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Abstract: Graphene-based nanomaterials received attention from scientists due to their unique
properties: they are highly conductive, mechanically resistant and elastic. These materials can
be used in different sectors of society from electronic energy storage in industry to biomedical
applications. This study evaluates the influence of graphene nanoplatelets in vitro and in vivo. The
toxicological influence of graphene nanoplatelets (GPs) was analyzed by cytotoxic methods, the
change of cell proliferation was assessed in real-time, and the effect of GPs on a living organism was
evaluated in an animal model using histopathological examination. We analyzed two types of GP
administration: intratracheal and peroral. We found dose- and time-dependent cytotoxic effects of
GPs in vitro; the concentration above 50 µg/mL increased the cytotoxicity significantly. The real-time
analysis confirmed these data; the cells exposed to a high concentration of GPs for a longer time
period resulted in a decrease in cell index which indicated lower cell viability. Histopathological
examination revealed thickened alveolar septa and accumulation of GPs in the endocardium after
intratracheal exposure. Peroral administration did not reveal any morphological changes. This study
showed the dose- and time-dependent cytotoxic potential of graphene nanoplatelets in in vitro and
in vivo models.
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1. Introduction

Nanomaterials are becoming increasingly common in industry. Their widespread
utilization also considerably increased interest in medical research and supports the need
for a comprehensive assessment of their potential impact on human health. Industry [1,2],
the biomedical field (drug or gene delivery, bioimaging [3,4]) and many more sectors use
nanomaterials of various shapes, types and amounts. The “miracle material”, graphene,
is a 2D nanomaterial that provides a broad spectrum of properties including mechanical
stiffness, strength, elasticity, electrical and thermal conductivity and many others [5].
Graphene is a carbonaceous nanomaterial derived from crystalline graphite [6] that has a
honeycomb-like network shape [7], but there is a wide range of methods for fabricating
these graphene-based nanomaterials (GBNMs) leading to the production of different shapes,
including nano-sheets, nano-platelets, nano-ribbons, nano-quantum dots, nano-shells and
many more [8,9]. Graphene nanoplatelets (GPs) can be utilized in many applications such
as oxygen evolution reactions, photocatalysis, electrochemical sensors and amperometric
biosensors [10–15].

The biohazardous potential of GBNMs has been a subject of intense research in the
scientific community. However, graphene-based nanomaterials are produced in many

Nanomaterials 2022, 12, 1978. https://doi.org/10.3390/nano12121978 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano12121978
https://doi.org/10.3390/nano12121978
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-1581-5531
https://orcid.org/0000-0001-5769-9973
https://doi.org/10.3390/nano12121978
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano12121978?type=check_update&version=1


Nanomaterials 2022, 12, 1978 2 of 12

forms and differences in their fabrication and post-processing have a significant impact
on their properties and can potentially increase toxicity to living organisms [16–18]. This
is the main reason for the growing number of peer-reviewed articles confirming the need
for comprehensive studies to understand the toxicity potential of GBNMs. The results of
studies investigating the toxicity and biocompatibility of GBNMs (Table S1) vary widely,
with studies reporting lower or no toxicological effect on cell lineages exposed to the
GPs [19], while other studies confirm time- and dose-dependent toxicity [20,21].

The ultimate goal is to properly assess the toxicity to the living organisms (Table S2).
The biological distribution of graphene-based nanomaterials has been a subject of research
for as long as nanomaterials have been fabricated. Yet, there are no comprehensive data
describing the exact process of its fate in the body. To better understand the fate of
GBNMs, we must first know the complete nature of the nanomaterial, which can lead to
presumptions about its behavior in the body. We must consider the internal environment of
the living organism because it can dramatically affect biological behavior [22]. For example,
Kurapati et al. studied the biodegradation of GBNMs and focused on two different types—
single layer and multilayer graphene. They proved that graphene flakes can be processed
and destroyed by neutrophils [23]. These findings could have an important clinical impact
and suggest the usage of those materials in the human body where is a presumption of
complete biodegradation.

