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Proteins and their interactions lie at the heart of most underlying biological processes. Consequently, correct detection of protein-
protein interactions (PPIs) is of fundamental importance to understand themolecular mechanisms in biological systems. Although
the convenience brought by high-throughput experiment in technological advances makes it possible to detect a large amount of
PPIs, the data generated through these methods is unreliable and may not be completely inclusive of all possible PPIs. Targeting
at this problem, this study develops a novel computational approach to effectively detect the protein interactions. This approach is
proposed based on a novelmatrix-based representation of protein sequence combinedwith the algorithmof support vectormachine
(SVM), which fully considers the sequence order and dipeptide information of the protein primary sequence. When performed on
yeast PPIs datasets, the proposedmethod can reach 90.06% prediction accuracy with 94.37% specificity at the sensitivity of 85.74%,
indicating that this predictor is a useful tool to predict PPIs. Achieved results also demonstrate that our approach can be a helpful
supplement for the interactions that have been detected experimentally.

1. Introduction

Since detection of protein interactions is of fundamental
importance to understand the molecular mechanism in
biological systems, many researchers have focused on this
area in postgenome era [1, 2]. Over the past decades, high-
throughput experimental techniques, such as yeast two-
hybrid (Y2H) system [3, 4] and mass spectrometry (MS),
involving genome-wide detection of PPIs, have been devel-
oped to generate large amounts of interaction data. However,
these traditional experimental methods are time-consuming
and expensive, especially for genome-wide scale. In addition,
the high-throughput biological experiment usually suffers
from high rates of both false negatives and false positives [5].
Combining the experimental techniques with computational
model is a promising direction to better understand the

mechanisms of protein interactions at themolecular level and
to unravel the global picture of PPIs in the cell [6, 7]. Hence,
it is of great practical significance to build low cost protein
detection systems and establish the reliable computational
methods to facilitate the detection of PPIs.

So far, a variety of computational methods have been
developed to effectively and accurately predict protein inter-
actions [2, 8–10]. The computational approaches for in silico
prediction can be roughly categorized into genome based
approaches, network topology based approaches, literature
knowledge based methods, and structure based approaches
[11]. In addition, there are also some approaches that integrate
interaction information from several different biological data
sources [9, 10].

However, the aforementioned approaches cannot be
implemented if prior information about the proteins is
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Figure 1: The schematic diagram for detecting protein-protein interactions by integrating experimental PPI data with SVMmodel.

not available [12]. Recently, the sequence-based approaches
which derive information directly from protein amino acids
sequence are of particular interest [13, 14]. Prediction of
protein interactions from only protein sequence is a much
more universal way [15, 16]. The previous works demonstrate
that the RNA and protein sequences alone contain sufficient
information [17, 18]. The previous researches demonstrated
that the information of protein amino acid sequences is
sufficient to predict PPIs. Although the sequence-based
approaches can yield a high prediction accuracy of 80%∼
88%, it is necessary to design the novel approaches to further
improve the prediction performance compared with the
existing methods.

In recent years, many efforts have been made aiming
to develop accurate approaches for identifying PPIs based
on protein sequence information [19, 20]. Shen et al. built
a prediction model by employing the conjoint triad feature
extraction and support vector machine. When applied to
predicting human PPIs, this method yields a high prediction
accuracy of about 84% [21]. Because the conjoint triad
method did not take the neighboring effect into account
and protein interactions usually occur in the discontinuous
amino acids segments in the sequence, Guo et al. proposed
an approach based on SVM and autocovariance feature
representation which extract the interactions information in
the discontinuous amino acids segments in the sequence [22].
Their approach reached a prediction accuracy of 86.55%,
when applied to predicting saccharomyces cerevisiae PPIs.
Lately, You et al. developed a novel ensemble learning model
to predict Saccharomyces cerevisiae PPIs from protein pri-
mary sequences directly [23]. In this study, the protein pairs
retrieved from the database of interacting proteins (DIP)were
encoded into feature vectors by using four kinds of protein
sequences information. Focusing on dimension reduction, an
effective feature extraction method PCA was then employed
to construct the most discriminative new feature set. Finally,
multiple extreme learning machines were trained and then
aggregated into a consensus classifier by majority voting.The
experimental results show that it is a very promising scheme
for PPIs prediction.

