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Cancer arises from a multitude of disorders resulting in loss of differentiation and a stem cell-like phenotype characterized by
uncontrolled growth. Polycomb Group (PcG) proteins are members of multiprotein complexes that are highly conserved
throughout evolution. Historically, they have been described as essential for maintaining epigenetic cellular memory by locking
homeotic genes in a transcriptionally repressed state. What was initially thought to be a function restricted to a few target genes,
subsequently turned out to be of much broader relevance, since the main role of PcG complexes is to ensure a dynamically
choregraphed spatio-temporal regulation of their numerous target genes during development. Their ability to modify chromatin
landscapes and refine the expression of master genes controlling major switches in cellular decisions under physiological
conditions is often misregulated in tumors. Surprisingly, their functional implication in the initiation and progression of cancer may
be either dependent on Polycomb complexes, or specific for a subunit that acts independently of other PcG members. In this
review, we describe how misregulated Polycomb proteins play a pleiotropic role in cancer by altering a broad spectrum of
biological processes such as the proliferation-differentiation balance, metabolism and the immune response, all of which are crucial
in tumor progression. We also illustrate how interfering with PcG functions can provide a powerful strategy to counter tumor
progression.
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INTRODUCTION
Polycomb Group (PcG) proteins have first been described as main
players in cellular memory known to maintain embryonic
chromatin landscapes in a repressed transcriptional state through-
out development. Counterintuitively, PcG proteins then appeared
to be able to regulate the transcription of developmental genes
involved in a wide range of highly dynamic biological processes
such as differentiation, stem cell plasticity or cell cycle
progression.1,2 In addition, mutations or dysregulations of PcG
proteins have been extensively described in cancer.3 Knowing the
importance of PcG proteins in transcriptional regulation, it was not
surprising to find a correlation between modification of PcG
activities and tumorigenesis. However, an early demonstration of a
causal link between the ability of PcG complexes to promote or
inhibit the transcription of oncogenes or tumor suppressor genes,
respectively, has paved the way for work aimed at studying the
different mechanisms by which PcG complexes are involved in the
generation and the evolution of cancer cells.
Here, we first describe the molecular mechanisms underlying

the recruitment and function of PcG proteins in gene regulation
during normal development. We then review the involvement of
Polycomb complexes in cancer, highlighting PcG-dependent
disturbances of epigenetic processes in tumorigenesis. Next, we
focus on the description of the latest discovered mechanisms
linking Polycomb to cancer. PcG proteins have been extensively
studied in hormone-dependent cancers where hormone-receptors
interact directly with PcG proteins, modifying the transcriptional
landscape of the affected cells. Furthermore, PcG proteins have
been described as capable of modulating the metabolism and the

immune response of the tumor microenvironment, both being
hallmarks of cancer. Next, we focus on a new area of research
involving mutated histones, also known as oncohistones, and
discuss how these mutations can impact PcG behaviour in a
tumoral context. Finally, we explain how PcG proteins are able to
confer a non-genetic drug-resistance underlying the importance
of epigenetics in cancer.

PCG PROTEINS
PcG proteins are highly conserved throughout metazoan evolu-
tion and are essential players in cellular identity. In Drosophila
melanogaster, mutations in the Polycomb gene induce embryonic
transformation of anterior segments into posterior segments by
inducing ectopic expression of homeotic (Hox) genes.4,5 Subse-
quent work identified other mutations triggering derepression of
Hox genes, leading to the identification of several genes that were
defined as members of the Polycomb group. PcG proteins form
two main epigenetic complexes, the Polycomb Repressive
Complex 1 and 2 (PRC1 and PRC2), which were later identified
as transcriptional regulators targeting a large number of genes in
genome-wide studies.6

PRC2 is composed of the Embryonic Ectoderm Development
(EED), Suppressor of Zeste 12 Homolog Protein (SUZ12) and
Enhancer of Zeste Homolog 1/2 (EZH1/2) core constitutive
subunits (Fig. 1a). EZH1/2 have a Su(var)3–9, Enhancer-of-zeste
and Trithorax (SET) domain with a histone methyltransferase
activity that mono-, di- or tri-methylates the lysine 27 of the
histone H3 (H3K27me1/2/3).7 PRC2 can be divided into two sub-
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complexes, namely PRC2.1 and PRC2.2, characterized by the
association with specific accessory proteins. PRC2.1 contains one
of the three paralogous Polycomb-like (PCL) proteins PCL1/2/3,
also known as PHF1, MTF2, PHF19 respectively, as well as PRC2-
Associated LCOR Isoform 1/2 (PALI1/2) or Elongin B/C and PRC2-

associated Protein (EPOP). In addition of the core subunits, PRC2.2
contains Jumonji and AT-Rich Interaction Domain containing 2
(JARID2) and Adipocyte Enhancer-Binding Protein 2 (AEBP2). Some
PRC2 co-factors can have a negative impact on PRC2 methyl-
transferase activity. The Catalytic Antagonist of Polycomb
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Fig. 1 Composition of PcG proteins in mammals. a PRC2 can be sub-divided into PRC2.1 and PRC2.2. The core PRC2 with PCL1/2/3 and the
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(CATACOMB)-PRC2 variant presents a decrease in PRC2 enzymatic
activity. Indeed, the CATACOMB (also known as EZHIP) gene is
poorly expressed in physiological conditions, except in gonads,8

due to hypermethylation of its CpG islands (CGIs).9 While
CATACOMB–PRC2 association does not impact PRC2 recruitment
to chromatin, it lessens its ability to associate with sub-
stochiometric co-factors that would otherwise enhance its
enzymatic activity.8

PRC1 members form an even more diversified combination of
variant complexes (Fig. 1b), which can be subdivided into
canonical PRC1 (cPRC1) and non-canonical PRC1 (ncPRC1)
complexes that all share a core PRC1 comprising one of six
Polycomb Group Ring Finger 1–6 (PCGF1–6) proteins and RING1A/
B, an E3 ubiquitin ligase catalyzing the mono-ubiquitination of
lysine 119 of histone 2A (H2AK119ub in mammals or H2AK118ub
in flies).10,11 cPRC1.2 and cPRC1.4 are respectively formed by
PCGF2 or PCGF4 (also known as MEL-18 or BMI-1), RING1A/B and
Sex Comb on Midleg Homolog 1/Like 2 (SCMH1/L2), and can be
distinguished from ncPRC1s by the presence of one of Chromo-
box 2/4/6–8 (CBX2/4/6–8) proteins as well as one of the
Polyhomeotic Homolog 1–3 (PHC1–3).6,12 In addition to RING1A/
B and a PCGF1–6 protein, ncPRC1complexes assemble around
RING1 and YY1-Binding Protein (RYBP) or YY1-Associated Factor 2
(YAF2) proteins, which are mutually exclusive homologous
proteins able to bind to the same site on the C-terminal domain
of RING1B.13,14 Moreover, the ncPRC1 complexes can be further
classified by the identity of their PCGF subunit (PCGF1 for PRC1.1,
PCGF2 for PRC1.2 and so on). Genome-wide analysis demon-
strated that each PRC1 complex has its own chromatin targeting
profile suggesting that the recruitment of cPRC1 and ncPRC1
depends on their differential compositions that in turn could
contribute to pleiotropic functions.15

MOLECULAR MECHANISMS MODULATING PRC1 AND PRC2
RECRUITMENT
An important feature of the PRC1 and PRC2 core subunits is the
absence of sequence-specific DNA-binding domains that would
allow their direct recruitment to their target genes. PcG-mediated
gene regulation therefore depends on components that direct
their recruitment to specific chromatin domains. In a classical
model, described in Drosophila melanogaster, PRC2 is first
recruited on cis-regulatory sequences called Polycomb Response
Elements (PREs) via consensus motifs for sequence-specific DNA-
binding proteins that might interact with PRC2 subunits.16–18

