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Abstract

Introduction: Interleukin-1 (IL-1) and tumor necrosis factor-a (TNF-a) are up-regulated in injured and
osteoarthritic knee joints. IL-1 and TNF-a inhibit integrative meniscal repair; however, the mechanisms by which
this inhibition occurs are not fully understood. Transforming growth factor-b1 (TGF-b1) increases meniscal cell
proliferation and accumulation, and enhances integrative meniscal repair. An improved understanding of the
mechanisms modulating meniscal cell proliferation and migration will help to improve approaches for
enhancing intrinsic or tissue-engineered repair of the meniscus. The goal of this study was to examine the
hypothesis that IL-1 and TNF-a suppress, while TGF-b1 enhances, cellular proliferation and migration in cell and
tissue models of meniscal repair.

Methods: A micro-wound assay was used to assess meniscal cell migration and proliferation in response to the
following treatments for 0, 24, or 48 hours: 0 to 10 ng/mL IL-1, TNF-a, or TGF-b1, in the presence or absence of
10% serum. Proliferated and total cells were fluorescently labeled and imaged using confocal laser scanning
microscopy and the number of proliferated, migrated, and total cells was determined in the micro-wound and
edges of each image. Meniscal cell proliferation was also assessed throughout meniscal repair model explants
treated with 0 or 10 ng/mL IL-1, TNF-a, or TGF-b1 for 14 days. At the end of the culture period, biomechanical
testing and histological analyses were also performed. Statistical differences were assessed using an ANOVA and
Newman-Keuls post hoc test.

Results: IL-1 and TNF-a decreased cell proliferation in both cell and tissue models of meniscal repair. In the
presence of serum, TGF-b1 increased outer zone cell proliferation in the micro-wound and in the cross section of
meniscal repair model explants. Both IL-1 and TNF-a decreased the integrative shear strength of repair and
extracellular matrix deposition in the meniscal repair model system, while TGF-b1 had no effect on either measure.

Conclusions: Meniscal cell proliferation in vivo may be diminished following joint injury due to the up-regulation
of inflammatory cytokines, thereby limiting native cellular repair of meniscal lesions. Therefore, therapies that can
promote meniscal cell proliferation have promise to enhance meniscal repair and improve tissue engineering
strategies.
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Introduction
The menisci are C-shaped fibrocartilaginous tissues
located between the femoral condyles and tibial plateau
in the knee. They provide load bearing capabilities,
lubrication, proprioception, joint congruity and joint sta-
bility for normal biomechanical function of the knee
joint [1-4]. Damage to and loss of function of the
menisci through sports-related [5] or degenerative tears
are associated with pain and degradative changes in the
knee joint that ultimately lead to osteoarthritis (OA)
[6-11]. Approximately two-thirds of patients with menis-
cal tears develop radiographic knee OA within 5 to
15 years of injury [12]. Partial excisions and total menis-
cectomies for the treatment of meniscal tears are
strongly associated with articular cartilage loss and the
progression of OA [6-11]. Therefore, current orthopae-
dic practice aims to preserve meniscal integrity and
restore function.
The success of clinical repairs depends on a number

of factors including age, time to surgery, and the type
and location of the meniscal tear. In general, repairs
involving the outer one-third of the meniscus, the vas-
cularized “red-red zone”, have the highest likelihood of
success [13]. Repairs are less favorable in the inner two-
thirds of the meniscus, the avascular “white-white zone”
[13,14]. However, in vitro studies of integrative repair
suggest that the intrinsic repair capabilities of the outer
and inner zones are similar, supporting the hypothesis
that the in vivo presence of vasculature aids in the
repair of the outer zone [15]. Nonetheless, differences in
extracellular matrix and cell composition between the
inner and outer zones may also influence repair. The
outer zone contains fibroblast-like cells [16,17] that pro-
duce predominantly type I collagen [18-20]. The inner
zone consists of fibrochondrocyte-like cells [16,17], both
type I and II collagen [18,20], and increased aggrecan
content relative to the outer zone [14]. Meniscal plugs
from the outer zone inserted into inner zone tissue
demonstrate enhanced healing, suggesting that repair
capability is related to the intrinsic healing potential of
the outer region, rather than the vasculature alone [21].
The integrative repair of meniscal lesions is associated

with increased cell accumulation in the repair site
[22-27]. However, the respective roles of cell prolifera-
tion and migration in integrative repair, and the influ-
ence of soluble mediators on these processes are not
fully understood. An in vivo canine model consisting of
a fibrin clot surgically inserted into an avascular menis-
cal defect showed that the clot functioned as a scaffold
for cell migration and a chemotactic stimulus for cell
proliferation [28]. Furthermore, cells can migrate into
an acellular meniscal plug in vivo and remodel the tissue
[29]. An important factor that may strongly influence

meniscal repair is the inflammatory environment within
the joint. The inflammatory cytokines interleukin-1 (IL-
1) and tumor necrosis factor-alpha (TNF-a) are up-
regulated in injured and OA knee joints [30-33]. In
addition, IL-1 and TNF-a decrease integrative meniscal
repair in vitro by increasing matrix metalloproteinase
(MMP) activity, sulfated glycosaminoglycan (S-GAG)
release, and nitric oxide (NO) production, while simulta-
neously decreasing cell accumulation and tissue forma-
tion at the meniscal repair interface, and ultimately
compromising the shear strength of repair [23-27,34].
Initial acute exposure to IL-1 for 1 to 3 days potently
suppresses meniscal repair for at least 28 days [27], sug-
gesting that the initial inflammatory environment in a
joint post-injury may have long-term degenerative
effects. In addition, IL-1 and TNF-a activate other
degradative and pro-inflammatory pathways in the
meniscus and other joint tissues [30,31,35-37].
While many of the potentially negative effects of IL-1

and TNF-a on meniscal repair have been established at
the molecular and tissue levels, the specific effects of
these proinflammatory cytokines on meniscal cell migra-
tion and proliferation are currently unclear, and several
in vitro studies have reported conflicting results. In one
study, different concentrations of IL-1 caused increased
cell migration as compared to controls in bovine menis-
cal cells isolated from the outer and middle meniscal
zones [38]. Conversely, studies with porcine meniscal
repair model tissue explants treated with either IL-1 or
TNF-a show decreased cell accumulation in the repair
interface without a decrease in cell viability, potentially
due to a reduction in cell proliferation and/or migration
at the repair site [23,25-27].
Anabolic growth factors have been studied as therapeu-