In this study, we report a novel sequence-based method
for the prediction of interacting protein pairs using a matrix-
based protein sequence descriptors combined with support
vector machine (SVM) algorithm. More specifically, we first
represent each protein sequence as a feature matrix, from

which a novel matrix-based protein descriptor is extracted
to numerically characterize each protein sequence. Then
we characterize a protein pair in different feature vectors
by coding the vectors of two proteins in this protein pair.
Finally, an SVM model is established using these feature
vectors of the protein pair as input. To evaluate the pre-
diction performance, the proposed method was applied to
Saccharomyces cerevisiae andHelicobacter pylori PPI datasets.
The experiment results show that our method can achieve
90.06% and 85.91% prediction accuracy with 94.37% and
83.33% specificity at the sensitivity of 85.74% and 85.27%,
respectively. Achieved results demonstrate that the approach
can be a helpful supplement for the interactions that have
been detected experimentally.

2. Materials and Methodology

In this section, we outline the main idea behind the proposed
method. The schematic diagram intuitively showing how
to detect protein interactions using experimental PPIs data
with computational model is given in Figure 1. Firstly, we
briefly discuss the PPIs datasets which is employed in the
study (the source code and the datasets are freely available
at http://sites.google.com/site/zhuhongyou/data-sharing/ for
academic use). Next we propose the novel matrix-based
protein representation method. Finally, we briefly describe
the computational model, SVM, used in this study.

2.1. Golden Standard Datasets. We evaluated the proposed
method with two real PPIs datasets. The first one was col-
lected from Saccharomyces cerevisiae core subset of database
of interacting proteins (DIP). After the redundant protein
pairs which contain a protein with fewer than 50 residues
or have ≥40% sequence identity were deleted, the remaining
5,594 protein pairs comprise the golden standard positive
dataset.The selection of golden standard negative dataset has
an important impact on the prediction performance, and it
can be artificially inflated by a bias towards dominant samples
in the positive data. For golden standard negative dataset, we
followed the previous work [22] assuming that the proteins in
different subcellular compartments do not interact with each
other.

After strictly following the steps in Guo’s work, we finally
obtained 5,594 protein pairs as the golden standard negative
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dataset. By combining the above two golden standard positive
and negative PPI datasets, the final whole PPI dataset consists
of 11,188 protein pairs, where nearly half are from the positive
dataset and half are from the negative dataset. The second
one is a small-scale Helicobacter pylori PPIs dataset, which is
composed of 2,916 protein pairs (1,458 interacting pairs and
1,458 noninteracting pairs) as described by Martin et al. [24].

2.2. Representing Proteins with Descriptors from Primary
Protein Sequences. To successfully use the machine learning
algorithm to detect PPIs from primary protein amino acids
sequences, one of the computational challenges is to effec-
tively characterize a protein sequence by a fixed length feature
vector in which the important information content of pro-
teins is fully encoded [25]. In this study, we propose a novel
matrix-based protein sequence representation approach for
predicting PPIs. Firstly, the protein sequence is transformed
into a sparse matrix, which considered the properties of one
amino acid and its vicinal amino acids and regarded any two
continuous amino acids as a unit. Then the protein features
are extracted from the obtained sparse matrix.

A protein sequence can be represented as a series of
amino acids by their single character codes A, R, N, D, C, E,
Q, G, H, I, L, K, M, F, P, S, T, W, Y, and V. Consider a protein
sequence with 𝐿 amino acid residues:

𝑆

1
𝑆

2
𝑆

3
𝑆

4
𝑆

5
𝑆

6
𝑆

7
, . . . , 𝑆

𝐿
, (1)

where 𝑆
1
denotes the amino acid at protein chain position 1,

𝑆

2
denotes the amino acid at protein chain position 2, and so

forth. 𝐿 denotes the length of the protein sequence. We scan
the protein sequence from left to right by stepping each two
vicinal amino acids at a time, which considers the properties
of one amino acid and its vicinal amino acid and regards
any two continuous amino acids as a unit. Here the number
of all possible pairs of amino acids (dipeptides) that can be
extracted from the protein sequence is 400, that is, AA, AR,
AN, . . ., YV, and VV.