PRC2, via its E(z) subunit, the Drosophila ortholog of EZH2/1,
deposits H3K27me3. This H3K27me3 mark is then recognized by
the cPRC1 PC subunit (ortholog of CBX).7,17,19,20 Subsequently,
Sce — the ortholog of RING1A/B — ubiquitinates H2AK11810,11

(Fig. 2a). This model predicts co-occurrence of PRC1 and PRC2 at
their target loci.
However, ncPRC1 complexes do not possess CBX subunits that

recognize H3K27me3 and only a small subset colocalizes with this
PRC2-deposited mark.15 Moreover, mammalian ncPRC1s can act
upstream of PRC2 by directly recognizing non-methylated DNA in
CGIs leading to the ubiquitination of H2AK119 which is then
recognized by PRC2-JARID2.21–24 These data suggest that ncPRC1
recruitment to a subset of their targets can act upstream of PRC2
recruitment (Fig. 2a).
The existence of mammalian PREs is still controversial.25,26 The

analysis of PRC2 genome binding identified the enrichment for
CGIs characterized by low levels of DNA methylation, that could
therefore act as PREs in mammals27–29 (Fig. 2a). Thanks to their
Polycomb-like (PCL) extended domain, the PCL proteins PHF1,
MTF2 or PHF19 preferentially bind unmethylated CpG-containing
DNA sequences,30 promote PRC2 binding to CGIs31,32 and stabilize
the dimerization of PRC2.33 The accessory subunits — JARID2 and
AEBP2 — are also important for PRC2 recruitment, via recognition

of the H2AK119ub mark, as well as for deposition of H3K27me3 at
specific PcG targets34 (Fig. 2a).
Additional mechanisms involve a PRC1-independent transcrip-

tional repression. Indeed, the proteins Bromo Adjacent Homology
Domain Containing protein 1 (BAHD1) and BAH Domain And
Coiled-Coil Containing 1 (BAHCC1/BAHD2) possess a C-terminal
Bromo Adjacent Homology (BAH) domain which recognizes
H3K27me3.35–38 Moreover, BAHD1 acts as a scaffold protein that
recruits additional co-repressors such as Histone DeAcetylases
(HDACs).35,39 Alternative recruiting mechanisms also involve long
non-coding RNAs (lncRNAs) as well as specific transcription factors
(reviewed respectively in40,41) (Fig. 2a).
Polycomb recruitment is also modulated by the chromatin

landscape. Indeed, Trithorax Group (TrxG) proteins counteract
Polycomb-mediated gene silencing by decorating chromatin with
active histone marks such as H3K4me1/2/36 and a fine-tuned
balance between these two complexes is critically important. SWI/
SNF and COMPASS complex subunits are the main TrxG proteins,
respectively involved in chromatin remodeling and H3K4 methy-
lation.42 Interestingly, MLL2/COMPASS binds specific promoters
and trimethylates H3K4 to promote MLL2-dependent gene
transcription.43 Upon loss of MLL2, H3K27me3 decorates MLL2-
dependent genes and represses them.43 However, in MLL2
depleting context, H3K27me3 spreading is prevented by DNA
methylation at CpG islands.44 Dual deletion of MLL2 and DNA
methylation increases the repressive mark spreading while
diluting its level, which ultimately leads to transcription of the
corresponding genes.43 Moreover, spreading of the PRC2 mark is
also counteracted by H3K36me2, which is deposited by NSD1.45

In summary, the molecular mechanisms deployed by PcG
complexes to specifically target the genome remain a major area
of interest with important consequences for understanding how
target genes are specified. Coordinating Polycomb action with key
developmental orchestrators, including transcription factors,
involves a wide spectrum of tissue- and time-specific players.
Future studies should provide insight into this complex Polycomb
recruitment network.

PCG PROTEIN FUNCTION IN GENE SILENCING
PcG-mediated transcriptional regulation has been widely por-
trayed as gene silencing and suggested to be mediated by various
mechanisms. First, PcG complexes can mediate chromatin
compaction46–48 (Fig. 2b). In Drosophila melanogaster, mutations
in cPRC1 genes were shown to induce decompaction of the Hox
clusters, followed by ectopic Hox gene expression which began a
few hours later.49 In Ring1b-knockout mouse embryonic stem cells
(mESCs) chromatin decompaction and expression of Hox genes
occur even though the H3K27me3 repressive mark is still
present.50 Surprisingly, this phenotype is rescued by a catalytic
mutant form of RING1B, suggesting that its E3-ubiquitin ligase is
dispensable for PcG-mediated silencing.50 This latter result
contrasts with research suggesting a role for the H2AK119ub
mark in maintaining PcG-dependent repression.11,24,51,52

Second, a switch from a transcriptional repressive state to an
active state can be induced by competition between BAF — an
ATP-dependent chromatin remodeling complex part of SWI/SNF
family — and Polycomb complexes.12 BAF-dependent eviction of
PcG proteins opens chromatin architecture after H3K27me3 and
H2AK119Ub depletion.53 Strikingly, in a dominant-negative BAF
mutant background, accumulation of PRC1 and PRC2 on
chromatin does not necessarily trigger changes in chromatin
landscapes, suggesting that DNA-accessibility to BAF is PcG-
independent.54

Third, the maintenance of the repressed state of PcG target
genes also depends on the PcG ability to block initiation and
elongation of transcription (Fig. 2c). In particular, RING1-mediated
ubiquitination maintains RNA polymerase in a poised state.52,55,56
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In mESCs, PRC2 can methylate Elongin A to block transcription.57

The H2AK119ub and H3K27me3 repressive histone marks
respectively repress deposition of the H3K4me2/3 and H3K27Ac
active histone marks.58,59 Moreover, in flies, PRC1-PC binds to CBP
and inhibits its H3K27 acetyltransferase activity, contributing to a
repressive state60 while on the other hand TRX or TRX-related
(TRR) association to CBP antagonizes PcG-mediated silencing.61

Interestingly, while the trimethylated form of H3K27 has been
extensively studied, less is known about the importance of
H3K27me2 in transcriptional repression. Remarkably, the dimethy-
lated H3K27 mark represents 70% of total histone H3 against 4%
for the trimethylated form.62 Their distribution is mutually
exclusive, indeed, the methylated state of H3K27 correlates with
different transcriptional states. It is suggested that H3K27me2
coats most of chromatin in order to protect chromatin changes
mediated by Histone Acetyl Transferase (HAT).62

Finally, PcG proteins actively participate in the three-
dimensional (3D) organization of the genome, adding a higher-
order layer through which they contribute to gene regulation
(Fig. 2d). PcG proteins can drive the formation of 3D-loops
between regulatory elements such as promoters and

enhancers.63,64 Loop formation involves the cPRC1-PH subunit,
that oligomerizes via its SAM domain, but is independent of the
cPRC1 catalytic activity.65–67 Consistent with a function for 3D
architecture in gene regulation, PRC1 knockout in ESCs leads to
loss of promoter–promoter contacts resulting in transcriptional
upregulation of PRC1 target genes.68