tics to enhance healing of meniscal injuries. The anabolic
growth factor transforming growth factor-b1 (TGF-b1)
has been shown to increase meniscal cell proliferation in
several in vitro models, including monolayer, explant cul-
ture, and meniscal cells seeded on poly-L-lactide (PLLA)
scaffolds and three-dimensional collagen sponges
[39-43]. In vitro meniscal repair model explants treated
with TGF-b1 showed increased cell accumulation in the
repair interface and increased integrative repair [24,44].
In the presence of IL-1, TGF-b1 increased the interfacial
shear strength of repair compared to IL-1 alone, over-
coming some of the potent catabolic effects of IL-1 [24].
Bovine meniscal cells transduced with vectors expressing
TGF-b1 and seeded into the avascular inner zone of the
meniscus showed increased cellularity and proteoglycan
and collagen synthesis [45]. Furthermore, meniscal cells
treated with either 10 or 100 ng/mL TGF-b1 showed
marked changes in cell morphology, resulting in a pheno-
type more similar to fibroblast-like cells [39].
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The goal of this study was to investigate the effects of
the inflammatory cytokines IL-1 and TNF-a, and the
growth factor TGF-b1 on proliferation and migration
during cell-mediated repair of the meniscus. We
hypothesized that IL-1 and TNF-a suppress cellular
proliferation and migration of both inner and outer
zone meniscal cells, while TGF-b1 enhances cell prolif-
eration and migration of both inner and outer zone
cells, in cell and tissue models of meniscal repair. We
assessed cell migration and proliferation using a micro-
wound assay with isolated inner and outer zone menis-
cal cells treated with IL-1, TNF-a or TGF-b1. Cells
were fluorescently labeled to identify newly proliferated
and total cells and were imaged over time to assess the
contribution of proliferated and migrated cells to wound
healing. Additionally, cell proliferation was assessed in
inner and outer zone meniscal repair model explants
[15,23,25-27,34] treated with IL-1, TNF-a or TGF-b1
for 14 days. Meniscus healing was investigated by
mechanical testing of the repair model explants to
determine the interfacial shear strength and histology
was performed to visualize tissue repair and cell
viability.

Materials and methods
Meniscal cell isolation
Medial menisci were aseptically isolated from the knee
joints of skeletally mature, two- to three-year-old female
pigs obtained from a local abattoir. The menisci were
trimmed to remove all ligamentous and synovial tissue
and separated into the inner two-thirds and outer one-
third zones [14]. Meniscal cells from the inner and
outer zones were enzymatically isolated from the tissue
by sequential digestion with 1,320 PUK/mL pronase
(Calbiochem, San Diego, CA, USA) followed by 0.4%
collagenase type I (Worthington, Lakewood, NJ, USA)
for three hours, as previously described [46]. After enzy-
matic isolation, the cells were filtered through a 70 μm
filter (BD Biosciences, Bedford, MA, USA) and washed
three times in Dulbecco’s Modified Eagle’s Medium high
glucose (DMEM with 4.5 g/L D-glucose; Invitrogen,

Carlsbad, CA, USA) containing 1,000 units/mL penicil-
lin/streptomycin and 2.5 μg/mL amphotericin B (Invi-
trogen). Cells were resuspended at a concentration of
1 × 106 cells/mL in culture media composed of DMEM,
10% heat inactivated fetal bovine serum (FBS; HyClone,
Logan, UT, USA), 0.1 mM non-essential amino acids
(Invitrogen), 10 mM 4-(2-hydroxyethyl)-1-piperazi-
neethanesulfonic acid buffer solution (HEPES; Invitro-
gen), 100 units/mL penicillin/streptomycin, and 37.5 μg/
mL L-ascorbic acid 2-phosphate (Sigma-Aldrich, St.
Louis, MO, USA). Cells were seeded at a final concen-
tration of 2 × 106 cells per well in a two-well chambered
coverglass slide (Nalge Nunc International, Rochester,
NY, USA) that was coated overnight with 50 μg/mL
bovine type I collagen (Trevigen, Gaithersburg, MD,
USA) in phosphate buffered saline (PBS; Mediatech,
Manassas, VA, USA). Cells were incubated for 72 hours
at 37°C/5% CO2.

Micro-wounding of meniscal cells
We utilized a micro-wound assay, or scratch test, as
described previously [47-49] to assess meniscal cell
migration and proliferation in monolayer culture (n =
three or more wells per treatment group, each from a
different animal). Cells were serum-starved for one hour
in serum free culture media (no FBS but contained 2
mg/mL bovine serum albumin (BSA; Invitrogen) [38]).
After serum starvation, a single vertical scratch was
made in the center of each well with a 200 μL yellow
plastic pipette tip (USA Scientific, Ocala, FL, USA) to
remove all cells and generate a micro-wound. Immedi-
ately, cell debris and media were aspirated and fresh
serum free culture media was added containing 10 μM
5-ethylnyl-2’-deoxyuridine (EdU from the Click-iT™
EdU Alexa Fluor® 488 Imaging Kit; Invitrogen), to label
DNA in proliferating cells, and the treatments listed in
Table 1. Cells were incubated at 37°C/5% CO2 for 0, 24,
or 48 hours then fixed with 3.8% formaldehyde (VWR
International, West Chester, PA, USA), and permeabi-
lized with 0.5% Triton X-100 (Sigma-Aldrich). EdU
detection was performed using the manufacturer’s

Table 1 Treatments for micro-wounding experiments

Treatments Concentrations Vendor

Serum 0, 1%, 5%, 10% Hyclone (Logan, UT, USA)

Recombinant porcine IL-1a 0, 0.1 ng/mL, 1 ng/mL, 10 ng/mL R & D Systems (Minneapolis, MN, USA)

Recombinant porcine TNF-a 0, 0.1 ng/mL, 1 ng/mL, 10 ng/mL R & D Systems (Minneapolis, MN, USA)

Porcine TGF-b1 0, 0.1 ng/mL, 1 ng/mL, 10 ng/mL R & D Systems(Minneapolis, MN, USA)

10% Serum and factors 10% Serum Hyclone (Logan, UT, USA)

10% Serum + 10 ng/mL IL-1 see above

10% Serum + 10 ng/mL TNF-a see above

10% Serum + 10 ng/mL TGF-b1 see above

Hyclone (Logan, UT, USA); R & D Systems (Minneapolis, MN, USA)
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protocol for the Click-iT EdU Alexa Fluor 488 Imaging
Kit to label proliferated cells. Cells were washed in tris
ethylenediaminetetraacetic acid (TE), pH 7.4, stained for
30 minutes in the dark with 1 μM Syto® 82 nucleic acid
stain (Invitrogen) to label all cells, and washed three
times with TE.
Cells were visualized and photographed using a laser

scanning confocal microscope (LSM 510, Carl Zeiss,
Inc., Thornwood, NY, USA). To visualize proliferated
cells, an excitation wavelength of 488 nm was used and
fluorescence was collected at 505 to 530 nm. Total cells
were detected by excitation at 543 nm and fluorescence
was collected at >585 nm. In order to visualize a single
cell layer, an optical slice of 15 μm was utilized. For
each sample, the micro-wound was centered in the field
of view and four images at different vertical positions
along the scratch were obtained.

