability of TAM reprogramming towards antitumor phenotypes
largely depends upon transcriptional control. There are a set of
miRNAs involved in alternative macrophage activation: miR-9,
miR-21, miR-375, miR-340-5p, miR-125a, miR-511, miR-92a,
miR146a, miR-147, miR-145-5p, miR155, miR-187 (90, 91).
The functional and biological relevance of lncRNAs is in the
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initial phase of research. RP11-361F15.2 is a protumoral
lncRNA that promotes M2-like polarization of TAMs by
inversely regulating miR-30c-5p and plays a vital role in cancer
invasion (92).

Similarly, BCRT1 is an M2 polarizing lncRNA that is
upregulated in response to tumor hypoxia and leads to
breast cancer progression via novel HIF-1a/lncRNA BCRT1/
miR-1303/PTBP3 pathway (93). LncRNA RPPH1 mediates
protumoral macrophage polarization by upregulating anti-
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inflammatory cytokines and also leads to colorectal cancer
migration and metastasis by preventing b-III tubulin (TUBB3)
ubiquitination (94). Many lncRNAs are known (NEAT1,
TUC339, MM2P, MALAT1, ANCR), and many are still in
research (95–97). CircRNAs also have regulatory functions but,
not much is known about the role of circRNA in macrophage
polarization as it relatively new field and holds promises in future
therapeutics. Such discoveries would help us to understand
precision medicine, some can be a biomarker depending upon
FIGURE 2 | Immune landscape in early and late tumors. (A) Early tumors consist of non-aggressive hemopoietic cells such as classical monocytes, M0
macrophages, M1 pro-inflammatory/anti-tumor macrophages, NK1 and NK2 natural killer cell subtypes, conventional dendritic cells, naïve T cells, Follicular B cells.
(B) As the tumor progresses to advanced stages, multiple immune cells converge to support pro-tumorigenic/anti-tumorigenic functions. Tumor-derived factors such
as TGF-b, FGF or PDGF, interleukins, etc. are responsible for the diversification of immune cell types during cancer development. Moreover, with an increase in
hypoxic and inflammatory core sites and activation of angiogenic switches, immune cells alter their conventional anti-tumorigenic behavior to pro-tumorigenic
potential. (C) Monocyte subtypes, especially classical CD14+, Non-classical CD16+, TIE2+ cells, and intermediate cells, are present in late tumors. Hypoxia is a well-
defined factor that leads to the regulation and infiltration of these monocytes into TME. (D) Types of macrophages present in late tumors: M2 (pro-tumorigenic) is the
massively distributed subtype in late tumors and is related to poor prognosis and patient survival. They secrete a plethora of pro-tumorigenic proteases, cytokines
and growth factors (for example, VEGF, EGF, which participates in a paracrine signaling loop through tumor-secreted CSF-1). The number of M1 macrophages are
less in late tumors but comparatively higher in early tumors as they are anti-tumorigenic. MDSCs (myeloid-derived suppressor cells) are the recently discovered
heterogeneous group of immune cells that are immunosuppressive. (E) Types of different neutrophils present in late tumors: majorly 5 types of neutrophils are known
which are evolutionarily categorized from two subsets i.e., pro-tumorigenic and anti-tumorigenic. (F) Subtypes of T cells that play a role in shaping tumor immunity:
helper, cytotoxic and effector memory T cells fight against growing tumors directly or indirectly by antigen presentation, cytotoxic granzyme and perforin release,
cytotoxic T cells upon exhaustion are termed as exhaustive T cells and are signature of aggressive tumors, regulatory T cells are immunosuppressive, therefore linked
with poor patient survival, gdT cells are a significant focus of cancer immunotherapy as they have strong cytokine production ability. (G) Types of B cells found in
late-stage tumors, their antibody-secreting skills are linked with prolonged patient survival. But regulatory B cells are immunosuppressive. (H) Natural killer (NK) cells
shaping tumor immunity: these are the cytotoxic cells and express a specialized class of natural cytotoxicity receptors (NCRs) such as NKp30, NKp44, and NKp46
which initiate tumor targeting by recognition of heparan sulphate on cancer cells. (I) Different types of dendritic cells (DCs) present in late-stage tumors: these are the
active cells and express co-stimulatory molecules having efficient anti-tumor immune responses.
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its abundance in a particular tumor, and some can be a great
therapeutic tool.
T CELL INTERACTOME WITHIN TME

