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Abstract: To evaluate whether recovery from complicated malaria follows a common trajectory
in terms of immunological mechanism or, rather, is highly individualized for each patient, we
performed longitudinal gene expression profiling of whole blood. RNA sequencing (RNAseq) was
performed on blood samples obtained from eight patients on four consecutive days between hospital
admission and discharge. Six patients were infected with Plasmodium falciparum, and two with
Plasmodium vivax; one patient was a pregnant woman infected with P. falciparum, who was hospitalized
for several weeks. The characterization of blood transcript modules (BTM) and blood informative
transcripts (BIT) revealed that patients’ responses showed little commonality, being dominated by
the balance of gene activity relating to lymphocyte function, inflammation, and interferon responses
specific to each patient. Only weak correlations with specific complicated malaria symptoms such
as jaundice, thrombocytopenia, or anemia were observed. The differential expression of individual
genes, including transcripts derived from the human leukocyte antigen (HLA) complex, generally
reflected differences in the underlying immune processes. Although the results of this pilot study
do not point to any single process that might provide a target for complicated malaria treatment
or prevention or personalized medical strategies, larger patient series and more extensive blood
sampling may allow the classification of patients according to their type of response in order to
develop novel therapeutic approaches.
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1. Introduction

Malaria is the most prevalent parasitic disease worldwide with over 200 million clinical cases
and about 445,000 deaths reported globally every year [1]. While most clinical cases are characterized
by classical signs and symptoms such as fever, chills, headache, and malaise that rapidly disappear
upon early diagnosis and prompt treatment, failure to recover quickly can lead to a more severe and
complicated disease that usually requires hospitalized management [2–5]. In these cases, multiple
organs can suffer irreversible damage, leading to multi-systemic failure and eventually to death [6].
In Colombia, a low-malaria-transmission country of Latin America, the most common complications
include vascular obstruction, inflammatory processes, and damage to as well as cell death in various
organs. Symptoms include jaundice, severe thrombocytopenia, liver and kidney injury, and acute
anemia, with cerebral infection affecting a minority of patients [7–10]. It is not precisely known what
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mechanisms are involved in the progression to severe disease or recovery from infection, although it
has been shown that multiple arms of the immune system are engaged [11–13]. In Plasmodium vivax,
a significant modification of peripheral blood gene expression is first observed as parasites begin to
appear in the blood stream 12 to 14 days after initial infection [14]. It involves both myeloid and
lymphoid cell types, as well as inflammatory and interferon responses. No clear pattern of Th1, Th2,
or Th17 engagement has emerged, and, although high parasitemia is the major factor influencing
the extent of transcriptional divergence [15], these results have not yet produced a clear picture of
the chain of immune responses that control the infection. Complement activation is critical for the
removal of Plasmodium-infected red blood cells [16,17], but very little is known about how variation
among individuals, and indeed within individuals across infections, results in responses that range
from asymptomatic infection to severe and complicated disease leading to mortality.

Recently, RNA sequencing (RNAseq) has emerged as the preferred tool for gene expression
profiling, since it provides an unbiased view of the abundance of both genes and exons [18,19].
Compared with microarray analysis, technical artefacts seem to be less prevalent, but its application to
complex tissues still suffers from the problem that cell type-specific differential gene expression can be
imputed only indirectly. Studies of semi-purified immune cell subtypes certainly increase resolution
but are more expensive, necessarily biased towards cells of a priori interest, and there is always the
concern that purification modifies gene expression. Consequently, bioinformatics approaches are
evolving that allow the deconvolution of the abundance of cell types as well as the inference of the
gene activity pathways that are most strongly affected in a disease or treatment [20]. In the near future,
single-cell RNAseq [21] will allow the comprehensive comparison of gene expression variation among
all cell types of a mixture, potentially obviating the need for bioinformatic deconvolution.