For step 𝑗 (𝑗 = 1, 2, 3, . . . , 𝐿 − 1), if the “𝑆
𝑗
𝑆

𝑗+1
” is the 𝑖th

type of dipeptide, then we set the element 𝑎
𝑖𝑗
= 1. The rest

can be done in the samemanner and then a protein sequence
can be transformed into a 400 by 𝐿 − 1 matrix (see Table 1),
namely,𝑀, as follows:

𝑀 = (𝑎

𝑖𝑗
)

400×(𝐿−1)
,

𝑎

𝑖𝑗
=

{

{

{

1, if 𝑆
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𝑆

𝑗+1
= dipeptide (𝑖)

0, others,

(2)

where 𝐿 is the length of protein sequence, 𝑖 = 1, 2, 3, . . . , 400,
𝑗 = 1, 2, 3, . . . , 𝐿 − 1, and dipeptide(𝑖) denotes the 𝑖th type of
dipeptides listed in Table 1. Here, each column of the matrix
𝑀 is a unit vector, in which only one element is 1 and the
others are all 0. We can see from Table 1 that the occurrence
position of all kinds of dipeptides along the protein sequence
is contained in the column of the matrix 𝑀. Meanwhile,
the row of the matrix 𝑀 denotes the 𝑖th kind of dipeptide
appearing at the 𝑗th position within the protein sequence.

Table 1: The matrix-based representation for a protein amino acid
sequence.
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Generally speaking, the matrix𝑀 transformed from pro-
tein amino acid sequence embodies the essential information
including the information of its sequence order and sequence
length of the protein sequence.Thus, given a protein primary
sequence, we can design a matrix-based protein descriptor to
represent it, which is capable of facilitating PPIs detections.

Low-rank approximation (LRA) is an important matrix
analysis method, in which the cost function measures the fit
between a given sparse matrix and an approximating matrix
(the optimization variable), subject to a constraint that the
approximating matrix has reduced rank [26]. Here, using
LRA upon the obtained protein feature matrix, we derive a
matrix-based descriptor to represent the protein sequence.
For a feature matrix𝑀, which denotes a 400∗ (𝐿− 1)matrix,
the LRA of the data can be written as follows:

min̂
𝑀











𝑀 −
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𝑀









𝐹
(3)

Subject to: rank (̂𝑀) ≤ 𝑟, (4)

where ‖ ⋅ ‖
𝐹
is the Frobenius norm. The above minimization

problem has analytic solution in terms of the singular value
decomposition (SVD) of the data matrix𝑀.

Let 𝑀 = 𝑈Σ𝑉

𝑇
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𝑚×𝑛 be the SVD of 𝑀 and partition
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where Σ
1
is a 𝑟 × 𝑟 matrix, 𝑈

1
is 𝑚 × 𝑟, and 𝑉

1
is 𝑛 × 𝑟. Then

the rank-𝑟matrix is obtained as follows:
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Then we compute the square root of the reduced matrix
Σ

1
to obtain Σ1/2

1
with dimensions 𝑟-by-𝑟. Finally, we can get

a 400 ∗ 𝑟 matrix 𝑈
1
Σ

1/2

1
, which contains the information of

protein sequence order. It should be noticed that the feature
matrix 𝑀 for different protein sequences sometime have
different columns with each other, which shows that these
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protein primary sequences are of nonequal length. However,
the𝑈
1
Σ

1/2

1
for different protein sequences are 400 ∗ 𝑟matrix.

We build a vector (row matrix) from the obtained
matrix 𝑈

1
Σ

1/2

1
by concatenating all rows, from 1 to 400, of

matrix𝑈
1
Σ

1/2

1
.Therefore, thematrix-based protein descriptor

consists of a total of 400 ∗ 𝑟 descriptor values; that is,
a 400 ∗ 𝑟 dimensional vector has been built to represent
the protein sequence. Considering the trade-off between the
overall prediction accuracy and computational complexity
for extracting protein sequence descriptors, the optimal rank
is 𝑘 = 4. Thus, we set 𝑘 to 4 in this study. A representation of
an interaction pair is formed by concatenating the descriptors
of two protein sequences in this protein pairs.

2.3. Support VectorMachine. Machine learning has been seen
as useful and reliable in many applications. Various machine
learning techniques can be employed to predict the PPIs.
Among them, support vector machine (SVM) is one of the
popular learning algorithms based on statistical learning
theory [27]. Herewe give a brief introduction to the basic idea
of SVM.