The complexity of tumor-infiltrating T cells suggests a strong
influence of tumors on the T cell transcriptome. T cell
population is generally sorted from the rest of the immune
cells by CD3+CD4+CD8+CD25+ cell surface markers (98).
They are classified conventionally as Naïve, effector, and
memory T cells. In a specific study by Lambrechts and co-
workers on NSCLC, single-cell sequencing reveals T cells clusters
into regulatory T cells (FOXP3+), natural killer and natural killer
T cells (FGFBP2+), CD8+ T cells (CD8+, naïve, effector, resident
memory or exhausted), CD4+ T cells (CD4+), and minor
populations of gd T cells (23) (Figure 2). Following infiltration,
naïve T cells differentiate into effector T cells that further activate
into cytotoxic or central memory T cells (99). Primary tumors
are enriched mainly with effector T cell subtypes characterized by
high expression of chemokine receptors and cytotoxic genes like
CD28, ICOS, OX40, CD40L, and CD137 and show low
expression of exhausted T cell population (89). With tumor
progression from primary to metastatic sites, expression of co-
inhibitory receptors CTLA-4, PD-1, TIGIT, LAG3, TIM-3, and
CD160 leads to progressive T cell dysfunctioning (89). Percentage
of programmed cell death protein 1 (PD-1+), mucin domain
protein 3 (TIM-3+), and cytotoxic T lymphocyte antigen-4
(CTLA-4+) cytotoxic and regulatory T cells increases in juxta-
tumoral tissues. Cells expressing these co-inhibitory receptors are
immunosuppressive, they originate from various sources
influenced by TME; by migration from circulatory systems,
effector T cell conversion, differentiation resulting from the
suppression of APCs, etc (100). These suppress the NK cell
activity, cytotoxic T cell response; thus, performing pro-tumoral
functions (100). According to Qian and colleagues, some of the T
cell clusters express NK cell markers (KLRD1, FGFBP2,
CX3CR1), suggesting they are endowed with NK T-cell (NKT)
activity (44). Currently, known T cell subtypes, marker profiling,
and associated roles in TME are highlighted in Table 3.

Regulation of T-Cell Function by Non-
Coding RNAs
T cells are at an extremely exhaustive stage in advanced tumors
and require regulatory or transcriptional boosting to fight
tumors. Non-coding RNAs regulating the T cell differentiation
functions, harnessing T cell survival activities would be beneficial
as therapies. miR-155 epigenetically silences the CD8+ T cell
differentiation by enhancing Polycomb repressor complex 2
(PRC2) activity that blocks the transcription factors (EOMES,
ID2, PRDM1, ZEB2, MAF, NR4A2) which are known to drive
terminal differentiation and exhaustion (101). miR-28 is down-
regulated in around 30% exhaustive T cell population. It can be
an important therapeutic target as it inhibits the expression of
the immune checkpoint molecules PD-1, TIM3 thus preventing
exhaustive T cell differentiation (102). miR-16, miR-21, miR-
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142-3p, miR-142-5p, miR-150, miR-15b, miR-181a, and let-7f
miRNAs are over-expressed in naïve T cells, and their expression
reduces significantly in effector T cells (103, 104). Furthermore,
miR-17-92, miR-21, miR-155, and miR-132-3p are over-
expressed in effector and memory T cells compared to naïve
T cells (103). Min and colleagues searched for miRNAs involved
in DC differentiation to Treg cells and found the novel role of
miR-27a in T cell differentiation. miR-27a is known to hamper
Th1 and Th17 cell differentiation and help in the DC-mediated
Treg (CD4+CD25+Foxp3+) population differentiation via
pro-inflammatory cytokine production (105). Hence it is a
potential target for cancer immunotherapy. Xu and co-workers
demonstrate the role of miR-424 (322) in regulating the PD-L1/
PD-1 and CD80/CTLA-4 axis in chemo-resistant ovarian cancer.
miR-424 (322) restoration leads to PD-L1 blockade and
activation of CD8+ T cells, thus preventing chemo-resistance
inversely correlated with PDL1, PD1, CTLA-4 expression (106).
The role of lncRNAs and circRNAs in T cell function is less
explored area of research. Kotzin and colleagues discovered the
role of lncRNA Morrbid in CD8+ T cell differentiation in
response to IFNg viral infection (107). This lncRNA may have
some role in tumor T cells as well but needs confirmation. Wang
and co-workers discovered circRNA-002178 acting as a
“competing endogenous RNA” (ceRNA) to promote PDL1/
PD1 expression in lung adenocarcinoma. circRNA-002178
could enhance PDL1 expression via sponging miR-34 in
cancer cells to induce T-cell exhaustion (108). Thus circRNA-
002178 reversal therapies may work against tumor supporting
T cell population.
B CELL TRANSCRIPTOME IN TME