Micro-wounding image analysis
The confocal images were exported as separate green
and red channel images from the Zeiss LSM Image
Browser software (Carl Zeiss, Inc.). Collected images
were analyzed using a custom Matlab (MathWorks,
Natick, MA, USA) script. Briefly, each of the four
green and red channel images for each sample was
thresholded using optimal threshold values that were
determined for the green and red channels individu-
ally. These images were then converted to a binary
image to identify labeled cells. Images were sub-
divided into 32 32-pixel regions and the number of
cells within each region was counted. Cell counts from
all regions were summed across the four images to
yield the total number of cells (red) and the total num-
ber of proliferating cells (green) for each sample. The
total number of migrating cells that did not proliferate
was the difference between the two channels. To assess
cell migration and proliferation in the micro-wound,
cell counts were averaged across the two center strips
and to assess cell proliferation at the edge, cell counts
from the green channel images were averaged across
the four peripheral strips at the far left and right edges
of the image. The total cell counts at the edges were
also measured on Day 0 images to establish the start-
ing cell density for each meniscal cell population. All
data are expressed as a percentage of the starting cell
density.
In the micro-wounding assay, all cells that accumulate

in the gap have migrated into the wound from the edge.
Therefore, all cells that are described as proliferated in
the gap have in fact both migrated and proliferated.
However, the order in which these cellular activities
occurred could not be assessed. Cells that are described
as migrated have, therefore, only migrated into the
wound and did not proliferate.

Meniscal repair model system
A previously described meniscal repair model system
[15,23-27] was used to assess in vitro integrative menis-
cal repair (n = four or more per treatment group, all
from different animals). Cylindrical 5 mm biopsy
punches (Miltex, York, PA, USA) were harvested per-
pendicular to the femoral surface of the meniscus from
the inner two-thirds and outer one-third of the tissue.
Explants were cut parallel to the meniscal surface with a
scalpel to a uniform thickness of 2.5 mm using a cus-
tom-made cutting block. To simulate a full-thickness
tear, a 3 mm biopsy punch (Miltex) was utilized to
make a concentric core in the explant, which was
removed and immediately reinserted in the original
orientation. Explants were placed in a 24-well plate with
DMEM containing 1,000 units/mL penicillin/streptomy-
cin for one hour at 37°C/5% CO2. Explants were incu-
bated in the culture media described above for isolated
meniscal cells. For cell proliferation experiments, all
media included 10 μM EdU. Explants were randomly
assigned to one the following treatment groups: control,
10 ng/mL IL-1a, 10 ng/mL TNF-a or 10 ng/mL TGF-
b1. Media were changed every 3 days, and explants were
cultured for a total of 14 days at 37°C/5% CO2.

Cell proliferation analyses in meniscal repair explants
On Day 14, explants were transected vertically to allow
visualization of cells throughout the cross section.
Explants were labeled using a modified protocol based
on the Click -iT™ EdU Alexa Fluor® 488 Imaging Kit.
Briefly, explants were fixed with 3.8% formaldehyde for
30 minutes, permeabilized with 0.5% Triton X-100 for
30 minutes, and tagged with the Alexa Fluor dye to
label all proliferated cells. To stain all cells, explants
were washed in TE, pH 7.4, stained for 30 minutes in
the dark with 1 μM Syto® 82 nucleic acid stain, and
then washed three times with TE.
Cells were visualized and photographed using a confo-

cal laser scanning microscope as described above for the
micro-wounding assay. Images were collected more than
50 μm into the face of the sample to ensure that cells
damaged during transection were excluded [50]. Two
images per location were collected from the outer ring,
inner core and repair interface for both the surface and
cross section of the explants.

Meniscal repair model explant image analysis
Data were collected from different areas of the surface
and cross-section of the meniscal repair model explants.
Measured areas were outlined in Zeiss LSM image
browser (Carl Zeiss). The surface interface included a 50
μm region on either side of the interface, inclusive of
the interface, at the surface of the tissue. The surface
region of the tissue included images from both the
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inner core and outer ring that were outside this defined
interface region. For cross section images, the tissue was
divided into three distinct layers based on distance from
the surface and cell morphology. The first 50 μm from
the surface was defined as the “superficial zone,” the
next 100 μm was defined as the “middle zone,” and the
next 300 μm was termed the “deep zone.” The cross
section interface included a 50 μm region on either side
of the interface, inclusive of the interface, for each of
these three layers. The cross section of the tissue
included images of the cross section from both the
inner core and outer ring that were outside the defined
interface region.
Confocal images were exported as separate green and

red channel images and saved as TIFF files. The images
were gray-scaled using Adobe Photoshop and processed
using Scion Image (Scion Corp., Frederick, MD, USA)
to invert, subtract background by removing 2D streaks,
and smooth. Optimal threshold values were determined
for the green and red channels individually. Proliferated
cells (green) and total cell (red) counts were obtained
using intensity thresholds of 75 and 40, respectively, and
a minimum particle size of five. Cell counts were
obtained for each of the defined regions in the surface
and cross sectional planes. Percent cell proliferation was
calculated by dividing the number of proliferated cells
(green) by the number of total cells (red) in each sample
and multiplying by 100 percent.

Biomechanical testing to assess shear strength of repair
On Day 14, shear strength of repair between the outer
ring and inner core of meniscal repair explants was
measured with a push-out test [15,23-27] using an Elec-
troforce (ELF) 3200 materials testing system (Bose-
EnduraTEC Corporation, Eden Prairie, MN, USA).
Briefly, explants were centered in a custom-made appa-
ratus, such that the 3 mm inner core was centered over
a 4 mm concentric hole in the bottom of the dish. A 2
mm diameter rod attached to a load cell displaced the
inner core at a rate of 0.0833 mm/s until the inner core
was dislodged from the outer ring. The force required
for displacement was recorded over time. Following the
push out test, the inner core was imaged using a digital
video camera (Sony Electronics, Park Ridge, NJ, USA)
with a 94-mm video lens (Infinity, Boulder, CO, USA)
to measure the inner core thickness using LabVIEW
Vision Builder AI (National Instruments Corporation,
Austin, TX, USA). Shear strength of repair (in kPa) was
calculated by dividing the peak force measured during
the push out test by the surface area of the interface.

Histological staining of meniscal explants
On Day 12 of the meniscal repair model explant cul-
ture, 0.05% nitroblue tetrazolium chloride (NBT;

Invitrogen) was added to the explant culture media for
histological analyses. NBT is a cell-permeable com-
pound that is reduced by live cells to form a blue for-
mazan product that remains stable to histological
processing and paraffin embedding and has been docu-
mented as a live cell marker for chondrocytes [51,52].
At Day 14, explants were fixed overnight in 4% parafor-
maldehyde (Electron Microscopy Sciences, Hatfield, PA,
USA), containing 100 mM sodium cacodylate trihydrate
(Electron Microscopy Sciences), pH 7.4 at 4°C. Samples
were dehydrated in EtOH, infiltrated with xylene, and
paraffin embedded. Sections were stained with 0.02%
aqueous fast green (Sigma-Aldrich) to label collagens
and Accustain Safranin O solution (Sigma-Aldrich) to
identify proteoglycans.