Our study describes the in vitro and in vivo effect of a well-characterized graphene-
based nanomaterial in the form of a platelet with a size of up to 2 µm and a thickness
of 1–4 nm. For in vitro study, we used cells isolated from the lung tissue to examine the
potential deteriorative impact on cell proliferation. The cytotoxicity level was minimal in
low doses, but high concentrations (50–100 µg/mL) reduced cell proliferation and survival.
C57Bl/6 mice were used to study the in vivo toxicity of graphene nanoplatelets and we
used two different approaches to deliver the nanomaterial in the body (the intratracheal
and peroral pathway). The histopathological examinations of major organs impacted
by exposition to the nanomaterial were performed to explore potential morphological
alterations and the fate of nanomaterials in living tissues.

2. Materials and Methods
2.1. Fabrication of the Graphene Nanomaterial

In our study, we used graphene platelets (GPs) obtained from PlasmaChem GmbH
in the form of a powder (product number PL-P-G750, Berlin, Germany). According to
the manufacturer’s specifications, the particle size was up to 2 µm and the thickness
of the graphene sheets was 1–4 nm. The nanomaterial was thoroughly investigated for
composition, structure and thermal stability. The results of the X-ray diffractometry, energy
dispersive X-rays spectroscopy, Raman spectroscopy and thermogravimetric analyses have
been recently published by Svadlakova et al. [24]. Briefly, all obtained physicochemical
characterization results were in line with the specifications of the producers of these
materials.

2.2. Preparation of Suspensions

Stock suspensions of GPs at a concentration of 250 µg/mL were prepared by dispersing
powder in 0.02% sodium cholate and sonicated by a sonic probe (QSonica, Q700 ultrasonic
processor, LLC, Newtown, CT, USA) for 30 min with a 65% amplitude. The hydrodynamic
diameter and zeta potential of GPs in suspension further diluted in sterile water or culture
medium (10% FBS) were determined using Zetasizer Nano-Ultra (Malvern Panalytical Ltd.,
Malvern, UK). The absence of biological contamination was confirmed using a cell-based
assay as previously stated by Svadlakova et al. [25]. The stock solution was diluted in
different concentrations and exposed to cell culture media with 10% FBS.
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2.3. Mouse Primary Alveolar Epithelial Cells Culture (PAECs)

C57BL/6 mouse primary alveolar epithelial cells were isolated from lung tissue
of pathogen-free laboratory mice (Cell Biologics). Cells were cultured in an epithelial
cell medium (Cell Biologics) with growth factors (0.01% insulin-transferrin-selenium,
0.01% EGF, 1% L-glutamine, 1% antibiotic-antimycotic solution, 10% FBS, Cell Biolog-
ics, Chicago, IL, USA). Cells were cultured in T75 flasks (VWR) in a 5% CO2 humidified
incubator (Thermo Fisher Scientific, Waltham, MA, USA) at 37 ◦C.

2.4. Cytotoxicity Assessment

Cell proliferation and viability were determined with several cytotoxic methods study-
ing the influence of GPs co-cultured with PAECs for 24 and 48 h. The CyQUANT LDH
cytotoxicity assay (ThermoFisher Scientific, Waltham, MA, USA) was one of the meth-
ods used to measure the cytotoxicity effect on cells. Briefly, PAECs in different densities
(0.5–1 × 104 cells) were incubated overnight in a 96-well plate, and cells were washed and
exposed to increasing concentrations of GPs (5–100 µg/mL) for 24 or 48 h. The lactate
dehydrogenase (LDH) assay was performed according to the manufacturer’s protocol.
Absorbance was measured in a SUNRISE Xfluor4 (TECAN, Männedorf, Switzerland) mi-
croplate spectrophotometer at 492 nm. All experiments were performed in triplicates for
each sample.

To determine the effect of graphene on the proliferation of PAECs, a WST-1 assay
(Sigma, Buenos Aires, Argentina) was used. Cells were added to a 96-well plate and
cultured for 24 h. For another 24 to 48 h, the GPs were added to the culture. Then,
tetrazolium salt (WST-1) was pipetted and incubated with exposed cells for 4 h. Finally, the
colored product was analyzed with an ELISA analyzer (TECAN) at 490 nm. All experiments
were performed in triplicate for each set of samples.