B cells are adaptive immune cells associated with prolonged
patient survival (109). They are infiltered within TME via
CXCL13 secretions or antigens from tumor cells (110). B cells
are relatively abundant in tumor samples compared to non-
tumor (30) and are comparatively sparse compared to T cells in
TME (111). B cells have five differentiated states: follicular B cells
expressing CD20 (MS4A1), CXCR4, HLA-DRs, plasma B cells
expressing immunoglobulin gamma (IgG) (MZB1 and SDC1/
CD138), mucosa-associated lymphoid tissue-derived plasma B
cells expressing IgA (CD38+), granzyme B-secreting B cells, and
germinal center (GC) B cells (23). Individually, follicular B cells
include mature-naïve (IGHM, CD72, CD27−) B cells that gives
rise to memory B cells (IGHG1 and CD27+) while migrating
through the germinal center (GC) (30). Some B cells have CD27−
memory B-cell phenotype and express antigens associated with
antigen-presenting cells (APCs) (namely, MHC class II, CD40,
CD80, and CD86) (112). B cells residing in TME are exhaustive
compared to ones in the non-tumorigenic environment as
indicated by reduced protein secretion, and impairment of
Myc and mTOR pathways (23). Mature-naïve B cells
differentiate to IgM+ GC memory cells that further produce
IgM- cells by undergoing a class-switch recombination
mechanism. These IgM+ and IgM- cells finally produce GC
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dependent memory B cells or plasma cells. IgM- memory B cells
differentiate into either IgG+ or IgA+-expressing plasma cells
(44) (Figure 2). Takemori and co-workers also identified a
distinct class of memory B cells that are not matured in GCs
but are a response to T cell antigens (113). Expression markers of
B cell subtypes are mentioned in Table 3. B cells promote
antitumor immunity by driving antibody-dependent cellular
cytotoxicity (ADCC), phagocytosis, complement activation, T
cell activation, stimulating cytotoxic immune responses, and
releasing granzyme B and TRAIL factors (114). B cell also have
immunosuppressive pro-tumorigenic subsets such as regulatory
B cell (CD1d+CD5+CD19+, CD5+CD19+) and CD5+ B cells
(115). They are known to modulate the secretion of
immunomodulatory cytokines such as IL10 and TGFb, activate
STAT3 functioning, and stimulates Treg formation (116).

B Cell Development and Activation by
NON-CODING RNAs
miRNAs have a significant role in B cell development, activation,
malignant transformation, and functions. There are some well-
known miRNAs regulating B cell differentiation, proliferation
and activation: miR15a, miR21, mir29, miR-17/92 cluster, miR-
23a, miR-34a, miR-142, miR-150, miR-155, miR-181 family,
miR-181a1b1, miR-212/132 cluster, miR-9, miR-17/92 cluster,
miR-30, miR-125b, miR-155, miR-181b, miR-210, miR-221,
miR-223, miR-148a, miR-146a (117, 118).miRNA 15A and 16-
1 activate signaling pathways that mediate chemotaxis of
immune regulatory B cells to colorectal tumors (119). lncRNAs
are classified into six functional groups based on the functional
chromatin features: eRNAs, promoter lncRNAs, bivalent
lncRNAs, repressive lncRNAs, CTCF lncRNAs, and other
lncRNAs (120). Zhou and co-workers discovered five B-cell-
specific lncRNAs computationally (TNRC6C-AS1, WASIR2,
GUSBP11, OGFRP1, and AC090515.2) associated with
improved prognosis, and three B cell specific lncRNAs
(PART1, MAFG-DT, and LINC01184) associated with poor
prognosis in bladder cancer (121). Pyfrom and colleagues
studied B cell-specific lncRNA BCALM (AC099524.1) highly
expressed in various cancers. AC099524.1 is necessary for the
interaction of signal transduction proteins PLD1 and AKAP9
and have implications in B cell immune response (122). Various
other lncRNAs are known to have a role in B cell development:
LEF-AS1, MYB-AS1, CRNDE, and SMAS-AS1 (123). The role of
circRNA in tumor B cell activation is not yet explored.
NK CELLS AND OTHER DENDRITIC
CELLS