Statistical analyses
Statistical analyses were performed using Statistica 7.0
(StatSoft Inc., Tulsa, OK, USA). A factorial analysis of
variance (ANOVA) and the Newman-Keuls post hoc test
were performed to determine significant differences (a =
0.05) and the interactive effect of time and treatment in
the micro-wounding experiments. In the meniscal repair
model explant studies, the interactive effect of treatment
and tissue zone (inner and outer) in the surface images
and push-out test and of treatment, tissue zone and cross
section layer (superficial, middle, and deep) in the cross
section images were also determined using a factorial
ANOVA and Newman-Keuls post-hoc test.

Results
The effects of serum on inner and outer zone micro-
wound repair
Serum treatment of meniscal cells from both the inner
(Figure 1A) and outer zones (Figure 1C) resulted in
increased accumulation of proliferated cells in the
micro-wound. For inner zone meniscal cells, 10% serum
increased the total number of cells in the wound as
compared to the control (Figure 1B, P < 0.05), increased
the percentage of proliferated cells in the wound com-
pared to all other treatments (P < 0.005), and enhanced
cellular proliferation away from the wound over the
control and 1% serum treatments (P < 0.05). Addition-
ally, 5% serum promoted cellular proliferation in the
wound over the control treatment (P < 0.05). There was
also an effect of time in the inner zone cells, with
increased proliferation at both the edge and in the
wound at 48 hours (P < 0.005), while the number of
cells that had migrated but not proliferated in the
wound decreased from 24 to 48 hours (P < 0.05).
In outer zone meniscal cells, 10% serum increased the

total number of cells in the wound (Figure 1D, P <
0.005) and the percentage of proliferated cells in both
the wound (P < 0.01) and at the edge (P < 0.005), as
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compared to all other treatments. On average, treatment
with 10% serum for 48 hours resulted in a six-fold
increase in the total number of cells in the wound and
in the proliferated cells at both the edge and in the
wound (P < 0.01). In addition, there was an effect of
time in the outer zone cells, with the total number of
cells (P < 0.005) and the proliferated cells in the wound
being greatest at 48 hours (P < 0.01). No differences
were detected in cells that migrated but did not prolifer-
ate in the wound of outer zone cells.

The effects of IL-1 on inner and outer zone micro-wound
repair
IL-1 treatment of meniscal cells from the inner (Figure
2A) or outer zones (Figure 2C) resulted in decreased

accumulation of proliferated cells in the micro-wound.
As compared to the inner zone control at 48 hours, the
overall total number of cells in the wound and the pro-
liferated cells in the wound were significantly decreased
by IL-1 treatment (Figure 2B, P < 0.01). However, 0.1
ng/mL IL-1 at 48 hours showed an increase in the total
cells in the wound, as compared to all other treatments
at 24 hours (P < 0.05), and a corresponding increase in
the number of cells that migrated but did not proliferate
in the wound, as compared to all other treatments at
both 24 and 48 hours (P < 0.005). There was a signifi-
cant increase in the number of migrated cells in the
wound at 48 hours in the 1 ng/mL and 10 ng/mL IL-1
treatment groups (P < 0.05). Overall for inner zone
cells, the control treatment caused the greatest

Figure 1 Serum increased total cells and cell proliferation in inner and outer zone cells. (A) Representative confocal images of the micro-
wound from inner zone cells that were treated with 0%, 1%, 5%, or 10% serum for 48 hours after the scratch. In the confocal images, cells that
have proliferated are yellow and all cells are labeled red. The scale bar is equal to 100 μm. (B) For inner zone cells, total cells in the wound,
proliferated cells in the wound, migrated cells in the wound, and proliferated cells at the edge at 24 and 48 hours are graphed as a percentage
+ standard error of the starting cell density at the edge of the scratch. (C) Representative confocal images of the micro-wound from outer zone
cells that were treated with 0%, 1%, 5%, or 10% serum for 48 hours after the scratch. (D) For outer zone cells, total cells in the wound,
proliferated cells in the wound, migrated cells in the wound, and proliferated cells at the edge at 24 and 48 hours are graphed as a percentage
+ standard error of the starting cell density at the edge of the scratch.*: P < 0.01 compared to all other treatments.

Riera et al. Arthritis Research & Therapy 2011, 13:R187
http://arthritis-research.com/content/13/6/R187

Page 6 of 20



proliferation at the edge (P < 0.05) and in the wound (P
< 0.0005) and decreased the number of cells that
migrated but did not proliferate in the wound (P <
0.005). There was also an effect of time, with 48 hours
showing increased total cells, proliferated cells and
migrated cells in the wound, as compared to the 24-
hour time point (P < 0.001).
In the outer zone meniscal cells, IL-1 treatment

caused a significant decrease in the number of prolifer-
ated cells in the wound, as compared to control (Figure
2D, P < 0.05). However, IL-1 did not have a significant
effect on the total cell numbers in the wound, migrated
cells in the wound, or the proliferated cells at the edge
in the outer zone meniscal cells.

The effects of TNF-a on inner and outer zone micro-
wound repair
Meniscal cells from the inner (Figure 3A), but not the
outer zone (Figure 3C), showed diminished accumula-
tion of proliferated cells in the micro-wound with
increasing concentrations of TNF-a. In the inner zone
cells, proliferation at the edge was diminished by all
concentrations of TNF-a (Figure 3B, P < 0.05), as com-
pared to control. In addition, the 1 and 10 ng/mL con-
centrations of TNF-a caused significant decreases in
proliferation at the edge, as compared to 0.1 ng/mL
TNF-a (P < 0.005). At 48 hours, proliferation in the
wound was significantly higher than at 24 hours (P <
0.05). In the inner zone cells treated with TNF-a, there

Figure 2 IL-1 decreased cell proliferation in the wound. (A) Representative confocal images of the micro-wound from inner zone cells that
were treated with 0, 0.1 ng/mL, 1 ng/mL, or 10 ng/mL IL-1 for 48 hours after the scratch. In the confocal images, cells that have proliferated are
yellow and all cells are labeled red. The scale bar is equal to 100 μm. (B) For inner zone cells, total cells in the wound, proliferated cells in the
wound, migrated cells in the wound, and proliferated cells at the edge at 24 and 48 hours are graphed as a percentage + standard error of the
starting cell density at the edge of the scratch. a: P < 0.01 compared to control at 48 hours; b: P < 0.05 compared to all other treatments at 24
hours; c: P < 0.005 compared to all other treatments; d: P < 0.05 compared to 1 ng/mL and 10 ng/mL at 48 hours. (C) Representative confocal
images of the micro-wound from outer zone cells that were treated with 0, 0.1 ng/mL, 1 ng/mL, or 10 ng/mL IL-1 for 48 hours after the scratch.
(D) For outer zone cells, total cells in the wound, proliferated cells in the wound, migrated cells in the wound, and proliferated cells at the edge
at 24 and 48 hours are graphed as a percentage + standard error of the starting cell density at the edge of the scratch.
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were no differences in the total cells in the wound or
migrated cells in the wound.
In the outer zone cells, there was a trend towards

decreased proliferation at the edge (Figure 3D, P = 0.17)
and in the wound (P = 0.46) with TNF-a treatment but
these changes were not significant. TNF-a treatment
did not alter the total number of cells in the wound or
the number of cells that had migrated but not prolifer-
ated in the wound.