PCG PROTEIN FUNCTION IN TRANSCRIPTIONAL ACTIVATION
Interestingly, an involvement of PcG proteins in transcriptional
activation has been suggested in pathological as well as in
physiological contexts69 and is now better understood at the
molecular level (reviewed in70). Morey et al. described that only
31% of the cPRC1 and ncPRC1 target genes overlap.71 While
cPRC1 target genes are strongly repressed, ncPRC1 target genes
are overall expressed and involved in dynamic processes such as
metabolism and cell cycle progression.71 Thus, H3K27me3-
independent PRC1 recruitment appears to be an important
feature that favors transcriptionally active states by PcG
proteins.72–74 For instance, PRC1.5 includes the component Autism
Susceptibility candidate 2 (AUTS2) that recruits CK2 and p300
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which, respectively, inhibits the E3-ubiquitin ligase activity by
phosphorylating RING1B and deposits acetylation on histone tails
to facilitate transcription.15,75 For PRC1.5-AUTS2 target genes, the
concomitant enrichment for the H3K4me3 and H4K16Ac active
marks, the presence of the RNA polymerase II and a reduction of
the H3K27me3 repressive mark lead to transcriptional activation.75

The transcription factor NRF1 is involved in PRC1.5-AUTS2
recruitment to its target genes, providing an example for
sequence-specific targeting of a PRC1 complex in mammals.76

To recapitulate, it is the specific composition of the PcG
complexes, as well as the dynamics of their chromatin binding and
replacement through cell lineages that determine their transcrip-
tional impact.15,71,77 While canonical PcG proteins maintain
cellular memory, such as in stem cells where they support self-
renewal properties by repressing lineage-specific genes, ncPRC1s
control differentiation in more subtle ways. By fine-tuning
transcription, PcG proteins are master contributors of cell fate
determination,1 in particular in the control of a balance between
proliferation and differentiation. On the other hand, loss of this
fine balance upon misregulation of PcG-dependent mechanisms
can cause pathogenesis.

POLYCOMB IN CANCER
Altering the proper functions of PcG can affect cellular identity,
therefore promoting tumorigenesis (Tables 1, 2).

PRC2 in cancer
Polycomb dysregulation in cancer has been the subject of
extensive studies since Varambally et al. demonstrated that
EZH2 overexpression is associated with advanced stage and poor
prognosis in prostate cancer.78 Quantitative and qualitative EZH2
dysregulation has been frequently described in solid malignancies
including lung, hepatocellular, breast, colorectal, pancreatic
cancers as well as in several hematologic malignancies.79,80 EZH2
expression can be regulated by specific transcription factors,
including the MLL-AF9 fusion protein, or by miRNAs that will
induce EZH2 mRNA decay.81,82 Dysregulation of those specific
regulators participates in the tumorigenesis onset. EZH2 over-
expression in patients is associated with a higher risk of relapse.78

PRC2 plays a major role in self-renewal of hematopoietic stem
cells;83–86 its dysregulation is often found in multiple blood
cancers87–92 in which EZH2 can behave both as a tumor
suppressor85,93,94 or an oncogene95–98 depending on the cell
context (reviewed in80) (Fig. 3a).
The onset or cancer progression may be associated with

mutations affecting the catalytic SET-domain of EZH2 that is
essential for H3K27 methylation (Fig. 3b). An EZH2Y641F/N gain-of-
function (GOF) mutation affecting the tyrosine 641 (Y641) located
in the SET-domain induces hypermethylation of H3K27.99,100

Particularly, EZH2Y641 has an increased affinity for dimethylated
H3K27 form which causes a widespread redistribution of
H3K27me3 and a decrease in H3K27me2, leading to transcrip-
tional misregulation of affected genes.100–102 Moreover, the
higher-order chromatin landscape can also be affected. In recent
years, multiple cutting edge approaches have shown that the
genome folds into a hierarchy of structures, from nucleosomes, to
chromatin loops and nanodomains, Topologically Associating
Domain (TADs), chromosome compartments and chromosome
territories.103 TADs are particularly interesting since they consti-
tute regulatory landscapes for the genes contained within each
TAD.104 Interestingly, co-repression of several tumor suppressors
was suggested to participate in tumor growth.105,106 An estab-
lished tumor state can also participate a posteriori in the
redistribution of EZH2 on ectopic targets, triggering changes in
cell identity due to misexpression of homeotic genes.107 In
addition to GOF effects, loss-of-function (LOF) mutations and
deletions affecting EZH2 and SUZ12 in T-cell acute lymphoblastic

leukemia (T-ALL) — a hematopoietic cancer — lead to hypo-
methylation of H3K27 target genes, including Notch, a major
player in T-ALL, thereby contributing to oncogenesis108 (Fig. 3a).
PRC2 LOF is found in around 25% of T-ALL in association with
oncogenic activating mutations of the JAK/STAT signaling path-
way and leads to a global epigenetic remodeling towards
H3K27Ac. This active histone mark is recognized by Bromodomain
and Extraterminal (BET)-domain proteins that act as its specific
readers, allowing reactivation of a BET-dependent transcriptional
network that triggers stem cell-like programs leading to poor
prognosis. PRC2-altered T-ALL being dependent on BET proteins,
BET domain protein inhibition is therefore a promising therapeutic
avenue in PRC2-associated-T-ALL patients.109

EZH2 post-translational modifications (PTMs) play an additional
role in certain type of cancers110,111 (Fig. 3c). In patients with
advanced prostate cancer, H3K36me3 and H3K27me3 levels are
inversely correlated.78,111 SETD2, the methyltransferase responsi-
ble for H3K36me3 deposition, also monomethylates EZH2 on its
lysine 735 residue, inducing EZH2 degradation and consequently
delaying metastasis. SETD2 is strongly correlated with the
presence of EZH2-K735me1 and particularly found in patients
with prostate cancer with better clinical outcome.111 On the
contrary, EHZ2-K307 methylation by SMYD2 improves its stability
and participates in the transcriptional repression of pro-apoptotic,
anti-proliferation and anti-invasion target genes112 (Fig. 3c).
Multiple EZH2 PTMs play thus a role in EZH2 function and stability
that will result in an H3K27 hypermethylation or hypomethylation
of the chromatin landscape that favors tumorigenesis (Table 1).
Additionally, SUZ12 is upregulated in a variety of cancers,

including ovarian, colorectal and head and neck squamous cell
carcinoma.113–115 The knockdown of SUZ12 is able to reverse
tumor growth by inhibiting proliferation and inducing apoptosis
in these contexts.113,115 On the other hand, SUZ12 loss in T-ALL
disrupts the PRC2 complex, leading to H3K27me3 decrease which
correlates with the opening of chromatin and upregulation of the
corresponding genes involved in oncogenic signaling pathways92

(Fig. 3a). Moreover, PRC2 loss induces a genome-wide redistribu-
tion of the H3K27Ac mark and the activation of poised
enhancers.62 Therefore, similar to EZH2, SUZ12 can act as pro-
oncogenic or tumor suppressor depending on the cancer type.
As previously mentioned, PRC2 can be divided into two sub-

complexes, PRC2.1 and PRC2.2. While their target genes are
overlapping,34,116 their differences rely on their affinity to
chromatin.117 Indeed, PRC2.1 tends to have a higher affinity to
chromatin, which leads to an increase in H3K27me3 deposition
and silencing of PcG target genes in the presence of high ratios of
PRC2.1 to 2.2.117 In leukemia, colon and uterine adenocarcinomas,
missense mutations of SUZ12, SUZ12(R103P/Q), result in JARID2
depletion, leading to an increase in PRC2.1 formation which
enhances PRC2 chromatin occupancy.117 How PRC2.1 could be
specifically implicated in cancer remains to be determined.
Although PRC2 dysregulation events have been widely docu-

mented in cancer, it is still difficult to decipher whether they are
drivers in tumorigenesis. Even if EZH2 is dispensable for the
progression of prostate and mammary cancer, it is nonetheless
highly expressed.118 In fact, in normally dividing cells, the rate of
EZH2 expression correlates with proliferation rates,118 compensat-
ing the proliferation-dependent dilution of H3K27me3. In these
cancers, even though EZH2 is overexpressed, tumor cells
paradoxically fail to maintain a wild-type dose of H3K27me3.
The use of EZH2 inhibitors for cancer treatment should therefore
carefully take into account the tumor proliferation status.118 With
the aim to identify the cancer types in which treatment using
PRC2 inhibitors could be beneficial, a genomic and transcriptomic
analysis using available databases on clinical tumor samples and a
panel of tumor cell lines has been performed, revealing a
correlation of EZH2, SUZ12 or EED amplifications with poor
prognosis in a subclass of human cancers like renal papillary cell
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carcinoma, low-grade glioma and hepatocellular carcinoma.119