2.5. Real-Time Cell Analysis

The DP version of the xCELLigence system (Agilent Technologies, Inc., Santa Clara,
CA, USA) was used throughout these analyses, which comprised 3 measuring stations (each
consisting of 16 wells) controlled independently. The xCELLigence DP system measured
the electrical impedance in the bottom of the well and converted it to the Cell Index.

An optimal seeding density for PAECs was 1000 cells per well. Dynamic cell prolifera-
tion was monitored in 15 min intervals from the plating time until exposure to the nanoma-
terial (24 h). To determine the sensitivity of PAECs to the nanomaterial, the graphene was
added to each well in different concentrations (5–100 µg/mL) for 24 or 48 h except for the
cell used as a control. Data were processed and plotted using the xCELLigence software
package.

2.6. In Vivo Study

Sixty-six adult male C57Bl/6 mice (8–12 weeks age, body weight of approx. 25 g)
were housed in polyethylene cages and maintained under a controlled temperature and a
12 h light/12 h dark cycle for 1 week before the start of the experiment. They were allowed
ad libitum access to standard pellets and tap water. Animals received humane care; all
the experiments were performed in accordance with the international guidelines and were
approved by the Ethical Committee of the Ministry of Education, Youth and Sports of
Czech Republic (approval No. MSMT-9237/2020-2).

Mice were randomly divided into eight groups of 6 to 9 animals per group (Table 1).
Group 1 received GPs intratracheally (IT) in two different concentrations (5 or 50 ug/mL),
and group 1C was exposed on working days for 21 days (chronic exposure). The rest
of group 1 received only one dose of GPs (acute exposure). Group 1D was assessed as
a vehicle control group, where sodium cholate was administered (0.02%). Group 2 was
exposed to the GPs perorally (PO) with different concentrations of GPs (5 or 50 µg/mL),
and group 2C was assessed as a chronic exposure group with the same conditions as group
1C. Group 2D, which was exposed to sodium cholate only, was considered a control group.
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After 1, 7 or 21 days after the last dose, the animals were euthanized and organs were
harvested for further histological analysis.

Table 1. Animal groups, doses and application routes of GPs.

Group Exposure
Routes

Dosing
Solution No. of Animals Exposure

1A IT 5 µg/mL 9 1, 7, 21 days

1B IT 50 µg/mL 9 1, 7, 21 days

1C IT 50 µg/mL 6 21 days

1D IT 0 µg/mL 9 1, 7, 21 days

2A PO 5 µg/mL 9 1, 7, 21 days

2B PO 50 µg/mL 9 1, 7, 21 days

2C PO 50 µg/mL 6 21 days

2D PO 0 µg/mL 9 1, 7, 21 days

Removed organs were fixed in 10% formalin, embedded in paraffin and sectioned into
5 µm sections. Sections were deparaffinized, rehydrated and washed with distilled water.
The sections were stained with hematoxylin and eosin.

2.7. Statistical Analysis

Unless stated otherwise, the data are shown as mean values (n-tests = 3) ± standard
deviation and are normalized to the control. Changes are considered significant for
p-values < 0.05. Based on the Shapiro–Wilk test of normality, either the parametric or
nonparametric analysis of variance (ANOVA) followed by Dunnett’s test was performed
using GraphPad PrismTM software, version 9.3.1 (GraphPad Software Inc., San Diego,
CA, USA).

3. Results
3.1. Characterization of the Graphene Nanoplatelets

The characterization of graphene nanoplatelets is summarized and published in the
article by Svadlakova et al. [24].

3.2. Cytotoxicity Analysis and Cell Morphology Evaluation

Cellular survival can be evaluated by tetrazolium-based methods. In the WST-1 assay,
the amount of dye generated is directly proportional to the number of living cells. The
results indicated that the cells exposed to a high concentration of GPs (50 or 100 µg/mL)
had an increasing cytotoxicity percentage (Figure 1). There was also a relation to exposure
time, where cells incubated with GPs for 48 h had a moderately higher number of dead
cells compared to the group exposed to GPs for 24 h only. However, the percentage did of
dead cells not exceed 25% of the total amount of cells.