By applying a machine learning approach to over 30,000 peripheral blood profiles, Li et al. [22]
identified about 300 “blood transcript modules” (BTM) enriched for gene activity, known targets of key
regulatory factors, or specific biochemical pathways in dozens of immune cell types. The derivation of
the first principal component (PC1) of each BTM provides a summary of the major gene ontologies
that characterize individual samples. Similarly, Chaussabel and colleagues [23] found 28 modules that
are conserved across datasets but characteristic of 11 different immune diseases. We reduced these
to nine super-modules, or “blood informative transcript” (BIT) axes [24], after recognizing that there
is a very high correlation between the PC1 scores in multiple cohorts of healthy people. Subsequent
analysis of dozens of datasets, including the results presented below, confirmed that BTM cluster into
no more than a dozen groups, each of which covaries with one of the BITs. Furthermore, we show here
that, by utilizing single-cell RNAseq profiles, we can now also characterize T-lymphocyte activity as
helper, cytotoxic, or natural killer (NK) cell-related, from whole RNA profiles.

The objective of this study was to pilot the use of longitudinal RNAseq profiling during treatment
and recovery from complicated malaria to characterize the immunological pathways engaged in
the resolution of the infection. Whole blood samples were obtained upon hospitalization and three
more times over the next four days. Most patients were discharged on days 4 or 5, but one pregnant
woman (CM02) remained sick and hospitalized for 49 days; she was followed for almost a month
and suffered a malaria relapse 15 days after first hospital discharge. Specifically, in this study, we
examined: (i) whether there is a distinct signature of complicated malaria upon hospitalization of
a patient, (ii) whether there is a common pattern of recovery characterized by the engagement of
particular BTM or BIT, and (iii) whether individualized profiles associate with particular symptoms of
complicated malaria.

2. Materials and Methods

2.1. Study Design and Subject Recruitment

Regardless of age, sex, or ethnic group, eight malaria patients admitted to a third-level hospital
with confirmed Plasmodium falciparum (n = 6) or P. vivax (n = 2) were enrolled. The three study
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recruitment sites are located on the Pacific coast region of Colombia (Choco, Valle del Cauca, and
Nariño Departments) and were sampled over the course of complicated malaria episodes in 2015.
Clinical complications attributable to malaria infection were recorded, and complicated malaria was
defined on the basis of existing guidelines of the World Health Organization (WHO) and the Colombian
Ministry of Health [25,26], requiring clinical severity and one or more clinical conditions such as
anaemia (Hb < 7 g/dL in adults and children), renal dysfunction (serum creatinine > 1.5 mg/dL),
severe thrombocytopenia (≤20,000 platelets/µL), and hyperparasitaemia (>50,000 parasites/µL).
The patients were medically monitored daily until discharge upon recovery from their clinical
complications. All patients provided written informed consent for participation before enrolment, and
the study protocol was approved by the Institutional Review Boards (IRB) for the Malaria Vaccine and
Drug Development Center (CECIV). In addition, the Georgia Institute of Technology IRB provided
subsequent approval for genomic analyses.

2.2. Blood Sample Collection

All study participants were bled by arm venipuncture at four time points during hospitalization,
with the exception of the pregnant woman (CM02), who had two additional bleedings during a second
hospitalization, because of a parasite relapse a few weeks after her first hospital discharge. Blood
(~1 mL) was collected into Tempus tubes (Thermo-Fisher Scientific, Waltham, MA, USA), which
preserve whole blood RNA indefinitely at 4 ◦C [27]. mRNA was extracted using Tempus Blood
RNA tube isolation kits, following the protocol provided by the manufacturer, and the RNA quality
was determined using the Agilent Bioanalyzer RNA Integrity score (RIN) (Agilent, Santa Clara, CA,
USA) [28].