Interestingly, GOFs of PRC2 subunits are also anti-correlated with
poor prognosis in some cancers like gastric cancer and thymoma,
suggesting a tumor suppressor function of PRC2 in those cases.
It remains to be understood why certain tumors are addicted to

one specific PRC2 subunits but not the others. Clearly, a better

understanding of the rate-limiting roles and the cell type-specific
functions of each of the PRC2 subunits will require future research.

PRC1 in cancer
Like PRC2, PRC1 components are widely implicated in many types
of cancers (Table 2). BMI-1 (PCGF4), a cPRC1.4 subunit, has
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historically been described as a proto-oncogene that collaborates
with the c-Myc oncoprotein to trigger tumorigenesis.120–123 The
INK4a-ARF locus, encoding the tumor suppressors p16Ink4 and
p19Arf, is a direct target of PRC1.4.124 BMI-1 deficiency is associated
with overexpression of p16 Ink4 and p19Arf and therefore with cell
cycle arrest, senescence and apoptosis (Fig. 4a). In contrast, BMI-1
overexpression triggers cell proliferation by repressing ink4a-ARF
expression.124 BMI-1 is involved in gastric, pancreatic, breast and
ovarian cancer among others.125–129 MEL-18 (PCGF2), a BMI-1
homolog, has a tumor suppressing activity.130–132 BMI-1 and MEL-
18 expression levels are inversely correlated in various
cancers.133,134 BMI-1 expression depends on its counterpart MEL-
18 (Fig. 4a). c-Myc is a transcriptional activator of BMI-1. Mel-18
overexpression is linked to c-myc downregulation, leading to BMI-
1 decrease, p16 upregulation and ultimately to cell senescence.135

Interestingly, in flies, LOF of cPRC1 members results in upregula-
tion of cancer-related genes, including genes involved in the
Notch, JNK and JAK/STAT signaling pathways74,136,137 (Fig. 4b), a
difference that might be due in part to the absence of PcG-
mediated repression of the INK4a-ARF locus in flies.
Using an in vivo and in vitro approach, ncPRC1.1 was shown to

specifically target active genes independently of PRC2.74,138 At a
genome-wide level, the correlation between mammalian
RING1B and the H3K27me3 mark decreases during lineage
decision processes. While PRC1-RING1B targets are clearly
enriched for the repressive H3K27me3 mark in ESCs, this is only
the case for ~30% of them in differentiated cells.74 While gene
ontology categories associated with H3K27me3-dependent tar-
gets are linked to developmental pathways, H3K27me3-
independent targets are linked to cell cycle regulation, cell
polarity, metabolism and signaling pathways74,138 (Fig. 4b). This
difference in PRC1 targeting results from major changes in the
qualitative and quantitative compositions of the ncPRC1 variant
complexes.15,71

Unlike PRC2 mutations, PRC1 mutations are not overrepre-
sented in cancer.139 However, some mutations affecting ncPRC1
have been described.140,141 In SHH-driven medulloblastoma, the
PRC1.1 BCOR scaffold protein is mutated at its C-terminal domain
that normally interacts with PCGF1,141,142 resulting in loss of
PRC1.1 recruitment to genes coding for growth factors that would
otherwise be repressed141 (Fig. 4c). Likewise, MGA, a transcription
factor that is a member of the Myc network and interacts with
ncPRC1.6 subunits, is a tumor suppressor in vivo that acts by
recruiting ncPRC1.6 to its target genes.143 Moreover, BAP1, a
component of the Polycomb Repressive complex DeUbiquitinase
(PR-DUB), is a tumor suppressor.144,145 Recent data suggest that
this protein prevents widespread H2AK119ub deposition and
chromatin condensation at non-target loci, restricting H2AK119ub
to Polycomb target genes. BAP1 may thus prevent inappropriate
redistribution of Polycomb complexes away from their targets and

play critical roles, particularly by maintaining the appropriate
chromatin state of lineage commitment genes.146–149 It is there-
fore not surprising that PR-DUB misregulation leads to tumorigen-
esis. Enhancing deubiquitinase activity leads to a widespread
depletion of the H2AK119ub mark.140 Conversely, disruption of its
chromatin recruitment or catalytic activity could result in an
increase in H2AK119ub and H3K27me3.146,150 Depending on the
genes targeted, this might switch the transcriptional state of
oncogenes or tumor suppressor genes.
In summary, the implication of PcG components in cancer,

either by point mutations or by dysregulation of its components, is
widely established. Through tumor suppressor or oncogenic
activity in a broad type of cancers, PcG members control tumor
growth and survival.151 Targeting PRC2 members or proteins
involved in PRC2 stability, either by inhibiting its enzymatic
activity or by interfering with PRC2 complex assembly or stability,
appears to be a promising strategy to prevent growth of PRC2-
dependent tumors79,152–154 (Table 3). However, since PRC1 can
either repress or activate the transcription of its target genes, it is
both the downregulation and/or upregulation of tumor suppres-
sors and oncogenes respectively that might participate in
tumorigenicity.69,155–157 The exact role of PRC1 complexes in
cancer, and in particular the importance of ncPRC1 complexes,
remains to be determined. Future work would be important to
better characterize the molecular implication of Polycomb
complexes and define appropriate therapeutic approaches to
rescue their dysregulation in different types of cancer.

ENVIRONMENTAL CUES AND POLYCOMB-DEPENDENT
ONCOGENESIS
Hormone-dependent cancer
PRC1 genes are significantly amplified in hormone-dependent
cancers.139 Since hormone receptors are transcription factors, they
might participate in tumorigenesis by triggering ectopic recruit-
ment of Polycomb proteins to a specific set of target genes. In
particular, the androgen receptor (AR) and the estrogen receptor
(ER) can directly recruit PcG proteins at their response elements in
hormone-dependent cancers.139,158–160 In prostate cancer, main-
tenance of AR expression is essential. The overexpression of BMI-1
and its increased protein stability mediated by PTMs, such as O-
GlcNAcylation, participate in the self-renewal of cancer cells and
the progression of prostate cancer161,162 (Fig. 4d). Furthermore,
the binding of BMI-1 to AR inhibits the ubiquitin–proteasome
degradation pathway.163 Surprisingly, the AR interacts with BMI-1
in a PRC1-independent manner.163 By coupling ChIP-seq and
CRISPR methodologies, it was found that Androgen Response
Elements (AREs) are located in the BMI1 locus and enriched for the
H3K27Ac active enhancer mark, suggesting that the AR activates
transcription of BMI-1.160 Moreover, a positive feedback loop exists