Natural killer cells belong to an innate lymphoid family
having cytotoxic and cytokine-producing potential and can
identify tumor cells with the help of a unique set of receptors.
NK cells are distinct from the rest of the immune cell population
by having distinct cell surface markers CD3−/CD56+ or CD3−
CD16+. They are majorly divided into different subpopulations
depending upon CD16 and CD56 markers’ expression, each
Frontiers in Oncology | www.frontiersin.org 11
with distinct phenotypic properties (124). The presence of NK
cells in tumors depends upon the stages and the cancer types.
Tumor-specific NK cells exhibits high expression of CD69 and
NKp44 activation markers and low expression of NKp30,
NKp80, DNAM-1, CD16, and ILT2 as compared to peripheral
blood and normal lung NK cells (125). Some NK cells strongly
correlate with T cells and are popularly known as Natural Killer
T (NK-T) cells (Figure 2). Dendritic cells are of multiple
specialized subtypes (mentioned in Table 4) present in TME
that are important for antigen presentation, phagocytosis, and
adaptive immune responses. The historical origin of dendritic
cells is through lymphoid lineage. The differentiating markers of
DCs from the rest of the immune cells are HLADR+ lineage–
cells. Previously known DC subtypes include CD11C+ (Itgax)
conventional DCs (cDCs) that are further characterized into
either CD141+ or CD1C+ cells, and CD123+ (Bst2, Siglech)
plasmacytoid DCs (pDCs) (82). Qian and colleagues identified
five different DC subtypes in heterogenous TME including
conventional DCs (cDC1: CLEC9A, XCR1, BAFT3; cDC2:
CD11b, CD1C, CLEC10A, SIRPA; cDC3 which include
migratory DCs and expresses CCR7, CCL17, CCL19 gene
expression, cDC4: pDCs expressing LILRA4, CXCR3, IRF7,
and cDC5 expressing CD207 and Langerhans cell-specific
markers) (44). Davidson and co-workers further classified
dendritic cells based on their presence in tumors or lymph
nodes (LN). Tumor cDC1 clusters express the dermal DC
marker Cd103 (Itgae), whereas the LN population expresses
CD8a marker specific to LN resident dendritic populations
(18). Transcriptionally, tumor DCs are more active and display
a wider expression of different co-stimulatory molecules but lack
T cell provoking stimulations than their counterparts.

Non-Coding RNAs Regulating NK and
Dendritic Cell Functions
Non-coding RNAs play significant roles in the development,
maturation, and effector functions of NK cells. They directly or
indirectly control the cytotoxic ability and surface expression of
immune checkpoints on NK cells, thus indicating their use in
antitumor therapies (128). Zhu and co-workers concluded the
regulatory effect of miR-20a, which is over-expressed in various
cancers. miR-20a reduces the killing-effect of NK cells to cervical
cancer cells by directly targeting RUNX1 (129). Similarly,
overexpression of multiple miRNAs can inhibit the cytotoxic
effect of NK cells: miR-24 suppresses IFN-g and TNF-a and thus,
affecting the killing-effect of NK cells (130). miR-218-5p reduces
the NK cell activity by directly targeting IL-2 secretion in lung
adenocarcinoma (131). Moreover, NK cells release exosomal
RNA miR-3607-3p, acting as drug targets on pancreatic cancer
cells. miR-3607-3p enriched in extracellular vesicles (EVs)
derived from NK cells inhibits the malignant transformation
of pancreatic cancer by targeting IL-26 (132). miR-150 and
miR-203 increase tumor suppression; miR-155, miR-26a/b,
miR-101, miR-363, etc. lead to decreased cell survival, cell
cycle progression and miR-183 and miR-1245 are known to
hamper NK killing activity in TME (128). Ou and colleagues
elucidated the role of miR-153 and circ_0000977 in hypoxic
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TABLE 4 | Distinct subsets of immune cells in human/mouse tumor tissues.
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TME. circ_0000977 is overexpressed in pancreatic cancer and
acts as a miR-153 sponge. It encourages hypoxia-mediated
immune suppression by hampering NK mediated cell lysis
(133). lncRNA GAS5 regulates NK cells cytotoxicity, tumor
cell apoptosis, and tumor aggressiveness via miR-544/RUNX in
liver cancer (134).
CELLS SHAPING IMMUNOTHERAPIES