Similar results related to the time-dependent cell survival ratio were determined with
the LDH cytotoxicity assay. The LDH assay is used to reflect the extent of the plasma
membrane damage and the released LDH in the cell culture medium can be quantified; the
level of formazan formation is directly proportional to the amount of the damaged cells.
Low concentrations of GPs (5–20 µg/mL) did not have any significant impact on the cell
survival ratio, even if the time exposure was 48 h (Figure 2). However, the cytotoxicity
level increased above 20% after longer exposure (48 h) and with a high concentration of the
GPs (time- and dose-dependent cytotoxic effect).
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**** p-value < 0.0001.

3.3. Real–Time Analysis of Cell Growth

The characterization of the potential anti-proliferative effect on PAECs was assessed
with real-time analysis of cell growth. The changing cell index (change of electrical
impedance represents the cell status) reflects differences in cell morphology, adhesion
and/or viability. This value corresponds to the strength of the cell adhesion and cell
number (if the cell dies, the cell index value decrease).

The normalized cell index (CI) value of PAECs remained without any significant
changes after 24 h of exposition to the GPs; the CI value even constantly increases, suggest-
ing that PAECs maintained the cell monolayer and consolidated the cell–cell attachment
(Figure 3). A significant decrease was observed after exposure to a high concentration of
GPs (50 and 100 µg/mL) and after prolonged exposure (48 h), and the normalized cell index
decreased to 0.5 in the first 9 h after exposure to the GPs. The decline gradually decreased
and remain constant until the end of exposure (Figure 4), which indicates that GPs induced
oxidation stress and disrupted the cell barrier leading to a discontinuous cell monolayer.

3.4. Histopathological Findings

We also analyzed the effects of GPs on a living organism by delivering the nanomaterial
to the C57Bl/6 mice in two ways (intratracheal and peroral), which corresponds to possible
routes of entry into the human body.

After the intratracheal exposition, we expected an accumulation of GPs in animals
exposed periodically (chronic exposure), but we observed the presence of GPs only in one
sample (the heart tissue). The main morphological changes were apparent after 30 days
of exposure, periodically repeated every working day to mimic the exposure of workers
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in daily contact with nanomaterials. Figure 5B,C shows microphotographs of lung tissue
exposed to 50 µg/mL of GPs with thickened alveolar walls and abundant erythrocytes
flooding the interstitial connective tissue. The thickness of alveolar walls was significantly
different from the control group. The quantification revealed that the size of the alveolar
septa increased in size three times compared to the control sample (Figure S1). The usual
thickness of the alveolar septa of the control group was approx. 3 µm, but chronic exposure
caused an increase to 9 µm. However, there was an absence of inflammation in the lung
tissue. We did not detect any changes in morphology in the control group (Figure 5A) that
received the sodium cholate (used as a solvent for GPs).
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Figure 5. Histopathological effects of GPs on the lung tissue of C57Bl/6 mice after 21 days. Represen-
tative microphotograph of control mice group (A); (B,C) mice exposed to 50 µg/mL GPs. Arrows
indicate a thickened alveolar wall; asterisks indicate red blood cells in the lung interstitial tissue. The
scale bar = 50 µm, staining haematoxylin-eosin.

Heart tissue was also collected after intratracheal exposure. No histopathological
lesions were observed in the heart tissue of the control group of mice (Figure 6A). However,
chronic exposure revealed tiny specks of GPs (Figure 6B) in the loose connective tissue of
the endocardium, but the morphology of the myocardium was not affected. The mice were
exposed daily to the GPs chronically with high doses (50 µg/mL); low doses (5–20 µg/mL)
of GPs did not lead to any changes in morphology.
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Figure 6. Histopathological effects of GPs on the heart tissue of C57Bl/6 mice after 21 days. Rep-
resentative photomicrographs of control mice group (A) and (B) mice exposed 50 µg/mL of GPs.
Arrows indicate the accumulation of GPs in the endocardium of the heart. Cardiomyocytes in the
control group have physiological morphology. The scale bar (A) = 50 µm, (B) = 20 µm; staining
haematoxylin-eosin.