Fig. 3 Multifaceted roles of PRC2 in tumorigenesis. a Upregulation of PRC2 components results in H3K27 hypermethylation, which, if
present in tumor suppressor genes, induces their downregulation. In contrast, downregulation of PRC2 components at oncogenes leads to
H3K27 hypomethylation and a switch to acetylation, contributing to the overexpression of specific oncogenes. b GOF mutations (indicated by
a star) affecting the SET-domain of EZH2 can lead to overactivation of its H3K27 methyltransferase catalytic activity and to the silencing of
tumor suppressor genes. c PTMs of EZH2 participate in tumorigenesis. Left: methylation of K307 of EZH2 by SMYD2 enhances its stability,
resulting in a H3K27 hypermethylated state of tumor suppressor genes. Right: on the other hand, methylation of its K735 causes EZH2
degradation. The loss of EZH2 induces the replacement of H3K27me3 by H3K27ac, leading to the transcriptional expression of oncogenes.
d Polycomb-independent roles of EZH2 in transcriptional activation. The gene encoding the AR is a direct target of EZH2-mediated
transcriptional activation in Androgen-Dependent and Castration-Resistant Prostate Cancers (ADPC and CRPC, respectively). This mechanism
is methylation-independent and escapes EZH2 inhibitors. In CRPC, EZH2 acts as a co-factor of AR. This functional transition of EZH2 from a role
of repression to a role of activation of transcription depends on its phosphorylation at the level of Ser21. EZH2 and AR directly interact. This
interaction inhibits the degradation of the AR and causes the overexpression of the AR target genes. e Under physiological conditions, PRC2
participates in the transcriptional repression of its HOX target genes throughout development. However, oncogenic transformation can
redirect PRC2 to new target genes. This PRC2 redistribution, in particular at differentiation-related genes, induces a loss of differentiation and
participates in the generation of a pluripotent stem cell-like phenotype. AR, Androgen Receptor; CBP, CREB binding protein; PSA, Prostate-
Specific Antigen; SETD2, SET domain-containing 2 (a histone lysine methyltransferase); SMYD2, SET and MYND domain-containing 2.
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in prostate cancer where BMI-1 overexpression stabilizes AR,
which in turn transcriptionally activates BMI-1 expression, leading
to tumor progression (Fig. 4e). In addition, a PRC2-independent
EZH2 oncogenic function relies on its direct interaction with AR,
leading to AR transcription and activation of AR downstream

targets164–166 (Fig. 3d). This PRC2 genome-wide redistribution also
results in ectopic targeting, in particular to tumor suppressor
genes, particularly those involved in INF-ɣ signaling, that are
repressed by the H3K27me3 mark in prostate cancer167,168

(Fig. 3e).
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The redistribution of PcG-targets is an important mechanism
participating in tumorigenesis and cancer progression. Surpris-
ingly, in breast cancer, ERα, β-catenin and EZH2 interact and target
oncogenes, such as c-Myc and Cyclin D1, acting as transcriptional
co-activators.169 Furthermore, the redistribution of PRC1 leads to
its association with active enhancers enriched for the H3K4me1
mark.139 RING1B was proposed to facilitate ERα recruitment to
enhancers and super-enhancers, as well as to promoters of cancer-
related genes139,170 (Fig. 4e). However, how RING1B is recruited to
open chromatin sites and how it selectively binds to a subset of
them is still unclear.

Metabolism
Proliferation and growth of cancer cells are known to be
associated with an extensive rewiring of metabolism and energy
production networks where Polycomb complexes are clearly
involved. As already mentioned, changes in methylation of
H3K27 participate in tumor progression.94,108 Tight regulation of
the methyl group available for EZH2 activity is essential to
maintain a proper chromatin landscape. The catalytic activity of
EZH2 depends on the methyl donor S-adenosylmethionine
(SAM)171 (Fig. 5e). SAM is formed by the combination of a
methionine, which crosses the cell membrane via the LAT1
transporter, and an ATP molecule. Cancer cells with higher levels
of LAT1 expression have a more aggressive phenotype.172 Upon

LAT1 depletion, the SAM pool is significantly reduced, correlating
with a decrease in H3K27me3 deposition even if EZH2 protein
concentration is constant.172 In addition, repression of RXRα, a
known negative regulator of LAT1, by the PRC2 complex
maintains a positive feedback loop between LAT1 and EZH2,
enhancing EZH2 methyltransferase activity172 (Fig. 5a). Indeed,
EZH2 inhibition via competition with SAM has a potent anti-tumor
effect.173

PcG proteins are also involved in the regulation of branched-
chain amino acids (BCAAs),174 key regulatory components for
protein synthesis and energy production, both of which are also
the fuel of cancer progression.175 Enzymes required for BCAA
catabolism, known as BCAA aminotransferases (BCATs), are often
overexpressed in cancer cells.176 In myeloproliferative neoplasms
(MPNs), the combination of partial loss of PRC2 and expression of
the constitutively active oncoprotein NRASG12D — a member of
the Ras GTPase family — has been shown to lead to BCAT1
expression, which is normally repressed in hematopoietic stem
cells.174 The increase in BCAT1 results in a larger pool of BCAAs
that activates mTOR, a protein kinase known to participate in
tumor growth and proliferation.177 It should be noted that in
patients with Acute Myeloid Leukemia (AML), the expression of
EZH2 and BCAT1 is inversely correlated, a high expression of
BCAT1 being associated with a poor survival outcome.174 In
glioblastoma cancer cells, rather than modulating BCAT

Fig. 4 Multifaceted roles of PRC1 in tumorigenesis. a PCGF2 inhibits the transcription of c-myc. Loss of c-Myc results in the decrease of
PCGF4 expression, and in the derepression of PCG4 target genes, such as the INK4a-ARF locus. p19 and p16 participate in proliferation control,
respectively, by inhibiting MDM2-mediated degradation of p53 and inhibiting CycD/CDK4-mediated phosphorylation of pRb. b PRC1
oncogenic activity may also be PRC2-independent. PRC1 is found on specific targets lacking the H3K27me3 repressive mark. Surprisingly,
these genes exhibit active marks such as H3K27Ac and H3K4me1/3. Gene ontology analysis characterized these cancer-related genes as
components of cell signaling, like the Notch and JAK/STAT signaling pathways. c PRC1 mutations are rarely found in cancer, although some
mutations have been found to impact variant PRC1. Indeed, mutations (indicated by a star) in BCOR, a scaffold protein involved in ncPRC1.1,
are found in SHH-driven medulloblastoma. The presence of these mutations promotes a neoplastic state of cancer cells by preventing
Polycomb recruitment to its target genes. d PTM of PRC1 subunits can promote tumorigenesis. The deposition of O-GlcNAcylation on PCGF4
(BMI-1) inhibits its degradation. PCGF4 protein levels are increased and participate in the transcriptional silencing of downstream target genes
such as the INK4a-ARF locus, thus promoting oncogenic cell proliferation. e In hormone-dependent cancers, PRC1 genes are often amplified.
Top: in prostate cancer, the AR promotes the expression of PCGF4. Additionally, it can interact with the PCGF4 protein, resulting in inhibition
of AR degradation and transcriptional activation of its downstream target genes. Bottom: cPRC1 can also interact with the ER and its pioneer
factor FOXA1 in ER+ breast cancer cells and bind to enhancers that stimulate transcription of cancer-related genes decorated with active
histone marks. AR, Androgen Receptor; Cdk4, 6, Cyclin Dependent Kinase 4, 6; ER, Estrogen Receptor; FOXA1, Forkhead Box A1; Igf2, Insulin-
like growth factor 2; MDM2, Murine Double Minute 2; PSA, Prostate Specific Antigen; Rb, Retinoblastoma.