The effects of TGF-b1 on inner and outer zone micro-
wound repair
In the inner zone meniscal cells, there were no obser-
vable changes in cell accumulation or proliferation (Fig-
ure 4A). For the inner zone cells, total cells (Figure 4B,

P < 0.05) and proliferated cells in the wound (P <
0.005) increased with time. No changes were observed
with TGF-b1 treatment in the cells that proliferated at
the edge or in cells that migrated but did not prolifer-
ate in the wound.
On the other hand, in the outer zone cells 0.1 ng/mL

TGF-b1 increased cell accumulation (Figure 4C). This
concentration of TGF-b1 also significantly increased the
total cell number in the wound of the outer zone cells,
as compared to the control and 1 ng/mL TGF-b1 treat-
ment groups (Figure 4D, P < 0.05). However, TGF-b1
treatment of outer zone cells did not alter the percen-
tage of proliferated cells in the wound, proliferated cells
at the edge, or the number of cells that had migrated
into the wound but not proliferated.

Figure 3 TNF-a treatment decreased inner zone cell proliferation at the edge. (A) Representative confocal images of the micro-wound
from inner zone cells that were treated with 0, 0.1 ng/mL, 1 ng/mL, or 10 ng/mL TNF-a for 48 hours after the scratch. In the confocal images,
cells that have proliferated are yellow and all cells are labeled red. The scale bar is equal to 100 μm. (B) For inner zone cells, total cells in the
wound, proliferated cells in the wound, migrated cells in the wound, and proliferated cells at the edge at 24 and 48 hours are graphed as a
percentage + standard error of the starting cell density at the edge of the scratch. (C) Representative confocal images of the micro-wound from
outer zone cells that were treated with 0, 0.1 ng/mL, 1 ng/mL, or 10 ng/mL TNF-a for 48 hours after the scratch. (D) For outer zone cells, total
cells in the wound, proliferated cells in the wound, migrated cells in the wound, and proliferated cells at the edge at 24 and 48 hours are
graphed as a percentage + standard error of the starting cell density at the edge of the scratch.
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The effects of IL-1, TNF-a, and TGF-b1 in the presence of
serum on inner and outer zone micro-wound repair
In the presence of serum, IL-1 and TNF-a treatment of
meniscal cells from both the inner (Figure 5A) and outer
zones (Figure 5C) resulted in decreased accumulation of
proliferated cells in the micro-wound. For inner zone
cells, both IL-1 and TNF-a decreased total cell numbers
in the wound and the percentage of proliferated cells in
the wound and at the edge, as compared to 10% serum
treatment for 48 hours (Figure 5B, P < 0.05). In addition,
IL-1 and TNF-a suppressed cell proliferation in the
wound and at the edge compared to TGF-b1 treatment
for 48 hours (P < 0.05). Even at 24 hours, TNF-a sup-
pressed total cells in the wound relative to TGF-b1

treatment (P < 0.05). There was an increase in the total
number of inner zone cells in the wound and proliferated
cells in the wound and at the edge over time (P < 0.05).
None of the tested factors affected inner zone cell migra-
tion into the wound in the presence of serum.
In the outer zone cells, TGF-b1 treatment at 48 hours

significantly increased cell proliferation in the wound
compared to all other treatments (Figure 5D, P < 0.05).
In addition, TGF-b1 treatment also promoted cell prolif-
eration at the edge (P < 0.05). Furthermore, total cells (P
< 0.05) and proliferated cells in the wound (P < 0.005)
increased over time. There was no effect on cell migra-
tion into the wound of outer zone cells with the differ-
ent factors in the presence of serum.

Figure 4 Low concentrations of TGF-b1 increased total outer zone cells in the wound. (A) Representative confocal images of the micro-
wound from inner zone cells that were treated with 0, 0.1 ng/mL, 1 ng/mL, or 10 ng/mL TGF-b1 for 48 hours after the scratch. In the confocal
images, cells that have proliferated are yellow and all cells are labeled red. The scale bar is equal to 100 μm. (B) For inner zone cells, total cells
in the wound, proliferated cells in the wound, migrated cells in the wound, and proliferated cells at the edge at 24 and 48 hours are graphed as
a percentage + standard error of the starting cell density at the edge of the scratch. (C) Representative confocal images of the micro-wound
from outer zone cells that were treated with 0, 0.1 ng/mL, 1 ng/mL, or 10 ng/mL TGF-b1 for 48 hours after the scratch. (D) For outer zone cells,
total cells in the wound, proliferated cells in the wound, migrated cells in the wound, and proliferated cells at the edge at 24 and 48 hours are
graphed as a percentage + standard error of the starting cell density at the edge of the scratch.
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The effects of IL-1 on cellular proliferation in meniscal
repair model explants
Cellular proliferation at the meniscal tissue surface (Fig-
ure 6B, C), surface interface (Figure 7B, C), cross-section
(Figure 8B, C), and cross-section interface (Figure 9B, C)
were decreased by IL-1 in both inner and outer meniscal
repair explants. In both the inner and outer zone
explants, IL-1 potently inhibited cell proliferation at the
tissue surface (Figure 6D, P < 0.00005) and the surface
interface (Figure 7D, P < 0.005). In addition, IL-1
decreased cell proliferation throughout the cross-section
(Figure 8D, P < 0.000005) and cross-section interface

(Figure 9D, P < 0.0001). In the cross-section, there was a
significant difference between all layers with the superfi-
cial layer having the highest percentage of proliferated
cells and the deep layer having the lowest percentage
(Figure 8D, P < 0.05). Furthermore, there was an interac-
tive effect of IL-1 and cross-section layer (P < 0.000005).
In the cross-section interface, the deep layer had signifi-
cantly less proliferation than the superficial and middle
layers of the tissue (Figure 9D, P < 0.01). Overall in the
cross-section interface, cellular proliferation was higher
in the outer zone meniscal repair model explants, as
compared to the explants from the inner zone (P < 0.05).