2.3. Whole Transcriptome Sequencing (RNAseq) and Preprocessing of the Data

Library preparation for RNAseq was performed using the Illumina TruSeq Stranded mRNA
Sample Low-Throughput (LT) preparation protocol [29]. Short read sequencing was performed in
rapid run mode with 10 samples per lane on an Illumina HiSeq 2100 (Illumina, San Diego, CA, USA)
at Georgia Tech, generating 100 bp single-end libraries with an average of ~30 million single-end reads
per sample.

The Tophat2 package [30] was used to align the reads to the human genome hg19/GRCh37,
followed by UCSC reference annotation and HTSeq [31] to estimate the transcript abundance.
The expression of known transcripts was calculated as counts per million (cpm) and filtered by cpm
equal or greater than 1 in at least three of the samples; a total of 13,958 genes passed this criterion and
were scaled on the log 2 scale by trimmed mean of the m-values (TMM) normalization in edgeR [32].

2.4. Analysis of RNAseq Data

2.4.1. Principal Variance Component Analysis

We performed principal variance component analysis (PVCA) to assess the overall contributions
of patient, time-point, gender, and Plasmodium species to the transcriptional variance using the PVCA
package in R v3.3.1. The percentile value for the minimum amount of the variance explained by
the PC was set to 75%, and the average contributions of each covariate were computed as the
average contribution to each PC weighted by the variance explained by the PC. PC1 mainly captures
inter-individual variation, whereas PC2 and PC3 derive from a mixture of sources, with a strong
influence of the parasite species.

2.4.2. Modular Analysis

Blood transcript modules [22] and BIT [24] analyses were performed by computing the PC1 of
all the genes in each module or the top genes most closely correlated with each BIT axis. Standard
analysis of variance (ANOVA) was then used to compare these scores among treatment classes, and
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two-way hierarchical clustering was computed using Ward’s method in JMP Genomics version 8
(SAS Institute, Cary, NC, USA). The Module and Axis scores for each individual at each time point are
listed in Supplementary Table S1.

In order to refine the contributions of NK cells, T-helper cells, and T-cytotoxic cells, we identified
the top 10 genes differentially expressed between these three cell types in the single-cell RNAseq dataset
reported in reference [21]. The first principal component for each of these three sets is, as expected,
highly correlated with Axis T, but the residuals of the regression of each PC1 on Axis T provide a
measure of inflation or repression of the gene activity in the three cell types.

2.4.3. Differentially Expressed Gene Calling and Gene Ontology Analysis

One-way ANOVA analysis between each patient and the remaining patients was conducted to
detect patient-specific differentially expressed genes, using the following arbitrary p-value thresholds
to identify approximately 50 to 150 genes per individual: p < 10−4: CM09, CM14, CM44, and CM52,
detecting 35, 48, 101, and 53 genes, respectively; p < 10−5: CM41 detecting 55 genes; p < 10−6: CM04,
CM05, detecting 163 and 86 genes, respectively; p < 10−8: CM02, detecting 242 genes (the larger sample
size for this individual increased the statistical power, resulting in more detections).

After removing duplicated differentially expressed genes (DEGs), the TMM expression levels
of the 781 genes listed in Supplementary Table S2 were subjected to two-way hierarchical clustering
using Ward’s method, and eight differentially expressed gene modules were observed. Functional
annotation of these modules by gene ontology and other categories was assessed using the ToppFun
tool of the ToppGene suite online [33]. A full list of results is provided in Supplementary Table S3.

3. Results

3.1. The Individual Is the Major Source of Variation as Patients Recover from Infection

The characteristics of the study participants are shown in Table 1. The age range was 3 to
69 years (mean 34 years), with four individuals of each sex. Five patients were from the mid-Pacific
lowland region of Chocó (CH), one from the Valle del Cauca (VC) region, and two from the southwest
Pacific coast region of Nariño. Clinical presentations included respiratory distress, jaundice, and oral
intolerance to drug administration, while blood laboratory tests revealed severe thrombocytopenia
and/or anemia, as well as renal and hepatic dysfunction, in several instances; as expected, parasitemia
was lower in the two P. vivax malaria cases than in four of the six P. falciparum cases [10].