The goal of the SVM algorithm is to find an optimal
hyperplane that separates the training samples by a maximal
margin, with all positive samples lying on one side and all
negative samples lying on the other side. Suppose that we
are given a training dataset of 𝑁 instance-labeled pairs 𝑋 =

{(𝑥

1
, 𝑦

1
), (𝑥

2
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2
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)} with input data 𝑥

𝑖
∈ 𝑅

𝑛

and labeled output data 𝑦
𝑖
∈ {+1, −1}. The SVM algorithm

solves the quadratic optimization problem as minimizing the
function as below:

min
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(8)

where 𝑤 is the normal vector of hyperplane; 𝑏 is the bias of
hyperplane; 𝐶 is the penalty factor; 𝜉

𝑖
is the slack variable.

Since ‖𝑤‖2 is convex, minimizing (7) under linear con-
straints (8) can be solved with Lagrange multipliers. Further,
the aforementioned optimization problem can be transferred
to a dual form as maximizing the function
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where 𝐶 ≥ 0, 𝛼
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𝑇, and 𝛼
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≥ 0,

(𝑖 = 1, 2, 3, . . . , 𝑙) are coefficients corresponding to 𝑥
𝑖
. 𝑥
𝑖
with

nonzero 𝛼
𝑖
is called support vector.

In real applications, the training samples are not linearly
separable in its original space. Usually, the training samples
𝑥

𝑖
are mapped into a high-dimensional feature space through

some nonlinear function 𝜙. Then SVM finds a linear sepa-
rating hyperplane with the maximal margin in this higher-
dimensional space. Furthermore, 𝐾(𝑥

𝑖
, 𝑥

𝑗
) = 𝜙(𝑥

𝑖
)

𝑇
⋅ 𝜙(𝑥

𝑗
)

is called the kernel function. Actually, the flexibility and
classification power of SVM reside in its kernel functions,
since theymake it possible to discriminate within challenging
datasets. Typical kernel functions for SVM include polyno-
mial function, linear function, sigmoid function, and radial
basis function (RBF):
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here, 𝐷, 𝐵, and 𝛾 are kernel parameters which are set
a priori.

If we replace samples 𝑥
𝑖
with their mapping in the feature

space 𝜙(𝑥
𝑖
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and the decision function becomes

𝑓 (𝑥) = sign(
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where 𝑁
𝑆
is the number of SV, 𝑥 = [𝑥
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, 𝑥

3
, . . . , 𝑥
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input sample, and 𝛼
𝑖
and 𝑦

𝑖
are Lagrange multipliers.

3. Results and Discussion

In the section, we describe our simulation methodology
and present the experimental results that evaluate the
effectiveness of our schemes. The proposed sequence-based
PPI predictor was implemented using MATLAB platform.
For SVM algorithm, the LIBSVM implementation available
from http://www.csie.ntu.edu.tw/∼cjlin/libsvm/ was utilized,
whichwas originally developed byChang and Lin [28]. As the
kernels, four kinds of kernel functions, radial basis function
(RBF), polynomial function, linear function, and sigmoid
function, were selected to implement the experiment. The
optimized parameters for the SVMwere obtained with a grid
search approach. In the simulation, all the experiments were
carried out on a computer with 3.1 GHz 2-Core CPU, 12GB
memory, and Windows operating system.
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Table 2: Comparing the prediction performance by the proposed method and some state-of-the-art works on the yeast dataset. Here, N/A
means not available.

Model Test set SN (%) PPV (%) ACC (%) MCC (%)
Proposed method SVM 85.74 ± 0.94 93.84 ± 0.98 90.06 ± 0.64 82.03 ± 1.03

Guos’ work ACC 89.93 ± 3.68 88.87 ± 6.16 89.33 ± 2.67 N/A
AC 87.30 ± 4.68 87.82 ± 4.33 87.36 ± 1.38 N/A

Zhous’ work SVM + LD 87.37 ± 0.22 89.50 ± 0.60 88.56 ± 0.33 77.15 ± 0.68

Yangs’ work

Cod1 75.81 ± 1.20 74.75 ± 1.23 75.08 ± 1.13 N/A
Cod2 76.77 ± 0.69 82.17 ± 1.35 80.04 ± 1.06 N/A
Cod3 78.14 ± 0.90 81.86 ± 0.99 80.41 ± 0.47 N/A
Cod4 81.03 ± 1.74 90.24 ± 1.34 86.15 ± 1.17 N/A

3.1. Measures for the Prediction Performance. In the study,
fivefold cross-validation technique has been employed to
evaluate the performance of the proposed model. In the
fivefold cross-validation technique, the whole dataset is ran-
domly divided into five subsets, where each subset consists
of nearly equal number of interacting and noninteracting
protein pairs. Four subsets are used for training and the
remaining set for testing. This process is repeated five times
so that each subset is used once for testing. The performance
of method is average performance of method on five sets.