Figure 5 In the presence of serum, IL-1 and TNF-a decreased, while TGF-b1 increased, cell proliferation. (A) Representative confocal
images of the micro-wound from inner zone cells that were treated with 10% serum, 10% serum + 10 ng/mL IL-1, 10% serum + 10 ng/mL
TNF-a, or 10% serum + 10 ng/mL TGF-b1 for 48 hours after the scratch. In the confocal images, cells that have proliferated are yellow and
all cells are labeled red. The scale bar is equal to 100 μm. (B) For inner zone cells, total cells in the wound, proliferated cells in the wound,
migrated cells in the wound, and proliferated cells at the edge at 24 and 48 hours are graphed as a percentage + standard error of the
starting cell density at the edge of the scratch. a: P < 0.05 compared to 10% serum at 48 hour; b: P < 0.05 compared to serum + TGF-b1 at
48 hours; c: P < 0.05 compared to serum + TNF-a at 24 hours. (C) Representative confocal images of the micro-wound from outer zone cells
that were treated with 10% serum, 10% serum + 10 ng/mL IL-1, 10% serum + 10 ng/mL TNF-a, or 10% serum + 10 ng/mL TGF-b1 for 48
hours after the scratch. (D) For outer zone cells, total cells in the wound, proliferated cells in the wound, migrated cells in the wound, and
proliferated cells at the edge at 24 and 48 hours are graphed as a percentage + standard error of the starting cell density at the edge of the
scratch.
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The effects of TNF-a on cellular proliferation in meniscal
repair model explants
Cellular proliferation at the meniscal tissue surface (Fig-
ure 6B, C), surface interface (Figure 7B, C), cross-section
(Figure 8B, C), and cross-section interface (Figure 9B, C)
were decreased in the presence of TNF-a in both inner
and outer meniscal repair explants. TNF-a strongly
inhibited cell proliferation at the tissue surface (Figure
6E, P < 0.00005) and the surface interface (Figure 7E, P
< 0.005) in explants from both zones. Furthermore,
TNF-a reduced cell proliferation throughout the cross-
section (Figure 8E, P < 0.000005) and cross-section
interface (Figure 9E, P < 0.000005). There was also a
significant effect of cross-section layer with the superfi-
cial layer containing significantly more proliferated cells

than the middle and deep layers (Figure 8E, P < 0.0005).
In addition, there was an interactive effect of TNF-a
and cross-section layer (P < 0.00005).

The effects of TGF-b1 on cellular proliferation in meniscal
repair model explants
In both the inner and outer meniscal repair explants,
TGF-b1 treatment did not appear to alter cellular prolif-
eration at the meniscal tissue surface (Figure 6B, C),
surface interface (Figure 7B, C), cross-section (Figure
8B, C), or cross-section interface (Figure 9B, C). In both
inner and outer zone explants, TGF-b1 had no effect on
cellular proliferation in meniscal repair model explants
at the tissue surface (Figure 6F), the surface interface
(Figure 7F), or the cross-section interface (Figure 9F).

Figure 6 IL-1 and TNF-a decreased cell proliferation at the tissue surface. (A) Schematic of a meniscal repair explant, indicating the surface
of the tissue that was analyzed in pink. Representative confocal images of the surface of (B) inner or (C) outer zone meniscal repair explants that
were treated with 0, 10 ng/mL IL-1, 10 ng/mL TNF-a, or 10 ng/mL TGF-b1 for 14 days. In the confocal images, cells that have proliferated are
yellow and all cells are labeled red. The scale bar is equal to 100 μm. Inner and outer zone explants were treated with control media and (D) 10
ng/mL IL-1, (E) 10 ng/mL TNF-a, or (F) 10 ng/mL TGF-b1 for 14 days. The data are graphed as a percentage of proliferated cells at the surface
of the tissue + standard error. *: P < 0.00005 compared to control.
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However, overall TGF-b1 increased cellular proliferation
in the tissue cross-section (Figure 8F, P < 0.05). While
there was a significant decrease in cellular proliferation
throughout the depth of the meniscus cross-section
(Figure 8F, P < 0.005), TGF-b1 most noticeably up-regu-
lated proliferation in the middle and deep layers.

The effects of IL-1, TNF-a, and TGF-b1 on the shear
strength of integrative repair
In the inner and outer zone meniscal explants, both IL-1
(Figure 10A, P < 0.0005) and TNF-a (Figure 10B, P <
0.005) significantly decreased the integrative shear
strength of repair. TGF-b1 (Figure 10C) had no effect
on the shear strength of the meniscal repair model
explants. Outer zone meniscal repair model explants

demonstrated increased shear strength of repair, as
compared to inner zone explants, when treated with
TNF-a (Figure 10B, P < 0.05) and TGF-b1 (Figure 10C,
P < 0.005).

The effects of IL-1, TNF-a and TGF-b1 on tissue repair and
cell viability
Histological analysis revealed healing of the meniscal
defect in both inner and outer repair model explants
under control conditions (Figures 11A, B). Control inner
zone explants stained strongly with safranin O, indicat-
ing a relative abundance of proteoglycans, as compared
to outer zone samples. In both inner and outer zone
explants from the control and TGF-b1 treated groups,
the repair interface was filled with an extracellular

Figure 7 IL-1 and TNF-a decreased cell proliferation at the surface interface of the meniscal repair explants. (A) Schematic of a meniscal
repair explant, indicating the surface interface of the tissue that was analyzed in pink, which included the interface and 50 μm of tissue on either
side of the interface. Representative confocal images of the surface interface of (B) inner or (C) outer zone meniscal repair explants that were
treated with 0, 10 ng/mL IL-1, 10 ng/mL TNF-a, or 10 ng/mL TGF-b1 for 14 days. In the confocal images, cells that have proliferated are yellow
and all cells are labeled red. The scale bar is equal to 100 μm. Inner and outer zone explants were treated with control media and (D) 10 ng/mL
IL-1, (E) 10 ng/mL TNF-a, or (F) 10 ng/mL TGF-b1 for 14 days. The data are graphed as a percentage of proliferated cells at the surface interface
of the tissue + standard error. *: P < 0.005 compared to control.
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matrix that stained strongly with fast green, indicating
the presence of collagen fibers. No visible tissue repair
was detected in explants that were treated with either
IL-1 or TNF-a. Cell viability, as indicated by NBT stain-
ing, was not altered in any of the treatment groups.

Discussion
Our results demonstrate that the proinflammatory cyto-
kines IL-1 and TNF-a decreased cell proliferation in
both cell and tissue models of meniscal repair. In the
presence of serum, the anabolic growth factor TGF-b1
increased outer zone cell proliferation in the micro-
wound and in the cross section of meniscal repair
model explants. Furthermore, both IL-1 and TNF-a
decreased the integrative shear strength of repair and
extracellular matrix deposition in the meniscal repair
model system, while TGF-b1 had no effect on either

measure. Therefore, our results support our hypothesis
that the inhibition of cell accumulation and integrative
repair by IL-1 and TNF-a is likely due to suppression of
cellular proliferation but not migration of cells into
meniscal micro-wounds. These results suggest that in
vivo, meniscal cell proliferation may be diminished fol-
lowing joint injury due to the up-regulation of inflam-
matory cytokines, thereby limiting native cellular repair
of meniscal lesions. Therefore, therapies that can pro-
mote meniscal cell proliferation have promise to
enhance meniscal repair and improve tissue engineering
strategies.
Serum has been shown to promote proliferation in

many cell types, including chondrocytes [53,54]. Likely
growth factors present in the serum promoted healing
of the micro-wound [55]. However, inner and outer
zone cells exhibited distinct responses in the micro-