Table 1. Patient demographic, clinical, and laboratory information.

Subject Site Sex Parasite
Spp/Counts

Clinical
Criteria §

Laboratory
Criteria Age Hospital

Days

CM09 Valle del Cauca M P.f./25.1 OI, RD ST 69 5
CM14 Chocó M P.f./19.6 OI Hep, ST, MH 37 5
CM41 Chocó F P.f./142 OI, Jau ST 49 4
CM44 Chocó F P.v./5.7 OI, Jau MH, RI, ST 25 5
CM52 Chocó M P.v./5.7 RD None 3 4
CM05 Chocó F P.f./11.6 RD ST 38 4

CM02 * Chocó F P.f./5.2, 4.3 RD SA 28 11, 18
CM04 Nariño M P.f./20.8 OI RI, Hep 22 4

* 25-week pregnant, two visits. Parasite spp: P.f. = Plasmodium falciparum; P.v. = Plasmodium vivax. Counts:
Parasites × 1000/µL. § Clinical criteria OI = oral intolerance, Jau = jaundice, RD = respiratory distress. Laboratory
criteria ST = severe thrombocytopenia, SA = severe anemia, MH = macroscopic hemoglobinuria, RI = renal injury,
Hep = hepatic failure.

The PVCA of the full dataset consisting of 40 RNAseq samples from the eight complicated malaria
cases revealed that 54% of the variation was recorded among individuals, 12% between the two
Plasmodium species, 10% between males and females, and <1% between days. The contributions of
each source of variation to individual PC are listed in Supplementary Table S4. The first principal
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component mainly captures inter-individual variation, whereas PC2 and PC3 derive from a mixture
of sources and include strong influences of the parasite species. Although there was a considerable
variation across days within individuals, this analysis clearly showed that overall there was not a
common profile of resolution whereby patients moved from an acute profile at hospitalization to a
healthier profile at discharge. It is unclear whether the parasite and sex components were significant,
given that just two patients were infected with P. vivax, and that, in large samples of healthy individuals,
sex accounts for only a few percent of blood gene expression variation (e.g., [24,34]). In order to contrast
complicated with uncomplicated malaria, we added another 24 samples to the dataset, consisting of
12 Colombian individuals previously subjected to experimental malaria infection, who were sampled
before and after infection [14]. All but one of the complicated malaria samples clustered with these
experimentally infected samples (data not shown), all of which were immediately resolved following
standard malaria treatment, and none were associated with severe symptoms. Consequently, there
is no evidence that the complicated cases are characterized by a distinct profile of infection that is
qualitatively different from uncomplicated malaria.

3.2. Modular Analysis Resolves the Major Immune Activities Engaged in Each Individual

To gain insight into the immunological pathways that vary within and among individuals, we next
performed BTM and BIT analysis by generating the PC1 for each set of BTM module genes or the
10 characteristic BIT axes (see Materials and Methods for details). An initial nomenclature considered
Axis 1 through Axis 9 [24]; however, for a better interpretation of results, we recently [35] renamed the
Axes T, B, N, R, I, G, and C for T cell, B cell, Neutrophil, Reticulocyte, Interferon response, General,
and Cell cycle, corresponding to Axes 1, 3, 5, 2, 7, 4, and a newly discovered Axis 10, respectively.
The former Axes 6, 8, and 9 were excluded from the analysis because we do not know their biological
function. Axis C is enriched for genes involved in mitosis and cell cycle regulation, and the PC1 score
for this Axis is very similar to that of multiple BTM annotated to cell cycle functions.