Several evaluation measures have been used in the study
to measure the predictive ability of the proposed method.
The parameters are as follows: (1) the overall prediction
accuracy (ACC) is the percentage of correctly identified inter-
acting and noninteracting protein pairs; (2) the sensitivity
(SN) is the percentage of correctly identified interacting
protein pairs; (3) the specificity (SP) is the percentage of
correctly identified noninteracting protein pairs; (4) the
positive predictive value (PPV) is the positive prediction
value; (5) the negative predictive value (NPV) is the negative
prediction value; (6) the 𝐹-score is a weighted average of
the PPV and sensitivity, where an 𝐹-score reaches its best
value at 1 and worst score at 0; (7) the Matthew correlation
coefficient (MCC) is more stringent measure of prediction
accuracy accounting for both under- and overpredictions.
These parameters are defined as follows:

ACC =

TP + TN
TP + FP + TN + FN

,

SN =

TP
TP + FN

,

SP =

TN
TN + FP

,

PPV =

TP
TP + FP

,

NPV =

TN
TN + FN

,

𝐹1 = 2 ×

SN × PPV
SN + PPV

,

MCC

=

TP × TN − FP × FN
√(TP + FN) × (TN + FP) × (TP + FP) × (TN + FN)

,

(13)

where true positive (TP) is the number of true PPIs that
are predicted correctly; false negative (FN) is the number of
true PPIs that are predicted to be noninteracting pairs; false
positive (FP) is the number of true noninteracting pairs that
are predicted to be PPIs; and true negative (TN) is the number
of true noninteracting pairs that are predicted correctly.

The above-mentioned parameters rely on the selected
threshold. The area under the ROC curve (AUC), which is
threshold-independent for evaluating the performances, can
be easily calculated according to the following formula [29]:

AUC =

𝑆

0
− 𝑛

0
(𝑛

0
+ 1) /2

𝑛

0
× 𝑛

1

, (14)

where 𝑛
0
and 𝑛

1
denote the number of positive and negative

samples, respectively, and 𝑆

0
is the sum of the ranks of all

positive samples in the list of all samples ranked in increasing
order by estimated probabilities belonging to positive. AUC
values can give us a good insight into performance com-
parison of different prediction methods. Although the AUC
is threshold-independent, an appropriate threshold must be
selected for the final decision. For the classifier which outputs
a continuous numeric value to represent the confidence or
probability of a sample belonging to the predicted class,
adjusting the classification threshold will lead to different
confusion matrices which decide different ROC points [21].

3.2. Prediction Performance of ProposedModel. We evaluated
the performance of the proposed model using the DIP PPIs
data as investigated in Guo et al. [22]. To guarantee that
the experimental results are valid and can be generalized
for making predictions regarding new data, the fivefold
cross-validation is utilized to evaluate the performance of
the proposed method. The whole PPI dataset is randomly
divided into five subsets of roughly equal size, and each
subset consists of nearly equal number of interacting and
noninteracting protein pairs. Four out of these five subsets are
used for training and the remaining one for test. This process
is repeated five times such that each subset is used once and
only once for test. The results are then averaged over the five
runs to ensure the highest level of fairness.

The prediction performance of SVM predictor with
matrix-based protein sequence representation across five
runs is shown in Table 2. It can be observed from Table 2
that high prediction accuracy 90.06% is obtained for the
proposed model. To better investigate the prediction ability
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Table 3: Comparing the prediction performance by the proposedmethod and amino acid dipeptide compositionmethod on the yeast dataset.