Table 3. PcG inhibitors and ongoing clinical trials.

Target Agent Cancer Status Clinical
study (NCT#)

Ref

EZH2 Tazemetostat (formerly
known as: EPZ-6438, E7438)

B-cell NHL Phase 2 NCT03456726

MRT, RTK, ATRT, synovial sarcoma, malignant rhabdoid
tumor of ovary, renal medullary carcinoma, epitheloid
sarcoma, solid tumor with an EZH2 GOF mutation

Phase 2 NCT02601950 331

Malignant mesothelioma Phase 2 NCT02860286

B-cell lymphomas, advanced solid tumors DLBCL,
follicular lymphoma

Phase 1
Phase 2

NCT01897571 332,333

SHR2554 Lymphoid neoplasm Phase 1 NCT03603951

Solid tumor, lymphoma Phase 2 NCT04407741

CPI-1205 B-cell lymphoma Phase 1 NCT02395601 334

mCRPC Phase 2 NCT03480646

Valemetostat Tosylate
(DS-3201b)

T-cell leukemia/lymphoma Phase 2 NCT04703192

Small cell lung cancer Phase 1 NCT03879798

Lymphoma, non-Hodgkin lymphoma NCT02732275

ATRT, Atypical Teratoid Rhabdoid Tumors; DLBCL, Diffuse Large B-cell Lymphoma; GOF, Gain-Of-Function; mCRPC, Metastatic Castration Resistant Prostate
Cancer; MRT, Malignant Rhabdoid Tumors; NHL, Non-Hodgkin’s Lymphoma; RTK, Rhabdoid Tumors of the Kidney.
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expression, it is the BCAA pool that increases. In this case, EZH2
represses EAF2 which inhibits Hypoxia-Inducible Factor 1 (HIF1).178

HIF-1 overexpression participates in the Warburg effect by
supporting glycolytic metabolism and upregulating expression
of LAT1, the main transporter of BCAAs, which results in an
increase in BCAA pool178,179 (Fig. 5a, right).

The Warburg effect is the most well-known cancer metabolic
alteration, whereby malignant cells use glycolysis rather than
oxygen-dependent metabolism. A tight regulation of glucose
homeostasis is essential to counter the proliferation of cancer
cells. An important node in this pathway is the reaction catalyzed
by the enzyme Fructose-1,6-biphosphatase (FBP1). Low FBP1
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enzyme activity correlates with higher production of pyruvate, the
downstream product of the glycolysis pathway. An over-
production of pyruvate corresponds to a greater store of energy
available for cancer cell growth. In hepatocellular carcinoma and
clear cell renal cell carcinoma, the mRNA levels of Ezh2 and FBP1
are inversely correlated due to the presence of the EZH2-
dependent H3K27me3 repressive mark at the promoter of the
gluconeogenic enzyme-coding gene.180 Tumor growth was shown
to be thwarted either by a short-hairpin RNA (shRNA) directed
against Ezh2, or by the reintroduction of FBP1. Interestingly, FBP1
and EZH2 interact directly. In doing so, FBP1 is able to reduce the
methyltransferase activity of EZH2 by dissociating the PRC2
complex. This double negative feedback loop provides new
insights into the involvement of Polycomb in “oncometabolism”.
Metabolic reprogramming during tumorigenesis is required to

better sustain the energy necessary for cancer progression and
survival.181,182 PcG proteins have been implicated in the regulation
of metabolic genes involved in metabolism of fatty acids and
pyruvates among others.139,183 While the link between PRC2
function and metabolism in physiology and cancer is certain,
much work remains to be done in order to understand the
molecular underpinnings of this link in different cancer types and
to harness them to design effective therapeutic strategies.
Noteworthy, with most of the current research focusing on the
link between PRC2 and metabolism,184 it might also be of interest
to examine the involvement of PRC1 in future work.

Immune system
The immune system has a wide array of cells that protect from
foreign bodies, also known as non-self. Innate immune cells
provide a rapid and nonspecific response while adaptative
immune cells have a slower response that relies on a memory
process that will be specific to a known foreign object.185 In
principle, both innate and adaptative immune cells exert an anti-
tumor function.
However, cancer cells can develop multiple mechanisms to

evade recognition and destruction by the immune system and
become resistant to therapy. In prostate cancer, elevated PRC1
levels and activity coincide with epithelial-to-mesenchymal
transition (EMT) and stemness signatures. PRC1 directly promotes
metastasis at metastatic initiation sites by controlling self-renewal
and both cPRC1 and ncPRC1.1 components directly induce
transcriptional expression of CCL2 and other pro-metastatic genes
that encode cytokines, which suppress the immune response and
promote a pro-angiogenic environment186 (Fig. 5b). CCL2

expression has an oncogenic function by recruiting immune cells
such as M2-type Tumor-Associated Macrophages (TAMs) and
T-regulatory cells (Tregs), promoting an immunosuppressive
microenvironment favorable to tumor progression. Moreover,
Natural Killer (NK) cells are also involved in the innate immune
response. Upon recognition of MICA/B by NK cells, an immune
cytotoxic response is displayed. However, BMI-1 stimulates GATA2
expression which in turn directly inhibits MICA/B expression
(Fig. 5b). Reduction of MICA/B expression on the surface of cancer
cells prevents NK cell activation and the cytotoxic response.187 The
combination of these two escape mechanisms promotes cancer
cell progression and metastasis. Pharmacological treatment using
a catalytic inhibitor of PRC1 suppresses metastasis by reverting the
immunosuppressive microenvironment and promoting the
recruitment of NK cells and T effector cells.186,187

Cytotoxic T cells (CD8+ T) identify cancer cells presenting
foreign antigens by their Major Histocompatibility Complex I
(MHC-I). An IFN-ɣ response is then induced to kill the cancer cells.
In order to survive, cancer cells downregulate the MHC-I antigen
processing pathway (MHC-I APP), resulting in decreased presenta-
tion of foreign antigens to CD8+ T188 (Fig. 5b). PRC2 represses
transcription of various MHC-I APP components, participating in
cancer cell immunosurveillance escape.189 Furthermore, PRC2
inhibits anti-tumor immunity by altering the transcriptional
landscape of Tregs. Indeed, immunocompetent mice bearing
tumors treated with an EZH2 inhibitor show a significant decrease
in tumor volume compared to mice deficient in T cells, suggesting
an interplay between EZH2 and the T cell immune response.190

Tregs promote tumor progression in an EZH2-dependent manner
by producing immunosuppressive cytokines and preventing
recruitment of T CDC8+.190,191 Pharmacological EZH2 inhibition
induces a change in the production of pro-inflammatory cytokines
which promotes anti-tumor activity and significantly increases
the ratio between CD8+ T and Tregs in the tumor
microenvironment.190

Cancer immunotherapy has revolutionized the clinical approach
in the field of oncology. However, anti-CTLA4, the first monoclonal
antibody used in cancer therapy as an immune checkpoint,
induces an upregulation of EZH2 expression191 which may
prevent anti-tumor immunity by inducing an immunosuppressive
tumor microenvironment.190,191 A synergistic strategy coupling
anti-CTLA4 and an EZH2 inhibitor reverses cancer resistance to the
immune system.191,192 Moreover, considering the involvement of
PcG proteins in pluripotency, it is not surprising that PcG proteins
are also involved in cancer stem cell (CSC) development and