Therapeutic strategies against different cancers are advancing in
drug targets and carrier agents, keeping in mind the toxicity
levels and patient response. In addition to conventional therapies
such as radiotherapy and chemotherapy, immunotherapy is
progressing to find new immune activation and protection
methods. Different forms of immunotherapy are known:
cancer vaccines, cytokine therapies, adoptive cell transfer,
immune checkpoint inhibitors, T/NK-cell engineering,
chimeric antigen receptor (CAR) T-cell therapy, an oncolytic
virus therapies (135). Advancements in single-cell heterogeneity
and identification of stromal/immune cell subtypes would
provide new hopes in immunotherapy as it will identify new
cell receptors to targets.
Fibroblasts as Therapeutic Agents
Diversity in CAF subtypes enlightens their immune-supportive
and immune-suppressive functions via extensive studies of gene
expression and metabolomic analysis. Targeting only the aSMA+
tumor population would not be helpful as it may result in the
loss of immuno-supportive residents and may hamper
significant homeostatic functions (136). But the presence of
both types of the population indicates reprogramming between
these two states. There is a particular need for targets that may
reduce the reprogramming offibroblasts to immune-suppressive
subtypes. Targeting the immunosuppressive CAF population
that promotes T cell differentiation to CD25+FOXP3+ cells and
enhancing Tregs’ capacity to inhibit the proliferation of effector
T cells would be an effective therapy. Remodeling these CAF
subsets (CD29+ FAP++ FSP1+ aSMA++ PDGFRb++ CAV1−
DPP4+) found in aggressive cancers would directly affect T cell
immunity and leads to increased CD4+ CD25+ T lymphocyte
survival (33). Ford and co-workers targeted a ROS-producing
enzyme NOX4 to inhibit fibroblast differentiation to CAF and
found high infiltration of NK cells and CD8+ T cell to tumors,
and subsequent killing of cancer cells (137). Chen and
colleagues explored the relation of fibrotic TME with T cell
immunotherapy. Fibrotic TME indicates poor survival and
suppresses the immune response to cancer (138). Anti-FAP
antibodies (sibrotuzumab), TGF-b1 (highly expressed in
hypoxic tumors), cytokine therapies (IL2), CXCL12/CXCR4
signaling, angiotensin receptor blockers (ARBs), immune
checkpoint blockade (ICB), T lymphocyte checkpoint
inhibition, CTLA-4 directed therapy, CAR-T cells against
FAP+ cells are some of the immunotherapies currently in
research to target non-responsive metastatic tumors (139, 140).
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Therapeutic Aspects of Tumor
Angiogenesis
Tumor cells communicate with nearby endothelial cells that line-
up in angiogenic vessels and safeguard the growing tumors.
Approaches to block vascular supply are long under investigation
and have reached the bedside but with limited efficacy,
low response rate, high resistance, and enhanced immune
surveillance (141). Ongoing anti-angiogenic treatments include
anti-VEGF therapies (bevacizumab), tyrosine kinase inhibitors
(Sunitinib), targeting signals between cells (Revlimid),
and chemotherapy combination with numerous side-effects.
Decreasing tumor’s blood supply also leads to hypoxia, fuelling
tumor progression, and metastasis. As an alternative therapy,
vascular normalization encourages improved blood flow and
reduced tumor hypoxia, understanding vascular normalization,
and implementation are still in research (142). Vascular targeting
would directly or indirectly enhance tumor immunity. Tumor
vasculature functionality depends on the interaction with
M1/M2 like TAMs, CD4+/CD8+ T cells, and other stromal/
immune cells. Mpekris and co-workers highlighted the
combined use of immune checkpoint and anti-angiogenetic
antibodies for more favorable outcomes (143). Targeting
endothelial cells (EC) subtypes is comparatively a new
field and is yet to explore to find out novel anti-angiogenic
candidates. Currently, combination drugs are in clinical trials
that target both immune checkpoint blockades (ICBs) and
angiogenesis such as Atezolizumab + bevacizumab +
entinostat/Avelumab + axitinib/Atezolizumab + bevacizumab +
carboplatin + pemetrexed (144).

TAMs Targeted Therapies
TAMs are the most targeted population for immunotherapy as
they constitute a major cellular component of TME. With the
expansion in macrophage research, the complex phenotypic and
functional properties of macrophages have unveiled their
recruitment processes, polarization signals, differentiation
factors, etc. Cassetta and co-workers identified 37-gene TAM
signature highlighting CSF-1 and SIGLEC1 (a sialic binding
receptor) mainly expressed by macrophages in aggressive
human breast cancer subtypes (87). High CSF-1 and SIGLEC1
receptors in macrophages indicate tumor progression, poor
clinical prognosis, and can be a targeted therapeutic option
(145). Currently, TAM targeted therapies involve macrophage
depletion, receptor targeting (Tyro3, Axl, and MerTK), effector
functions inhibition, reprogramming towards antitumor
phenotype, and inhibiting recruitment within TME. Still, all of
these therapies are limited to identifying TAM-specific markers
(10). Many macrophage targeted drugs are under clinical
investigations: monoclonal antibodies targeting CSF-1R (IMC-
CS4, R05509554, RG7155, FPA008, PLX3397) and CCL2
(Carlumab), small molecule inhibitors, antibodies targeting
reprogramming strategies (anti-CD47, anti-CD40), toll-like
receptor agonists, PI3Kg inhibitors, inhibition of microRNA
activity, histone deacetylase inhibitors (TMP195), anti-PD-1
and CTLA4 therapies to name a few. Each of these strategies
needs careful investigations as they have certain limitations and
Frontiers in Oncology | www.frontiersin.org 14
require practicing new approaches as underpinned by current
knowledge of macrophage biology.