Histopathological changes in organs involved in the oral exposure to the GPs were not
significant enough, even for the group with chronic exposure. We examined the stomach
(Figure 7A), small intestine (Figure 7B), kidneys (Figure 7C) and liver (Figure 7D) to
compare their morphology to the control group. Both groups (acute and chronic exposure)
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were comparable to the control group, the histological analysis showed no changes in
the tissue of the organs examined. Some studies described deposits of graphene in the
parenchyma [26,27] or in the capsule, but these were absent in our samples. We were
not able to observe any GPs in cells even in samples after chronic exposure to GPs. That
was most likely caused by low GPs concentration and also due to the animal’s capacity to
metabolize or excrete the nanomaterial from their bodies. Oral exposure to the GPs was in
no way harmful to small animals, since any inflammation, accumulation of nanomaterials
or giant cell formation was not evident in the samples. We conclude that intratracheal
exposure has more detrimental effects than oral GP administration.
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staining haematoxylin-eosin.

4. Discussion

Studies concerning the safety of nanomaterials for living organisms are lacking, mainly
due to the enormous amount of newly fabricated types of nanomaterials. The variation in
quality, shape or oxidation of nanomaterials results in a wide diversity of their toxicological
effects on living organisms [28]. The aim of our study was to contribute to the knowledge
of nanomaterials’ behavior through in vitro and in vivo environments.

The main aim of this study was to evaluate the effect of GPs on normal healthy cells
as well as on living organisms. Our data prove the dose- and time-dependent cytotoxic
influence of GPs on cell lineages. These conclusions were also observed by other studies
focused on the cytotoxic properties of GPs [20,29]. A possible toxicological mechanism
behind these findings is the physical properties of GPs and due to the sharp edges of
graphene mechanically distorting the plasmatic membrane of the cells [30]. The ratio
of living cells was assessed with WST-1, which showed better results by investigating
the viability than commonly used MTT methods which usually overestimate cytotoxicity
levels [31]. The enzymatic reactions involved in the WST-1 assays seem to not be affected
by the presence of graphene nanomaterials. In the present study, the toxicity effect was
significant in the cell culture exposed to high concentrations (50–100 µg/mL) of GPs, but
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the decrease in viability did not exceed 25% of the total amount (Figures 1 and 2). Similar
results were obtained in the study concerning the toxicity of graphene oxide to A549
cells [32] comparing different types of graphene-based nanomaterials to determine their
biocompatibility. Wang et al. [27] suggested that the level of biocompatibility correlated
with the dose and length of exposure.

The membrane integrity could be assessed by morphological methods such as trans-
mission electron microscopy or with biochemical approaches such as the LDH assay used in
our study. When the cytoplasmic membrane is damaged, the intracellular LDH is released
into the culture medium and could be quantified. Therefore, the LDH level correlates
with cell damage and resistance of the cell membrane. The GPs did not induce significant
leakage of LDH into the cytoplasm of PAEC’s cell culture 24 h after exposure to high doses
(Figure 2). However, after prolonged exposure (48 h) and with high doses (50–100 µg/mL),
the release of LDH is doubled compared to after short-term exposure (Figure 2). However,
the increase is not significant enough to declare GPs as a highly toxic nanomaterial. Similar
data were also published by other studies [33,34].

Monitoring the biological status of cells in real-time after their exposure to nanomate-
rials is a technique helping to determine changes in cell number, adhesion, viability and
morphology. Only a few studies used this method to estimate the influence of nanomateri-
als on the cell culture [35–37]. These results showed the same tendency as was analyzed
by the WST-1 test: high concentrations of GPs and prolonged exposure most likely caused
disruption of the cell membrane and decreased cell viability. It should be highlighted
that we used healthy non-cancerous cells in our experiments, but the majority of studies
use cancerous cell lineages, which could cause different behavior and responses to the
nanomaterials compared to healthy cell lineages [35,38]. However, our results showed
accordance with their findings, which led us to the conclusion that high concentrations of
nanomaterials could potentially result in oxidative stress due to their accumulation in the
cytoplasm followed by membrane rupture. This phenomenon was successfully adopted
by Razaghi et al. [39]. They used fluorinated graphene oxide as an MRI agent, and it also
had the capacity to load hydrophobic therapeutic agents. They combined a fluorinated
graphene oxide with a linoleic acid-curcumin conjugate (used as an anticancer drug) and it
resulted in the accumulation of anticancer agents in the cancer cell.