Figure 8 IL-1 and TNF-a decreased cell proliferation and TGF-b1 increased cell proliferation throughout the cross section. (A)
Schematic of a meniscal repair explant, indicating the cross-section of the tissue that was analyzed in pink. The cross-section was divided into
three layers: S = superficial layer that comprised the first 50 μm of the tissue, M = middle layer that contained the next 100 μm of tissue, and D
= deep layer that consisted of the next 300 μm of meniscal tissue. Representative confocal images of the cross-section of (B) inner or (C) outer
zone meniscal repair explants that were treated with 0, 10 ng/mL IL-1, 10 ng/mL TNF-a, or 10 ng/mL TGF-b1 for 14 days. In the confocal
images, cells that have proliferated are yellow and all cells are labeled red. The scale bar is equal to 100 μm. Inner and outer zone explants were
treated with control media and (D) 10 ng/mL IL-1, (E) 10 ng/mL TNF-a, or (F) 10 ng/mL TGF-b1 for 14 days. The data are graphed as a
percentage of proliferated cells in the cross-section superficial (S), middle (M), and deep (D) layers of the tissue + standard error.
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wound assay. The inner zone cells showed increased cell
proliferation in response to 5% and 10% serum, while
outer zone cells were only stimulated by 10% serum.
The inner zone cells may be more sensitive to serum
stimulation due to the lack of prior exposure to the con-
tents of the vasculature in the context of the meniscus
[14]. In addition, for inner zone cells, the percentage of
cells that migrated but did not proliferate decreased
over time, suggesting that the cells are migrating into
the wound and then proliferating to repair the defect.
IL-1 treatment suppressed cell proliferation but

increased migration in inner zone cells at the wound,
although the enhanced migration was insufficient to over-
come the suppression of proliferation in order to repair
the micro-wound. On the other hand, IL-1 treatment of

outer zone cells decreased proliferation but did not alter
cell migration into the micro-wound. In other studies,
outer and middle zone meniscal cells that grew out of
bovine menisci over two to three weeks showed increased
chemotaxis in response to four hours of 1 to 100 ng/mL
IL-1 [38]. In this study, we did not assess the chemotactic
response of the porcine meniscal cells but the differences
in our results may be due to the differences in exposure
time to IL-1. In the presence of serum, IL-1 treatment of
inner zone cells suppressed total cell accumulation and
proliferation but had no effect on migration. These
experimental conditions are most similar to our explant
growth conditions, and the results of these experiments
are consistent. In porcine articular chondrocytes, F-actin
content is increased after 1 hour of 10 ng/mL IL-1,

Figure 9 IL-1 and TNF-a decreased cell proliferation throughout the cross section repair interface. (A) Schematic of a meniscal repair
explant, indicating the cross-section interface of the tissue that was analyzed in pink, which included the interface and 50 μm of tissue on either
side of the interface. The cross-section interface was divided into three layers: S = superficial layer that comprised the first 50 μm of the tissue, M
= middle layer that contained the next 100 μm of tissue, and D = deep layer that consisted of the next 300 μm of meniscal tissue.
Representative confocal images of the cross-section interface of (B) inner or (C) outer zone meniscal repair explants that were treated with 0, 10
ng/mL IL-1, 10 ng/mL TNF-a, or 10 ng/mL TGF-b1 for 14 days. In the confocal images, cells that have proliferated are yellow and all cells are
labeled red. The scale bar is equal to 100 μm. Inner and outer zone explants were treated with control media and (D) 10 ng/mL IL-1, (E) 10 ng/
mL TNF-a, or (F) 10 ng/mL TGF-b1 for 14 days. The data are graphed as a percentage of proliferated cells in the cross-section repair interface
superficial (S), middle (M), and deep (D) layers of the tissue + standard error.
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showing punctate staining at the periphery but this effect
is not observed after 12 hours of IL-1 treatment [56]. In
tenocytes treated with 100 pM IL-1b for five days, prolif-
eration rate was unchanged; however, actin filaments
were disrupted while microtubule structure was
unchanged [57]. In addition, chondrocytes treated with

exogenous NO, a downstream mediator of IL-1 signaling,
showed inhibition of chondrocyte migration and disrup-
tion of actin filament assembly [54]. Therefore, disruption
of the actin cytoskeleton may be contributing to the IL-1
mediated suppression of proliferation observed in our
injury models.

Figure 10 IL-1 and TNF-a decreased the integrative shear strength of repair. Inner and outer zone explants were treated with control
media and (A) 10 ng/mL IL-1, (B) 10 ng/mL TNF-a, or (C) 10 ng/mL TGF-b1 for 14 days. The data are graphed as shear strength of repair in kPa
+ standard error.

Figure 11 IL-1 and TNF-a decreased tissue repair but did not decrease cell viability. Representative histology images of the (A) inner or
(B) outer zone meniscal repair explants that were treated with 0, 10 ng/mL IL-1, 10 ng/mL TNF-a, or 10 ng/mL TGF-b1 for 14 days. In the
histology images, collagen fibers are stained green, proteoglycans are stained red, and viable cells are stained dark blue. The scale bar is equal to
100 μm.
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The effect of TNF-a in suppression of proliferation
was not as robust as that observed with IL-1, consistent
with our previous observations of the different potencies
of equal concentrations of IL-1 and TNF-a on meniscal
repair [25]. In addition, TNF-a had no effect on the
migration of meniscal cells after micro-wounding. TNF-
a treatment of human umbilical vein endothelial cells
(HUVECs) caused microtubule bundling [58]; perhaps
this reorganization prevents cellular proliferation in
response to TNF-a. Furthermore, in the presence of
serum, TNF-a treatment of inner zone cells suppressed
total cell accumulation and proliferation but had no
effect on migration, consistent with our explant
experiments.
Similar to our results with TGF-b1 treatment, in other

studies using isolated rabbit meniscal cells cultured in
10% FBS and equivalent concentrations of TGF-b1,
there was no effect of TGFb1on cell proliferation at 48
hours [59]. TGF-b1 has been shown to increase F-actin
levels in isolated chondrocytes [60] and increase actin
extensions and lamellar ruffling in agarose embedded
chondrocytes [61]. In other studies, 3T3 fibroblasts trea-
ted with TGF-b1 did not migrate or proliferate and con-
tained stabilized microtubules [62], consistent with the
overall effects observed in this study.
In the micro-wounding experiments, overall the

responses of the cells at the site of the injury and away
from the wound were similar for the different treatments.
These data suggest that the effect of the cytokines were
stronger than any local factors that may be released in
response to the wound. However, IL-1 treatment of outer
zone cells and TNF-a treatment of inner cells resulted in
differential responses between the cells at the site of the
wound and at the edge. In these conditions, local factors
produced by the wounded cells [63] may have altered the
global response to the cytokine treatment [64], resulting
in different responses of the cells at the site of the injury
and those away from the wound.
The cellular proliferation measured in meniscal repair

model explants in this study is consistent with results
from previous studies. In particular, using fresh or fro-
zen meniscal plugs in avascular sheep meniscal injuries
treated with 50 ng/mL TGF-b1 for eight weeks also
demonstrated no difference in cell density or prolifera-
tion but cells further from the tissue surface proliferated
in response to TGF-b1 [65]. In addition, our data are
consistent with an in vivo canine model in which super-
ficial layer cells appeared to be the most active in
wound repair of meniscal tissue plugs [29]. Taken
together, these results suggest that the superficial cells
of the meniscus may be integral in initiating and modu-
lating the repair response.
The decreased cellular proliferation by IL-1 and TNF-a