Two-way hierarchical clustering of the 253 BTM and 7 BIT scores in Figure 1 with individual
samples as rows revealed a very clear structure, whereby the individual samples all tended to cluster
with one another, and the BTM fell into six clusters indicated along the bottom, each of which included
one BIT axis as indicated. The leftmost cluster actually included both Axis I and Axis N (though they
are in distinct sub-clusters, as shown by the lower dendrogram), indicating that inflammation and
interferon response were tightly coordinated in this dataset. The Reticulocyte Axis is right next to
BTM173 (erythrocyte differentiation) and BTM171 (heme biosynthesis) and immediately adjacent to
the two platelet activation modules (BTM32_0 and BTM32_1). All five patients who reported severe
thrombocytopenia had at least two time points with a standard deviation more than one unit below
the mean for these two modules (although CM52 had the two lowest scores). Intriguingly, on the
right of the figure, all of the cell cycle modules and Axis C quite cleanly distinguished four patients
with consistently low mitotic activity (CM02, CM05, CM44, and CM52) from the remainder. Three of
these patients experienced respiratory distress, as did CM09, whose cell cycle expression level was
intermediate. See Supplementary Table S5 for the identities of the BTM in each cluster.
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highlights the tendency of the samples to cluster by individual and provides an overview of the axes 
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signaling and activity. We attempted to further resolve the immune cell contributions by taking 
advantage of recently reported single-cell RNAseq results from whole blood [21], which document 
dozens of genes significantly elevated in NK cells, cytotoxic T cells, or helper T cells (see Materials 
and Methods). Figure 2A–C show that PC1 for each of these gene sets is highly correlated with Axis 
T, explaining the lack of resolution of the sub-types in Figure 1. However, the residuals of the 
regressions significantly differed among patients, as shown in Figure 2D–F. Our interpretation is that 
the individuals with positive residuals had a higher abundance of the genes representative of that 
cell type, likely implying the elevated abundance of the cell type itself. By this reasoning, CM04, 
CM14, and CM41 had consistently elevated NK cell activity, CM44 and CM52 had elevated helper T 
cell activity, and CM04 had very high cytotoxic T cell activity, whereas CM02 showed a remarkably 
low activity of that component. 

Figure 1. Two-way hierarchical clustering of blood transcript modules (BTM) and blood informative
transcripts (BIT) by individual and time. Each row represents one patient on the day indicated by the
last number of the label, and each column is the principal component (PC1) score for a BTM, with
co-clustered BIT PC1 highlighted. The red-to-blue scale indicates positive to negative scores. The figure
highlights the tendency of the samples to cluster by individual and provides an overview of the axes of
variation shared by particular patients.

The B and T cell activity Axes clustered with 78 BTM annotated to various aspects of lymphoid
signaling and activity. We attempted to further resolve the immune cell contributions by taking
advantage of recently reported single-cell RNAseq results from whole blood [21], which document
dozens of genes significantly elevated in NK cells, cytotoxic T cells, or helper T cells (see Materials
and Methods). Figure 2A–C show that PC1 for each of these gene sets is highly correlated with
Axis T, explaining the lack of resolution of the sub-types in Figure 1. However, the residuals of the
regressions significantly differed among patients, as shown in Figure 2D–F. Our interpretation is that
the individuals with positive residuals had a higher abundance of the genes representative of that cell
type, likely implying the elevated abundance of the cell type itself. By this reasoning, CM04, CM14,
and CM41 had consistently elevated NK cell activity, CM44 and CM52 had elevated helper T cell
activity, and CM04 had very high cytotoxic T cell activity, whereas CM02 showed a remarkably low
activity of that component.
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Figure 2. Lymphocyte activity inference in each individual. Each plot (A–C) shows how a PC1 based
on natural killer (NK) cell, T-helper cell, or T-cytotoxic cell specific transcripts correlates with Axis T
and varies by individual, indicated by different colors. Graphs (D–F) plot the residuals of the linear
regressions by individual, highlighting patient-specific lymphocyte activity. p-values and adjusted R2

estimates were calculated through an analysis of variance (ANOVA).