T Cell and B Cell Immunotherapy
T cell therapeutics is advancing since the discovery of a
breakthrough of chimeric antigen receptor (CAR) -modified T
cells and immune modulation using antibodies that block
immune regulatory checkpoints in 2013. Both CD8+ and CD4+
cells have multifaceted roles in antitumor immunity. CD4+
cells secrete interleukin (IL)-2 activating CD8+ T cells,
cytokine secretion (IFN-g, TNF-a), activation of CD40 ligands
that activates dendritic cells and leads to differentiation and
maturation of B cells (146). Immune checkpoint blockade (ICB),
adoptive cell transfer (ACT), and engineering TCR therapy
are some primary T cell-based therapies currently in clinical
trials. ICB involves the use of antibodies to neutralize inhibitory
receptors CTLA-1, PD-L1/B7-H1/CD274, lymphocyte-
activation protein 3 (LAG-3), T-cell immunoglobulin, mucin-
domain containing-3 (TIM-3), T-cell immunoreceptor with Ig
and ITIM domains (TIGIT) (147). The role of B cells in immune
protection is currently in research. Besides producing antibodies,
B cells have crucial roles in immune regulation or functions as an
antigen-presenting cell, but involvement in cellular therapy is
unclear, despite having numerous effector functions. Recently
Helmink and co-workers identified differentially expressed B cell
markers (MZB1, JCHAIN, and IGLL5) in ICBs responders
relative to non-responders indicating the driving force of B
cells in immunotherapy (148).

Therapies Involving NK Cells
NK cells can induce direct killing of tumor cells, and recruit or
activate of T cells and DCs. Three forms of NK therapy have
emerged: Bi-specific antibodies, induction of antibody-
dependent cell-mediated cytotoxicity (ADCC), and gene
therapy with NK cells. Current possibilities to use NK cells are
(a) targeting inhibitory NK cell surface receptors or (b) targeting
activating NK cell receptors (149). NKG2A is a novel
heterodimeric (expressed along with CD94) intracytoplasmic
tyrosine-based inhibitory motif (ITIM) expressed on both T
and NK cells and recognizes human leukocyte antigen (HLA)-
E present on tumor cells (150). Binding of NKG2A/CD94 to its
cognate ligand inhibits T and NK cell effector functions and thus
are immunosuppressive. Andrea and co-workers developed a
humanized anti-NKG2A immunoglobulin G (IgG) 4-blocking
mAb (monalizumab) and showed that NKG2A blockade
activates NK and CD8+ T cells (150). Another possibility is
targeting activating NK cell receptors such as natural killer group
2D (NKG2D), CD16, signaling lymphocyte activation molecule
(SLAM)-family members, and the natural cytotoxicity receptors
(NCRs) NKp30, NKp44, and NKp46 (151). CD16 in tumor
conditions binds to EGFR and leads to tumor cell proliferation.
Antibody such as cetuximab and trastuzumab inhibits EGFR
signaling and binds to CD16 to promote ADCC. Moreover,
many tumors are consistent with a high frequency of NKp46
receptors. Targeting this receptor would help in the activation of
other NK cell receptors that lead to cytokine release and the
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killing of tumor cells. Gauthier and co-workers developed a
multifunctional antibody (NKp46 specific) targeting CD19,
CD20, or EGFR as tumor antigens and triggering tumor killing
by NK cells (151, 152). CD73 is another immune checkpoint that
defines regulatory NK cells within TME. CD73 is associated with
immune suppression and tumor progression involving CD4+
T cell suppression (153). Developing future therapies CD73
would be beneficial for T cell functioning and tumor regression.
CONCLUSIONS