correlates with the decreased integrative shear strength

of repair. In addition, these data are consistent with our
previous studies that have shown that IL-1 and TNF-a
suppressed integrative meniscal repair and decreased cell
accumulation in the repair interface [23,25]. Additionally,
the general lack of an effect on cell proliferation in
response to TGF-b1 treatment is consistent with the
mechanical testing data. Previously, we have shown that
1 ng/mL TGF-b1 promoted integrative repair but 10 ng/
mL TGF-b1 did not [24]. In adult bovine meniscal repair
explants, 10 ng/mL TGF-b3 increased the shear strength
of repair at eight weeks but not four weeks [44], suggest-
ing that longer times in culture may be necessary to see
the beneficial effects of TGF-b1 on meniscal repair. Scaf-
folds containing TGF-b3 increased chemotaxis of cells
and articular cartilage regeneration in a rabbit model, as
compared to scaffolds without TGF-b3 [66], suggesting
differential responses of cells to the different isoforms of
TGF-b. Interestingly, the outer zone explants showed
increased shear strength of repair in the TNF-a and
TGF-b1 treatment groups, as compared to inner zone
explants. This result is similar to the two-week time
point in a previous study, but these differences disap-
peared over extended culture periods [15].
Cell viability was not altered by any of the treatments

in this study, suggesting that the decreased repair in the
presence of IL-1 and TNF-a was not due to induction
of cell death by these cytokines. The inner zone control
samples stained more strongly for proteoglycans than
the outer zone samples, reflecting the intrinsic composi-
tion of the meniscal tissue [14]. Histological staining
revealed the presence of a predominantly collagen-rich
matrix bridging the interface in control and TGF-b1
treated samples, whereas reparative tissue was largely
absent in IL-1 and TNF-a treated explants. New protein
synthesis, in particular collagen deposition [67] and
cross-linking [68,69], are required for successful integra-
tive repair in cartilage repair model systems.
While isolated inner and outer zone cells demon-

strated different responses to the various treatments,
cells of the inner and outer zone meniscal repair model
explants exhibited similar responses. Recently, isolated
outer zone cells have also been shown to migrate faster
and have lower adhesion strength than inner zone cells
in response to electric fields [70]. These data suggest
that the sub-populations of cells in the meniscus are
inherently different but these differences may be masked
by the extracellular matrix in explant culture. Isolated
cells lack natural cellular morphology and contact with
native extracellular matrix components, whereas
explants maintain the cells in the context of the extra-
cellular matrix and associated signaling molecules.
Important differences have been noted in the ability of
cells to move through two-dimensional and three-
dimensional culture systems, particularly due to the
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barriers presented by collagen networks [71]. In a recent
study, fetal, juvenile and adult bovine meniscal cells
showed similar proliferation rates and migration abilities
in a monolayer micro-wound model. However, fetal and
juvenile meniscal repair model explants showed
improved repair strength over time while adult explants
did not improve [44], further showing the capacity of
these two model systems to reveal different information.
These model systems provide valuable information on

the cellular response of the meniscus to inflammatory
cytokines and growth factors, allowing a careful study of
proliferation, migration and matrix deposition under
well-controlled environmental conditions. These studies
will help to inform future in vivo studies on mechanisms
to promote meniscal repair. However, the direct trans-
latability of these studies to in vivo applications is lim-
ited by the fact that the joint environment is more
complicated, including the presence of many different
cell and tissue types and a variety of inflammatory fac-
tors that are produced in the joint following meniscal
injury. In addition, altered metabolism in all joint tissues
and altered mechanical loading effects must be consid-
ered for successful in vivo studies.
There are few in vivo meniscal repair studies that

have assessed cell migration and proliferation and
extracellular matrix deposition. Several animal models
of avascular meniscal tears have shown that either
autologous or allogenic chondrocytes in a scaffold are
necessary for the formation of reparative matrix tissue
in the lesion and integration of cells into the native
meniscus [72-74]. Animals treated with scaffolds alone
resulted in increased cellularity of fibroblast-like cells
at the edges of the lesion but no repair tissue in the
interface [74]. Adipose-derived mesenchymal stem cells
(ASCs) placed in rabbit avascular meniscal lesions
prior to suturing, increased the healing rate and
yielded an increase in the cellularity of meniscal fibro-
chondrocytes in the repair tissue [75]. Alternatively,
several in vivo studies have demonstrated the need for
a vascular supply to promote healing of meniscal
lesions, inducing proliferation of vessels, endothelial
cells and mesenchymal cells, and resulting in fibrovas-
cular scar tissue repair [13,76]. However, proliferation
of endothelial cells by vascular endothelial growth fac-
tor (VEGF) coated sutures was not sufficient to pro-
mote healing of meniscal lesions in the avascular
region of sheep menisci [77]. The importance of
meniscal cell migration and proliferation in meniscal
healing is evidenced by a study showing that donor
cells from fresh meniscal allografts in the goat do not
survive but the host cells migrate into the allograft and
repopulate the transplant [78]. In addition, in canine
menisci containing devitalized meniscal plugs, cells
migrate across the bridging tissue and into the

interface, ultimately migrating into the devitalized
plugs, remodeling the matrix, and filling the interface
with a hyaline-fibrocartilage matrix [29].
Cell migration and/or proliferation are necessary for

endogenous meniscal healing and repair. In order to
repair a meniscal tear, cells must repopulate the wound
and synthesize new extracellular matrix to achieve inte-
grative repair. However, if cells are not able to fill in the
gap, as in the presence of inflammatory cytokines,
synthesis of reparative tissue and integrative repair can-
not occur. Additionally, IL-1 treatment up-regulates
MMP activity that promotes the catabolism of the
meniscal extracellular matrix [24,26,27,34]. Therefore, a
variety of strategies, including blocking proinflammatory
cytokines [25], inhibiting MMP activity [26,79], and/or
using anabolic growth factors [24] to increase matrix
synthesis and promote cellular proliferation, may be
required to promote meniscal healing following an
injury and to increase the success of tissue engineering
constructs.

Conclusions
In conclusion, we have shown that the inflammatory
cytokines IL-1 and TNF-a suppress the proliferation of
meniscal cells and suppress integrative meniscal repair,
while TGF-b1 overall does not alter the proliferation of
cells or meniscal repair. In inner zone meniscal cells,
migration is increased by IL-1 treatment but not enough
to overcome the suppression of proliferation and fill the
micro-wound. However, all other factors did not alter
cellular migration independent of proliferation. There-
fore, the suppression of cellular proliferation by IL-1
and TNF-a may prevent integrative repair of meniscal
lesions by decreasing cell accumulation in the wound,
and consequently diminishing the available cell popula-
tion that can mediate the synthesis of reparative tissue.
Therefore, strategies that promote the proliferation of
meniscal cells may be able to enhance integrative repair
following injury and promote the success of tissue engi-
neered constructs.
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