The time course of BIT Axis scores for each patient is summarized in the matrix of histograms
presented in Figure 3. The results strongly imply that each patient confronted the malaria infection
with a quite different immune response. In short, the following patterns emerged. Table 1 lists the
clinical presentation features for each patient, but there was no clear relationship between the clinical
data and the gene expression data, except for a few cases mentioned below.
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Figure 3. Standardized change in BIT by individual and time. Each box shows the difference between
the sample PC1 score and the sample mean for the indicated individual from Day 1 to Day 4 of sampling.
Red implies strong elevation, and blue strong reduction in the expression of genes in the Axis.

• CM02, who presented with severe anemia clinical manifestations and relatively low parasitemia,
had generally low cytotoxic T-lymphocyte and natural killer cell activity, which may explain
her failure to resolve the infection. She also had particularly low mitotic activity during the
initial infection and low B cell function during the relapse. All this was compensated by elevated
inflammatory and interferon responses.

• CM04, who experienced renal and liver failure, also had a notable inflammatory response and
low B cell activity, but this was offset by high cytotoxic T cell and mitotic activity. His reticulocyte
numbers were relatively low, consistent with the absence of anemia, and his interferon response
settled down upon hospitalization.

• CM05, with severe thrombocytopenia, was notable for a dramatic drop in inflammation and
interferon signaling specifically on day 3 and for a relatively high cytotoxic T cell function on
days 1 and 2.

• CM09, with severe thrombocytopenia and high parasitemia, had a rather stable profile without any
dominant characteristics, perhaps correlating with his less complicated disease or with his age (69),
which suggests that he may have built up more tolerance to malaria than the younger patients.

• CM14, with hepatic failure and severe thrombocytopenia, was notable for very high NK cell
signatures and relatively low reticulocytes.

• CM41, who experienced severe thrombocytopenia and jaundice, presumably due to liver
dysfunction, had relatively high NK cell and cytotoxic T cell activity, as well as elevated cell cycle
gene expression, similar to CM14.

• CM44 and CM52, both infected with P. vivax, had similar transcriptome profiles. CM52 was a
3-year-old boy at the time of this episode of malaria and was mainly hospitalized for respiratory
distress. CM44 presented a more extreme condition (severe thrombocytopenia, jaundice, and
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renal injury) with respect to her combination of low inflammation (perhaps related to a relatively
low parasitemia) and particularly high B cell and helper T cell activity.

3.3. Patient-Specific Gene Expression Reinforces the Conclusions of the Modular Analysis

Given that each patient showed a relatively unique modular pattern during hospitalization, we
next asked whether their gene expression patterns followed patient-specific trajectories. To do so, we
identified patient-specific DEGs using one-way ANOVA (see Materials and Methods). After removing
duplicated DEGs, we obtained 781 DEGs in total and performed two-way hierarchical clustering,
observing eight DEG modules (Figure 4). Gene ontology functional enrichment analysis of the DEGs
within each module revealed striking concordances with the modular analysis (Supplementary Table
S3). It is also notable that with this mode of patient-specific gene expression analysis, the four samples
for each patient always clustered together.
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Axis R and Axis B variation patterns reported above. Similarly, gene expression in the yellow module 
was high in CM41, CM14, CM44, and CM09 but low in CM02, which, as gene ontology analysis 
suggested, may indicate gamma-delta T cell deficiency and mitochondrial dysfunction. Once again, 
this agreed with the Axis T of the modular analysis. Additionally, gene expression of the dark blue 
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Furthermore, gene expression of the light purple module was high in CM02, relatively high in CM04, 

Figure 4. Two-way hierarchical clustering of differentially expressed gene (DEG) by individual and
time. Each row represents one patient on the day indicated by the last number of the label, and each
column is the standardized expression of a DEG in ANOVA contrasting each individual with the
remaining sample. The figure highlights clusters of genes that tend to be patient-specific, but shows
(like the BTM analysis) that these are to some extent shared by pairs of patients. The colored bar at
base indicates clusters discussed in the text.