The small diameter of the GPs makes them easily respirable, which could result in
the accumulation of small particles in the lung tissue as described by Gao et al. [40]. They
performed nose inhalation in rats and analyzed subsequent aggregation of GPs in the
alveolar macrophages. Our data did not confirm these findings which might be due to
the different respiratory parameters of mice used in our study. Histopathological analysis
revealed thickened alveolar septa, which could be an inflammatory response to daily
exposure to GPs in high concentrations (50 µg/mL). Similar findings were confirmed by
Shin et al. [41]; they used rats inhaling GPs for 5 days, 6 h/day using an atomizer. They
found slight thickening of the alveolar wall and that alveolar macrophages ingested the
GPs. Due to the close relationship between the cardiovascular and respiratory systems, we
analyzed samples of heart tissue after intratracheal exposure to the animals. We observed
an accumulation of small GP particles in the endocardium, but no signs of myocardial
hypertrophy or inflammation. Kanakia et al. [42] confirmed histopathological changes in
heart of Wistar rats after their exposure to dextran-coated graphene oxide nanoplatelets.
Their myocardium contains focal congestion with hyper-eosinophilic cardiomyocytes, and
they also measured blood pressure after intravenous injection of graphene, which could
not be obtained until 2 h after the injection. These findings were observed with the usage
of a much higher concentration of nanomaterials from 250 to 500 mg/kg.

Neither acute nor chronic exposure to GPs by oral administration resulted in histopatho-
logical changes in the organs collected for the evaluation. We concluded that mice were
able to manage high concentrations of GPs, metabolize them and subsequently excrete
them without any damage. Oral administration of graphene oxide was reported by Fu
et al. [43] and they used graphene oxide dissolved in water (concentration was 0.05 and
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0.5 mg/mL) and then the mixture was served to gravid mice for up to 38 days. Then they
examined the filial mice and noticed significant retardation of growth in the group exposed
to 0.5 mg/mL of graphene oxide; the maternal mice had no behavioral or weight disorder
compared to the control group. The toxicological mechanism of graphene is based on the
generation of reactive oxygen species, which could initiate oxidative stress in the cell and is
then followed by DNA damage and potentially necrosis or apoptosis [44]. These results
showed that the modification of nanomaterials, the used concentration and the frequency
of oral exposure could have a significant influence on the toxicity of graphene.

5. Conclusions

Our investigation of the cytotoxicity effect of graphene nanoplatelets was focused
on commonly used methods to investigate changes in the cell proliferation or integrity
of cell membranes. Our findings demonstrated that GPs could induce damage to cell
lineage after prolonged exposure and if high concentrations were used. Real-time analysis
of cells exposed to nanomaterial also showed that GPs had time- and dose-dependent
toxicity due to the decreased cell index, suggesting damage to the cell monolayer and cell
membrane. GPs could enter the lung tissue and cause inflammation, resulting in thickened
alveolar septa, and could accumulate in the endocardium after intratracheal exposure to the
nanomaterial. However, chronic exposure to GPs by oral administration did not show any
pathological changes in the morphology of different organs compared to the control group,
which led us to the conclusion that the route of exposure had a significant impact on the
toxicity of GPs. There is a need for further studies to investigate the exact toxic mechanism
of graphene nanoplatelets to the living organism, but our findings might provide material
for the biological behavior of GPs in the body.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12121978/s1, Figure S1: Quantification of GPs influence
to lung tissue after chronic exposure (21 days); Table S1: In vitro toxicity of the graphene-based
nanomaterials; Table S2: In vivo toxicity of the graphene-based nanomaterials. References [45–51] are
cited in the Supplementary Materials.
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