Fig. 5 Environment-dependent oncogenic activities of PcG proteins. a Left: in a physiological condition, the membrane transporter LAT1
participates in the transport of methionine which reacts with ATP to produce SAM. SAM can in turn be used by PRC2 to induce trimethylation
of H3K27, resulting in a PcG-mediated silencing of its targets genes. Lat1 expression depends on RXRα. Right: in cancer cells, Lat1 is
overexpressed, enhancing SAM production and inducing H3K27 hypermethylation of the chromatin landscape. The Lat1 negative regulator,
RXRα, is thus repressed resulting in a positive feedback loop whereby EAF2 transcriptional silencing dependent on PRC2 results in
overexpression of HIF1, which can in turn stimulate Lat1 expression. Therefore, an excess of LAT1 at the cellular membrane increases the
transport of BCAAs, thereby enhancing protein synthesis. b Controlling the immune system is of a major importance in cancer. Cancer cells
use different mechanisms to do this. First, PRC1 is able to increase the transcriptional expression of CCL2, which will dampen Treg immune
response. In addition, PRC2-mediated silencing of the MHC-I antigen processing pathway results in MHC-I absence at the cell membrane,
concealing cancer cells from cytotoxic T cells. Finally, PCGF4 overexpression in cancer cells stimulates the expression of GATA2, which will
inhibit MICA/B transcription and reduces its presence at the membrane. This prevents the recognition of cancer cells by NK cells. These
mechanisms enhance the immunosuppressive response and inhibit the cytotoxic response that would otherwise kill the cancer cells.
c Oncohistones are a new line of research, analyzing the effect of mutations on histone genes that could have an impact on tumorigenesis.
H3K27M has a dominant negative effect on EZH2 catalytic activity. Left: in a wild-type condition, PRC2 is recruited to nucleation sites that
present unmethylated CGIs. Trimethylation of H3K27 occurs and spreads around the nucleation site. The boundaries of Polycomb domains are
decorated with H3K36me2. Right: in the presence of the H3K27M oncohistone, that represents 10% of all H3, an epigenetic remodeling
occurs. The spreading of H3K27me3 is inhibited and active histone marks, such as H3K27ac, are present on the oncohistone. BCAAs, Branched-
chain amino acids; CCL2, C-C motif chemokine ligand 2; CCR2, C-C motif chemokine receptor; EAF2, ELL associated factor 2; GATA2, GATA
binding protein 2; HIF1, Hypoxia inducible factor 1; IDH1, Isocitrate dehydrogenase 1; KDM6A/B, Lysine demethylase 6A/B; LAT1, L-type amino
acid transporter 1; MHC-I, Major histocompatibility complex I; MHC-I APP, Major histocompatibility complex I antigen processing pathway;
MICA/B, MHC I polypeptide-related sequence A/B; RXRα, Retinoid X receptor-alpha; SAM, S-adenosylmethionine; SAH, S-adenosylhomocys-
teine; TCR, T-cell receptor; SETD2, SET domain containing 2 (histone lysine methyltransferase).
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resistance to treatment. Although anti-PD1 immunotherapy is
sufficient to recruit CD8+ T cells into the tumor microenvironment,
it is not sufficient to kill BMI-1+ CSCs.193 Inhibition of BMI-1 de-
represses H2AK119ub-decorated target genes and increases DNA-
damage, stimulating the inflammatory response and CD8+ T cells
recruitment.193 In summary, joint targeting of immune check-
points and PcG proteins appears to be a new promising
therapeutic approach to efficiently counter cancer progression
by stimulating the immune response.191–193

Oncohistones
As already mentioned, the catalytic activities of “writers” and
“erasers” enzymes that modify histone PTMs are often dysregu-
lated in cancer where chromatin landscapes are modified,
resulting in aberrant transcription of the corresponding
genes.99,194 In addition, the lack of recognition of H3K27me3 by
the CBX7 “reader” results in a transcriptional de-repression of
tumor suppressor genes.195 Likewise, the BAHCC1 mutation in its
BAH domain leads to upregulation of tumor suppressor genes that
dampen tumor progression.38

These data point to a direct involvement of histone modifica-
tions in tumorigenesis. Indeed, somatic mutations in histone
genes occur at high frequency in cancer, and they can exhibit
oncogenic properties.196 K-to-M/I missense substitutions in
histone variants, analyzed from available sequenced genomes of
several human cancer types of ~3000 patients, further argue for a
driver or contributor effects of the known N-terminal tail
mutations affecting H3.196 These mutations are particularly
frequent in rare malignancies such as glioma and chondroblas-
toma. This analysis allowed detection of previously unappreciated
situations where histones are mutated at low frequency in
common cancers, like H3K27M in melanoma and AML.196

One of the most studied cancer-associated “oncohistones”
carries the H3K27M substitution, whereby H3 lysine 27 is mutated
to methionine, a missense mutation showing high genetic
penetrance in pediatric glioblastomas197,198 (Fig. 5c). It is
noteworthy that different H3 mutants are found in distinct
locations. Indeed, H3F3A mutations such as H3.3K27M or
H3.3G34R/V are found respectively in midline pediatric high-
grade gliomas and cortex, whereas HIST1H3B mutations affecting
the canonical H3.1 are restricted to the brainstem.199 H3F3A which
encodes the histone variant H3.3 is found mutated in 60% of
Diffuse Intrinsic Pontine Glioma (DIPG) cases198 and this mutation
is suggested to be the first hit in DIPG tumorigenesis.200 This
driver mutation is associated with obligate partner mutations
throughout tumor progression,200 in particular in the cell cycle
regulatory gene TP53 or the chromatin remodeler ATRX. Interest-
ingly, while H3.3K27M represents less than 10% of total H3, this
level is sufficient to induce a significant decrease in the
trimethylated state of H3K27, leading to a decrease in PcG-
dependent transcriptional silencing.201,202

The epigenome is drastically altered in an H3K27M context.
Indeed, while H3K27me3 is specifically restricted to unmethylated
CGIs and H3K27me3/2 levels are significantly decreased, the
monomethylation level of H3K27 remains unchanged.203 Intrigu-
ingly, H3K27me1 distribution is completely rewired in an H3K27M
context.203 Moreover, just like in a wild-type H3 context, H3K36me2
restricts the spreading of H3K27me2/3.203 Furthermore, H3K27Ac
levels are globally increased at the H3K27M location.201,204 This
suggests that H3K27M has a dominant negative effect on the
catalytic activity of the EZH2 methyltransferase.201,202

There is a strong interest in understanding the molecular
mechanisms by which oncohistone mutations change the epigen-
ome and impact gene expression. PRC2 was proposed to have a
higher affinity for the mutated histone, which binds the EZH2
enzymatic domain, inhibiting its methyltransferase activity.201,205,206

However, the mechanism by which H3K27M oncohistones inhibits
PRC2 activity is still under debate.207 The finding that PRC2 appears

to be excluded from the H3K27M-K27Ac domains208 argues against
the model of PRC2 sequestration by H3K27M. Moreover, while it is
suggested that gliomagenesis is dependent on PRC2 inhibition,201 it
has been demonstrated that loss of PRC2 disables growth and
colony formation in H3K27M-positive DIPG cells, underlying the
importance of PRC2 in tumor maintenance.208

Interestingly, CATACOMB/EZHIP, a PRC2 co-factor, either via its
overexpression or a chromosomal translocation inducing its fusion
with the NuA4 subunit gene MBTD1, described in low-grade
endometrial stromal sarcoma,209 decreases PRC2-dependent
methyltransferase activity.9 CATACOMB/EZHIP-dependent hypo-
methylation is due to a conserved methionine residue M406
which inhibits EZH2, mimicking the H3K27M oncohistone.9