The expression of the red cluster genes was high in CM44 and CM02 during the first three days,
and in CM05 on days 3 and 4, but low in CM04. Gene ontology analysis revealed enrichment for
erythropoiesis and B cell differentiation markers, which was concordant with the modular analysis
Axis R and Axis B variation patterns reported above. Similarly, gene expression in the yellow module
was high in CM41, CM14, CM44, and CM09 but low in CM02, which, as gene ontology analysis
suggested, may indicate gamma-delta T cell deficiency and mitochondrial dysfunction. Once again,
this agreed with the Axis T of the modular analysis. Additionally, gene expression of the dark blue
module, which is related to type I interferon signaling, was upregulated in CM02, CM04, and CM41
on days 1 and 2 but downregulated in CM44, matching the Axis I pattern of the modular analysis.
Furthermore, gene expression of the light purple module was high in CM02, relatively high in CM04,
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but low in other patients. Gene ontology analysis implies that this module is related to neutrophils
and inflammation, in line with the Axis N pattern of the modular analysis.

Even though the BIT and BTM patterns were validated by the modular analysis, a small number
of more detailed patient-specific results were also revealed by the DEG analysis. For example, gene
expression of the orange module was high in CM05 but low in other patients. Ten BTM related to
myeloid dendritic cell activation were also upregulated in this patient.

3.4. Variable Expression of HLA Complex Genes among Patients

Since the human leukocyte antigen (HLA) complex is known to play an important role in the
processes of protection against intracellular pathogens, including the immune response during malaria
infection, we also examined the collective regulation of 25 HLA genes and their relationship to the BIT
Axes (Figure 5). Overall, three clusters of co-regulated HLA expression were observed. The HLA class I
genes, HLA-A to HLA-H, were all relatively highly expressed in CM02 and CM04, the two patients
with the strongest inflammatory response. In addition, three individuals displayed an unusually
high expression of single class I genes, namely, HLA-G in CM09, and HLA-H in CM14. Two class II
genes were also notably uniquely elevated in these two individuals, i.e., HLA-DRB6 and HLA-DQA2,
respectively. It is not known whether these specific patterns may have influenced the complicated
course of the disease.
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Each row represents one patient on the day indicated by the last number of the label, and each column
is the standardized expression of the indicated HLA gene or lymphocyte activity estimate. The figure
highlights three clusters of co-expression, namely, HLA class I to the left and two HLA class II clusters
in the middle and right of the grid.
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Regarding the expression of HLA class II genes, these showed relatively low levels in the two
patients with high neutrophil and interferon activity but separated into two sub-groups. One included
HLA-DMA, HLA-DMB, HLA-DPA1, HLA-DPB1, HLA-DRA, and HLA-DQB2, the expression of which
was particularly high in CM05, CM09, and CM52, all of whom were among the high inflammatory
response individuals. This suggests a trade-off between inflammation and HLA-class I and class II
gene expression. The second sub-group included HLA-DQA1, HLA-DQB1, HLA-DRB1, and HLA-DRB5,
whose expression was notably elevated in CM41 and CM44, two individuals with relatively high T cell
activity in general but otherwise contrasting profiles. Larger sample sizes will be required to ascertain
whether and how HLA class II gene expression is associated with complicated malaria.

4. Discussion

Given that malaria is a blood stream infection, recovery from which requires elimination of
parasite-infected red blood cells, our expectation was that longitudinal transcriptome profiling would
reveal common regulatory signatures of engagement of one or more arms of the immune system.
At least, elevated reticulocyte development and reduced engagement of innate and interferon-mediated
responses, as patients move from acute clinical manifestations to healthy condition and release from
hospital, would be expected upon recovery. However, while there were signs of such responses
in a majority of the patients, the timing and strength of the signals revealed by Axes R, N, and I
were notably variable among patients. No other strong signatures, for example of engagement of
B cells, a subset of T cells, or perhaps a pathway such as antigen processing, were observed across the
dataset. Rather, the overwhelming pattern was one of highly individualized profiles of immune-related
recovery. The dominant variance component in the dataset was between-individual effects, and each
person displayed a personal trajectory of recovery.