Methods Kernel Mean/std. Testing
ACC SN SP PPV NPV 𝐹1 MCC AUC

The proposed method

Sigmoid Mean 0.8734 0.8379 0.9092 0.9032 0.8474 0.8693 0.7784 0.9385
Variance 0.0073 0.0093 0.0078 0.0087 0.0063 0.0088 0.0111 0.0071

Gaussian Mean 0.9006 0.8574 0.9437 0.9384 0.8689 0.8961 0.8203 0.9528
Variance 0.0064 0.0094 0.0095 0.0098 0.0048 0.0076 0.0103 0.0064

Polynomial Mean 0.8963 0.8517 0.9408 0.9351 0.8639 0.8915 0.8134 0.9506
Variance 0.0079 0.0072 0.0112 0.0118 0.0050 0.0085 0.0124 0.0061

Linear Mean 0.8642 0.8267 0.9016 0.8938 0.8389 0.8589 0.7646 0.9238
Variance 0.0048 0.0098 0.0114 0.0103 0.0073 0.0052 0.0068 0.0038

AADC method

Sigmoid Mean 0.6776 0.6726 0.6825 0.6792 0.6760 0.6758 0.5630 0.7343
Variance 0.0088 0.0194 0.0098 0.0107 0.0136 0.0133 0.0062 0.0129

Gaussian Mean 0.8654 0.8349 0.8959 0.8892 0.8443 0.8612 0.7666 0.9292
Variance 0.0065 0.0104 0.0047 0.0041 0.0119 0.0058 0.0095 0.0087

Polynomial Mean 0.8514 0.8196 0.8833 0.8754 0.8305 0.8465 0.7465 0.7540
Variance 0.0063 0.0144 0.0078 0.0072 0.0110 0.0077 0.0090 0.3751

Linear Mean 0.8409 0.8150 0.8668 0.8597 0.8240 0.8367 0.7320 0.9021
Variance 0.0060 0.0050 0.0146 0.0128 0.0070 0.0049 0.0080 0.0030

of our model, we also calculated the values of sensitivity,
precision, MCC, and AUC. From Table 2, we can see that our
model gives good prediction performance with an average
sensitivity value of 85.74%, precision value of 93.84%, MCC
value of 82.03%, andAUCvalue of 95.28%. Further, it can also
be seen fromTable 2 that the standard deviation of sensitivity,
precision, accuracy, MCC, and AUC is as low as 0.0094,
0.0098, 0.0064, 1.03, and 0.0064, respectively.

We further compared our method with those of Guo et
al. [22], Zhou et al. [30], and Yang et al. [31], where the SVM,
SVM, and KNNwere performed with the conventional auto-
covariance, local descriptor, and local descriptor representa-
tion as the input feature vectors, respectively. From Table 2,
we can see that the performance of all of these methods
with different machine learning models and sequence-based
feature representation methods are lower than ours, which
indicates the advantages of our method. To sum up, we
can readily conclude that the proposed approach generally
outperforms the previous model with higher discrimination
power for predicting PPIs based on the information of
protein sequences. Therefore, we can see clearly that our
model is a much more appropriate method for predicting
new protein interactions compared with the other methods.
Consequently, it makes us more convinced that the proposed
method can be very helpful in assisting the biologist to
contribute to the design and validation of experimental
studies and in the prediction of interaction partners.

3.3. Comparison between the Proposed Model and AADC
Method. The amino acid dipeptide composition (AADC) is
a representationmethod for protein sequences that count the
frequency of occurrence of adjacent pairs of amino acids.
Similar to the proposedmatrix-based protein sequence repre-
sentation method, AADC only needs the information of pro-
tein amino acids; no attention is paid to the physicochemical

properties of amino acids or other pieces of biological
information about proteins. To demonstrate the performance
of the proposed model, we further compared the proposed
protein feature representation methods with AADCmethod.

The prediction performance of SVM predictor with the
aforementioned two protein sequence representation across
five runs is shown in Table 3. It can be observed from
Table 3 that high prediction accuracy of 90.06% is achieved
for the proposed model with Gaussian kernel function. To
better investigate the prediction ability of our model, we also
calculated the values of sensitivity, specificity, PPV, NPV, 𝐹-
score, MCC, and AUC. From Table 3, we can see that our
model gives good prediction performance with an average
sensitivity value of 85.74%, specificity value of 94.37%, PPV
value of 93.84%, NPV value of 86.89%, 𝐹-score value of
89.61%, MCC value of 82.03%, and AUC value of 95.28%.
Further, it can also be seen from Table 3 that the standard
deviation of accuracy, sensitivity, specificity, PPV, NPV, 𝐹-
score, MCC, and AUC is as low as 0.0064, 0.0094, 0.0095,
0.0098, 0.0048, 0.0076, 0.0103, and 0.0064, respectively.
The performance of the proposed model with other kernel
functions including sigmoid function, polynomial function,
and linear function is also demonstrated in Table 3.