Moreover, H3K27M and CATACOMB/EZHIP are mutually exclusive
in gliomas, specifically in Posterior Fossa A (PFA) ependymo-
mas.210 Both are suggested to decrease H3K27 trimethylation by
blocking the spreading of the repressive mark from CGIs.211

In Giant Cell Tumor of the bone (GCT), the oncohistone
H3.3G34W is encountered in 90% of cases.212 Interestingly, this
residue is not post-translationally modified but its impact on the
epigenome is undeniable. This mutation leads to loss of
H3K36me3 which counteracts H3K27me3 deposition by PRC2.212

As a consequence, a redistribution of the H3K27me3 repressive
mark occurs from intergenic to genic regions, resulting in
perturbation in Polycomb-mediated silencing and in the main-
tenance of a progenitor state of the mutated cells.212

As previously mentioned, a crosstalk exists between H3K36me2/
3 and H3K27me3 and this interplay remains in the presence of the
H3K36M oncohistones, in which lysine 36 of the histone 3 is
replaced by a methionine. This mutation is found in 95% of
chondroblastomas and 92% of GCT, respectively in the H3F3B and
H3F3A genes.213 Following the oncohistone paradigm, the
H3K36me2/3 PTMs are reduced due to the inability of specific
methyltransferases, namely SETD2, NSD1-NSD3, to deposit their
marks.214,215 H3K36M reduces H3K36 methylation and increases
nucleosome availability for PRC2 to deposit H3K27me3.214 The
genome-wide increase in this repressive mark then induces a
PRC1 redeployment which overall dilutes PRC1 at its canonical
binding sites, leading to de-repression of self-renewal genes214,216

(Fig. 5c). Similarly, in human papillomavirus (HPV)-negative head
and neck squamous cell carcinomas (HNSCCs),217 the H3K36
methylation state is involved in oncogenic promotion.217 NSD1
writer mutations, similarly to H3K36M, remodel the chromatin
landscape by decreasing H3K36me2 levels. Considering the
interplay between H3K36me2 and H3K27me3, Polycomb compo-
nents would be expected to be involved in HNSCCs. However, the
precise mechanism at play is yet to be characterized.
All these data show that the emerging oncohistone field is an

important area of oncology, but much remains to be done and a
current strong focus is on the investigation of how histone
mutations contribute to epigenome reprogramming and whether
these mutations are primarily drivers or contributors of tumor-
igenesis in a wide range of human cancers.194

Non-genetic drug resistance in cancer
The ability of cancer cells to adapt to or resist anti-cancer
therapies may be inherently of a genetic nature or may be
acquired during treatment.218 Alongside an undergoing genetic
evolution of cancer genomes, cancer cells can also be modified in
their epigenetic landscapes and this non-genetic contribution can
play a major role in cancer resistance. In fact, relapsing patients
often do not present specific mutations that would explain a lower
efficiency for the same therapy.219,220

Cancer cells are actually able to evolve and change completely
their transcriptional landscape to adapt to treatment-induced
stress. Polycomb implication in cancer drug-resistance depends on
PRC2 and its catalytic activity as well as on other concomitant
mechanisms that can induce transcriptional plasticity.221–223
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In multiple myeloma (MM), cell adhesion-mediated drug
resistance (CAM-DR) develops when malignant plasma cells
interact with stromal cells in the bone marrow and become less
sensitive to chemotherapy.224 In an in vitro system that
recapitulates CAM-DR, anti-MM treatment results in an increase
and redistribution of H3K27me3 in a dose-dependent manner in
cultured MM cells only when they do not adhere to stromal
cells.224 CAM-DR counteracts drug-induced H3K27 hypermethyla-
tion via phosphorylation of EZH2 at serine 21, leading to
overexpression of anti-apoptotic genes which participate in
survival and drug-resistance.224 In addition, miR-15a downregula-
tion triggers PHF19 upregulation in relapsed MM patients.225 The
involvement of PHF19 in drug-resistance might depend on its
ability to stimulate proliferation by promoting EZH2 serine 21
phosphorylation, which inhibits the H3K27me3 deposition and
leads to upregulation of genes linked to cell growth.225

In Testicular Germ Cell Tumors (TGCT), resistance to cisplatin is
accompanied by a global decrease in H3K27me3 and H2AK119Ub
levels, leading to upregulation of Polycomb target genes.223

Inhibition of the UTX and JMJD3 enzymes, responsible for H3K27
demethylation, is sufficient to increase H3K27me3 and make
TGCT cells more sensitive to the initial chemotherapy.223

In AML, therapeutic resistance can arise in the apparent absence
of new genetic mutations and is antagonized by inhibiting Lsd1, a
demethylase chromatin modulator involved in the regulation of
enhancer activity.219 Inhibition of Lsd1 creates enhancer switch-
ing, generating new binding sites for pioneer factors that
ultimately activate the enhancers of key drug resistance genes.
Inhibition of a key chromatin modulator in AML then makes it
possible to resensitize cells to the primary treatment.219

Unlike mutations, failed or disrupted epigenetic mechanisms
can be quite easily reverted using epidrugs to overcome cancer
progression by rewiring malignant epigenomes, either to resensi-
tize tumor cells resistant to conventional therapy or to sensitize
them to new therapies. Given the importance of PcG proteins in
transcriptional regulation, it will therefore be of great interest to
further characterize the mechanisms by which PcG proteins
contribute to drug-resistance. In particular, it will be important to
expand research aimed at understanding Polycomb functions at
enhancers,139,226 since they might be involved in various
cancer types and stages.

CONCLUSIVE REMARKS: POLYCOMB EPIGENETICS IN CANCER
Although it is commonly assumed that cancer arises from a set of
multiple mutations, a pan-cancer analysis established that about 5%
of cancer cases did not have driver mutations that could explain
tumorigenesis, pointing out that genetics might not be the only
player in cancer.227 Non-genetic alterations appear to represent an
alternative path toward the development, progression and drug-
resistance of cancer cells. In pancreatic ductal adenocarcinoma,
metastases do not show driver gene mutations but rather follow
drastic epigenomic reprogramming,181,228 suggesting that epigenetic
modifiers are mainly involved. Additionally, ependymomas — a
childhood brain tumor — are characterized by a very low mutation
rate,229 suggesting that cancer is not only a consequence of DNA
mutations, but rather emerges and evolves from a crosstalk between
genetic and non-genetic processes. In an extreme view, cancer has
been defined as an “epigenetic disease”.230 It would therefore not be
surprising to find misregulated Polycomb proteins as epi-drivers in
tumorigenesis.
PcG proteins have imposed themselves in a wide range of

biological processes. Clearly, they are landmark components in the
field of cancer research and we have only started to understand
the extent of their oncogenic functions. As most research focuses
on the EZH2 catalytic subunit of PRC2, it will be interesting to
better characterize the involvement of the different PRC2 subunits
as well as on the many flavors of PRC1 complexes. Nonetheless, a

fascinating part of the oncogenic function of PcG components
relies on the fact that some of them can act both in a manner
dependent or independent on Polycomb complexes.231 It will be
interesting to better characterize these PcG functions at the
molecular level in order to have a complete picture of their mode
of action. While it is clear that the overexpression or down-
regulation of PcG proteins is involved in cancer, it will be
important to characterize how modifying protein stability by
either PTMs and/or interaction with yet unidentified partners
might be implicated in tumorigenesis. Finally, context is of
paramount importance: misregulation of Polycomb proteins
results in different, sometimes even opposing results in different
cancer types. Identifying molecular pathways leading to these
context-dependent effects will be crucial in order to improve
cancer diagnosis, prognosis and therapy.
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