Such individualization is reminiscent of our findings in healthy individuals [36]. In that study, we
found, by contrasting the RNAseq profiles of a dozen of individuals at three six-month intervals, that all
subjects consistently clustered together, whether considering the major PC of the entire transcriptome
or the Axis scores. This gave rise to the notion of an “omic personality”, a consistent profile of gene
expression over time that reflects the baseline healthy status of an individual [36]. This baseline
expression is quite likely to have a major influence on the recovery profiles.

Similarly, microarray-based profiling of lupus erythematosus patients [37] discovered at least
eight dominant trajectories of gene expression over time. Clustering transcripts on the basis of
their correlation with various clinical traits of relevance to pathology, including the systemic lupus
erythematosus disease activity index (SLEDAI), showed that some patients had a predominantly B
cell-related pattern, while, in others, reticulocytes, NK cells, or T cells seemed to produce the strongest
correlations. Despite the well-documented interferon response seen in lupus, a plasmablast signature
present in most patients, and neutrophilia associating with nephritis, it was the personalized nature of
the immune gene expression monitoring that dominated the analysis.

These observations raise the question of whether baseline peripheral blood profiles might be
predictive of the course of a disease or provide personalized information regarding the best course
of the curative treatment. The lupus study was ambiguous on this point, and, despite trends such
as association of low cell cycle activity with respiratory distress, our pilot study is too small to make
any definitive statements. What is clear is that the different pairs of patients with high B cell (CM44
and CM52), NK cell (CM14 and CM41), or cytotoxic T cell (CM04 and CM05) activity did not share
complicated malaria attributes to the exclusion of other patients, so a close matching of immune profile
to clinical presentation is unlikely.

Another possible source of patient-specific clinical presentation is the aberrant expression of one
or a handful of genes that lead to a complicated course rather than to a standard resolution. We noted
several instances of divergent expression of HLA or other genes of interest, but samples from several
thousand patients will be required to establish any statistical association with a phenotype. Most of
the divergent expression was due to an individual having the highest or lowest values for the relevant
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axis of variation, but it is likely that mutations and segregating regulatory variants also contribute for
specific genes. The individuals CM09, CM14, and C52, whose overall profiles had relatively normal
axis scores, also had divergent HLA gene expression levels, and these genes may be involved in
mediating aspects of the complicated course of disease.

It is not known what causes the strong patterns of covariance of gene expression. Some of it is due
to the differential abundance of contributing lymphoid and myeloid cell types, but immune cell type
abundance is known to have low heritability [38,39]. Aspects such as interferon response, cell cycle
regulation, and general cellular metabolism are likely affected by multiple immune cell types, and the
longitudinal consistency of the corresponding axis scores suggests a substantial trans-acting regulatory
component. The interaction of the immune system with the parasite would significantly contribute
at multiple stages of the infection cycle, from parasite entry and development in the liver cells to
parasite multiplication during blood infection. Plasmodium antigens likely induce immune responses,
which engage all of the major T cell subsets, possibly modulating the immune response, once the acute
clinical phase of infection commences. Although, in malaria, the immune system is primed upon
sporozoite injection by a mosquito under the patient’s skin, it is only during the parasite development
in the blood stream that the clinical manifestations appear. Whether or not this knowledge can be used
to understand and eventually manipulate the immune responses in a personalized manner is unclear
but will likely require longitudinal studies involving thousands of patients across diverse infectious
and complicated disease phenotype classes.
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