Research in the field of the tumor microenvironment is an
impressive and significant stage. Despite progress in cancer
immunotherapies, the incidence of tumor relapse and recurrence
had necessitated a profound study of tumor heterogeneity. Clinically
we are struggling with therapies that would target a wide range of
cells, being unaware of subtypes that escape and show resistance.
Many drugs target tumor biome by using monoclonal antibodies,
angiogenic, and protein kinase inhibitors, but the precise targets are
rare. With advances in single-cell technology, intra-tumoral
heterogeneity is not much explored. Characterization of stromal
and immune cell subtypes inhabiting at different tumor stages, early
or late-stage, and the corresponding normal tissues revealed a broad
range of cell subsets, differentiation patterns, and immunological
regulations within TME. Targeting these well-explored immuno-
modulatory cells directs the development of next-generation
therapeutics. These next-generation therapies are at an early stage
of development and would involve trials on small molecule
inhibitors, non-coding RNAs, and cell-specific receptors that may
lead to better cancer cure.
FUTURE PERSPECTIVES

There are still several questions in the TME that needs careful
investigation. One aspect is the lineage tracing. A challenge in
tumor biology is associating molecular differences among
progenitor cells and their capacity to generate differentiated cell
types. Studies are needed to associate changes in progenitor and
mature cell types and answer questions such as a) Does a
differentiated cell have the capability to transdifferentiate in
other differentiated cell types in TME? If yes, what are these
cells in the tumor microenvironment that shows cellular
plasticity? b), and how the cellular plasticity is regulated? To
answer these questions, we need to understand the origin of
stromal or immune cell types in TME.

The second aspect is understanding the heterogeneity of
stromal and immune cells that make up most of the TME.
Fibroblasts and macrophages are among the most diversified
Frontiers in Oncology | www.frontiersin.org 15
populations whose characteristics change with their location in
tumors- perivascular, hypoxic, necrotic areas, and regions of
interaction with blood vessels and lymph nodes. Rare
information is available on the interaction of these cells with
other cell types and how different tumor zones influence the
development of subtypes. Technologies such as spatial
transcriptomics (seqFISH, MERFISH, STARmap) and
multiplex immunofluorescence would be pivotal to identify
prevailing subtypes.

The third aspect requiring attention is tumor secretome.
Investigations on exosomal secretions, non-coding RNA
transcriptomics, and epigenetic remodeling would boost our
understanding of tumor biome. Single-cell genomic
technologies are an efficient approach to understand every
subtype residing within TME. It can also enhance our ability
to discover novel target molecules, specific pathways targeted by
these drugs, that would facilitate effective strategies.
Identification of precise sub-typical population by scRNAseq
analysis can serve as biomarkers to develop accessory treatments.
Assessment at a single cell level can also provide us cell variations
before and after immunotherapies with which medications can
be optimized. In summary, we anticipate that single-cell analysis
would be a great approach to understand tumor biology and
designing therapies that would revolutionize the tumor
treatments as it may reduce the gap between responders and
non-responders.
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GLOSSARY

ACT adoptive cell transfer
ADCs adult stem cells
ADCC antibody-dependent cellular cytotoxicity
AKT activate protein kinase B
APCs antigen-presenting cells
apCAFs antigen-presenting CAFs
&alpha;SMA alpha smooth muscle actin
CAFs cancer-associated fibroblasts
CAR-T cells chimeric antigen receptor T cells
CAV1 Caveolin 1
cCAFs cycling CAFs
CD cluster of differentiation
cDC conventional dendritic cells
circRNAs circular RNAs
COL1A1 collagen
type I alpha 1
COL13A1 collagen type III alpha 1 chain
COL14A1 collagen type XIV alpha 1 chain
CCL5 chemokine (C-C motif) ligand 5
CSF colony-stimulating factor
CTLA-4 cytotoxic T-lymphocyte-associated protein 4
CXCL12 C-X-C motif chemokine 12
cyTOF time-of-flight mass spectrometry
DC dendritic cell
dCAFs developmental CAFs
DPP-4 dipeptidyl peptidase-4
EC endothelial cell
ECM extracellular matrix
EGF epidermal growth factor
eNOS endothelial nitric oxide synthase 3
EMTs epithelial-mesenchymal transitions
ERK extracellular-signal-regulated kinase
eRNAs enhancer RNAs
ESCs embryonic stem cells
ESCC esophageal squamous cell carcinoma
FAP fibroblast activated protein
FCGR3A low affinity immunoglobulin gamma Fc region receptor III-A
FGF fibroblast growth factors
FGFBP-2 fibroblast growth factor binding protein 2
FOXP3 forkhead box P3
GC germinal center
HIF-1&alpha hypoxia-inducible factor 1-alpha
HITT
HIF-1&alpha inhibitor at translation level
HLA human leukocyte antigen
iCAFs inflammatory CAFs
Ig immunoglobulin
IGHG1 immunoglobulin heavy constant gamma 1
JNK c-Jun N-terminal kinase
KLF2 Kruppel-like factor 2
KLRD1 Killer cell lectin-like receptor subfamily D, member 1
LRRC15 leucine-rich repeat containing 15
lincRNAs large intergenic non-coding RNAs
ICB immune checkpoint blockade
IFN interferon
IL-6 interleukin6
IL-11 interleukin 11
IL-1&beta interleukin 1 beta
LAG3 lymphocyte-activation gene 3
LN lymph nodes
lncRNAs long non-coding RNAs
mAb monoclonal antibody