In addition, the prediction performance of AADC based
model is shown in Table 3. The AUC of the AADC model
with Gaussian kernel is 0.9292, which is lower than that
of the proposed model. The overall accuracy, sensitivity,
specificity, PPV, NPV, 𝐹1 score, and MCC of AADC model
are, respectively, 86.54%, 83.49%, 89.59%, 88.92%, 84.43%,
86.12%, and 76.66% as illustrated in Table 3. Hence, it can
be seen that almost all evaluation measures of the proposed
model are better than those of AADC method.

We also conduct experiment to characterize the sensi-
tivity (i.e., the size of true positives that can be detected
by our method) and specificity (i.e. 1 − false positive rate)
of the proposed approach for different activation functions
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Figure 2: The ROC (receiver operator characteristic) curve illus-
trating the performance of different activation functions. The curve
presents the true positive rate (sensitivity) against the false positive
rate (1 − specificity).

(see Figure 2). The results in Figure 2 are reported using
receiver operator characteristic (ROC) curves, which plot the
achievable sensitivity at a given specificity (1 − false positive
rate). Good performance is reflected in curves with a stronger
bend towards the upper-left corner of the ROC graph (i.e.,
high sensitivity is achieved with a low false positive rate).
We found that proposed method achieved over 89 percent
detection rate with less than 10 percent false positive rate.The
results demonstrate that the proposed matrix-based model
can successfully classify positive and negative samples in all
five activation functions that we investigated. Our algorithm
can perfectly classify interacting and noninteracting protein
pairs with only a few exceptions.

To sum up, considering the high efficiency as well as
the good performance we can readily conclude that the
proposed approach generally outperforms the AADC model
with higher discrimination power for predicting PPIs based
on the information of protein sequences. Therefore, we can
see clearly that ourmodel is amuchmore appropriatemethod
for predicting new protein interactions compared with the
other methods.

3.4. Comparing the Prediction Performance between Our
Method and Other Existing Methods. In order to highlight
the advantage of our model, it was also tested byHelicobacter
pylori dataset. This dataset gives a comparison of proposed
method with several previous works including phylogenetic
bootstrap [32], signature products [24], HKNN [33], and
boosting [34].Themethods of phylogenetic bootstrap, signa-
ture products, and HKNN are based on individual classifier
system to infer PPIs, while the methods of boosting belong to
ensemble-based classifiers.

The average prediction results of 10-fold cross-validation
over five different approaches are demonstrated in Table 4.

Table 4: Performance comparison of different methods on the H.
pylori dataset. Here, N/A means not available.

Methods SN (%) PE (%) ACC (%) MCC (%)
Phylogenetic bootstrap 69.8 80.2 75.8 N/A
HKNN 86 84 84 N/A
Signature products 79.9 85.7 83.4 N/A
Boosting 80.37 81.69 79.52 70.64
Proposed method 85.27 83.33 85.91 75.53

From Table 4, we can see that the average prediction per-
formance, that is, sensitivity, precision, accuracy, and MCC
achieved by proposed predictor, are 85.27%, 83.33%, 85.91%,
and 75.53%, respectively. It clearly shows that our method
outperforms all other individual classifier-based methods
and the ensemble classifier systems (i.e., boosting). All
these results demonstrate that the proposed method not
only achieves accurate performance, but also substantially
improves precision in the prediction of PPIs.

4. Conclusions

In this paper, we proposed an efficient and accurate learning
technique, which utilizes the information of protein amino
acid sequence order and distribution, for accurate identi-
fication PPIs at considerably high speed. It is well known
that the order and distributions of dipeptide possess more
pieces of information than those of amino acid dipeptide
composition (AADC), so the main advantage is that this
algorithm can extract more pieces of information hidden
in protein primary sequences than AADC can. Then, the
application of SVM predictor ensures reliable recognition
with minimum error. Experimental results demonstrated
that the proposed method performed significantly well in
distinguishing interacting and noninteracting protein pairs.
It was observed that the proposed method achieved the
mean classification accuracy of 90.06% using fivefold cross-
validation. Meanwhile, comparative study was conducted
on the proposed method and other existing methods. The
experimental results showed that our method outperformed
these works in terms of classification accuracy.
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