(Continued)
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MALAT1 metastasis-associated lung adenocarcinoma transcript 1
MAPK mitogen-activated protein kinase
mCAFs matrix CAFs
MHCII major histocompatibility complex class II
miRNAs MicroRNAs
MMP9 matrix metallopeptidase 9
MMTV-PyMT mouse mammary tumor virus-polyoma middle tumor-antigen
Morrbid myeloid RNA repressor of BCL2L11 induced death
MSCs mesenchymal stem cells
mTOR mammalian target of rapamycin
NCRs natural cytotoxicity receptors
NEAT1 noncoding nuclear-enriched abundant transcript 1
NF-&kappa;B nuclear factor kappa-light-chain-enhancer of activated B cells
NK natural killer
NKG2D natural killer group 2D
NOX4 NADPH oxidase 4
PDAC pancreatic ductal adenocarcinoma
pDC plasmacytoid DCs
PDGF platelet-derived growth factor
PD-L1 programmed death-ligand 1
piRNAs Piwi-interacting RNAs
PRC2 Polycomb repressor complex 2
ROS reactive oxygen species
S100A4 S100 Calcium Binding Protein A4
scRNAseq Single-cell RNA sequencing
SIGLEC1 sialic acid binding Ig like lectin 1
siRNAs small interfering RNAs
SLAM signaling lymphocyte activation molecule
sno-lincRNAs Intron-derived small nucleolar lincRNAs
SOX-4 SRY (sex determining region Y)-box 4
STAT3 Signal transducer and activator of transcription 3
STEEL spliced-transcript endothelial-enriched lncRNA
TAMs tumor-associated macrophages
TCR T cell receptor
TECs tumor endothelial cells
TGF-&beta1 transforming growth factor beta 1
TIGIT T cell immunoreceptor with Ig and ITIM domains
TIM-3 T-cell immunoglobulin and mucin-domain containing-3
TME tumor microenvironment
TNF-&alpha tumor necrosis factor alpha
TP53 Tumor protein 53
TRAIL TNF-related apoptosis-inducing ligand
Treg regulatory T cells
UTR untranslated region
VEGF vascular endothelial growth factor
vCAFs vascular CAFs
vWF von Willebrand factor
Wnt Wingless-related integration site
YB-1 Y-box binding protein
ZEB1 Zinc Finger E-Box Binding Homeobox 1
March 2021 | Volume 11 | Article 596798

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

	Remodeling of Stromal Cells and Immune Landscape in Microenvironment During Tumor Progression
	Introduction
	Stromal Cell Heterogeneity
	Diversity in Tumor Remodeling CAFs and Distinct Gene Programs
	Non-Coding RNAs Involved in Fibroblast Differentiation to CAFs and Its Subtypes

	Profiling of Phenotypically Abnormal Tumor Endothelial Cells
	Non-coding RNAs Regulation in Tumor Angiogenesis

	Immune Landscape
	Monocytes and Macrophages Are Phenotypic Markers of Aggressive Tumors
	Regulation of TAM Phenotype by Non-Coding RNAs

	T Cell Interactome Within TME
	Regulation of T-Cell Function by Non-Coding RNAs

	B Cell Transcriptome in TME
	B Cell Development and Activation by NON-CODING RNAs

	NK Cells and Other Dendritic Cells
	Non-Coding RNAs Regulating NK and Dendritic Cell Functions

	Cells Shaping Immunotherapies
	Fibroblasts as Therapeutic Agents
	Therapeutic Aspects of Tumor Angiogenesis
	TAMs Targeted Therapies
	T Cell and B Cell Immunotherapy
	Therapies Involving NK Cells

	Conclusions
	Future Perspectives
	Funding
	Acknowledgments
	References
	Glossary



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


