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Background: As a new style of cell death, necroptosis plays a crucial role in

tumor immune microenvironment. LncRNAs have been identified to act as

competitive RNAs to influence genes involved in necroptosis. Therefore, we aim

to create a signature based on necroptosis-related lncRNAs to predict the

prognosis and immune landscape of lung adenocarcinoma (LUAD) patients in

this study.

Methods: TCGA database was used to acquire RNA sequencing (RNA-Seq) data

and clinical information for 59 lung normal samples and 535 lung

adenocarcinoma samples. The Pearson correlation analysis, univariate cox

regression analysis and least absolute shrinkage and selection operator

(LASSO) cox regression were performed to construct the prognostic

NRlncRNAs signature. Then we used Kaplan-Meier (K-M) analysis, time-

dependent ROC curves, univariate and multivariate cox regression analysis,

and nomogram to validate this signature. In addition, GO, KEGG, andGSVAwere

analyzed to investigate the potential molecular mechanism. Moreover, we

analyzed the relationship between our identified signature and immune

microenvironment, TMB, and some clinical characteristics. Finally, we

detected the expression of the six necroptosis-related lncRNAs in cells and

tissues.

Results: We constructed a NRlncRNAs signature consisting of six lncRNAs

(FRMD6-AS1, LINC01480, FAM83A-AS1, FRMD6-AS1, MED4-AS1, and

LINC01415) in LUAD. LUAD patients with high risk scores had lower chance
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of survival with an AUC of 0.739, 0.709, and 0.733 for 1-year, 3-year, and 5-year

respectively. The results based on GO, KEGG, and GSVA enrichment analysis

demonstrated that NRlncRNAs signature-related genes were mainly correlated

with immune pathways, metabolic-and cell growth-related pathways, cell

cycle, and apoptosis. Moreover, the risk score was correlated with the

immune status of LUAD patients. Patients with higher risk scores had lower

ESTIMATE scores and higher TIDE scores. The risk score was positively

correlated with TMB. LINC01415, FRMD6-AS1 and FAM83A-AS1 were

significantly overexpressed in lung adenocarcinoma, while the expression

levels of MED4-AS1 and LINC01480 were lower in lung adenocarcinoma.

Conclusion: Overall, an innovative prognostic signature based on NRlncRNAs

was developed for LUAD through comprehensive bioinformatics analysis,

which can act as a predictor of immunotherapy and may provide guidance

for clinicians.
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Introduction

Lung adenocarcinoma (LUAD) is the most common type of

lung cancer nowadays (Siegel et al., 2021). Although there are a

variety of comprehensive therapeutic styles such as surgery,

chemotherapy, radiotherapy and immunotherapy, some

patients cannot be effectively treated and have a low 5-year

overall survival rate due to the lack of specific targets (Nasim

et al., 2019; Franzi et al., 2022). Therefore, to improve the

prognosis and treatment of LUAD patients, it is vital to

establish novel, efficient biomarkers and therapeutic approaches.

As a new style of cell death, necroptosis is universally

mediated by receptor-interacting protein kinases1/3 of the

receptor family (RIPK1/RIPK3) and is mainly governed by the

effector protein Mixed Lineage Kinase Domain Like

Pseudokinase (MLKL) (Frank and Vince, 2019; Yuan et al.,

2019). Furthermore, necroptosis is able to modulate tumor

immune responses which may lead to potential

immunotherapeutic benefits (Gong et al., 2019; Tang et al.,

2020a; Galluzzi and Garg, 2021). In one aspect, during

necroptosis, cancer cells release cytokines and chemokines

that stimulate inflammatory and tumor-modulating effects in

tumor microenvironment. By luring macrophages and dendritic

cells, on the other hand, necroptotic tumor cells encourage

effector T cells to penetrate tumor tissues, which strengthens

the immunosuppression of the tumor. Therefore, targeting

necroptosis could lead to novel cancer therapies, especially

immunotherapy. Nevertheless, the specific regulatory

mechanism of necroptosis in lung cancer remains unclear.

Long non-coding RNAs (lncRNAs) are a class of non-

proteincoding RNAs (ncRNAs) whose length is more than

200 nucleotides (Grote and Boon, 2018). A growing body of

evidence has demonstrated that lncRNAs play a crucial role in

lung cancer progression and the immune pathway (Chen et al.,

2017; Bocchetti et al., 2021; Park et al., 2022). LncRNAS can alter

cancer cells’ resistance to immune responses, leading to immune

evasion. In addition, several studies have demonstrated that

lncRNAs can also act as competitive RNAs to influence genes

involved in necroptosis (Jiang et al., 2021; Zhao et al., 2021; Chen

et al., 2022). However, few studies have been done on

necroptosis-related lncRNAs (NRlncRNAs) and tumor

immune microenvironment (TIME) in LUAD.

In this study, an innovative prognostic signature based on

NRlncRNAs was developed for LUAD. Additionally, we

validated its clinical significance, confirming that this

signature can act as a predictor of immunotherapy and may

provide guidance for clinicians.

Methods and materials

Data sources

We downloaded the RNA sequencing data (59 normal tissues

and 535 tumor tissues) and corresponding clinical information of

LUAD samples from the TCGA database (https:/portal.gdc.

cancer.gov/). Necroptosis-related genes were extracted from

previous studies (Fan et al., 2014; Frank and Vince, 2019;

Gong et al., 2019; Molnár et al., 2019; Yuan et al., 2019; Tang

et al., 2020a). The mutation data in MAF format of LUAD

samples was also obtained from TCGA. Next, we downloaded

the Genome Reference Consortium Human Build 38 (GRCh38)

to annotate lncRNAs and mRNAs by preforming Perl scripts.

Identification of Differentially Expressed Necroptosis-related

LncRNAs in LUAD.

4191 lncRNAs and 19116 mRNAs were identified from the

TCGA-LUAD RNA-seq data. The co-expression correlations

between NRGs and lncRNAs in LUAD samples were
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investigated through Pearson correlation analysis. The cutoffs for

this study were |Coefficient| >0.4 and p-value <0.001. The

“igraph” R package was used to get the co-expression network

of NRGs and predictive lncRNAs. Lastly, we analyzed

differentially expressed NRlncRNAs using the “limma”

package (|logFc = 1|, FDR <0.05).

Construction and validation the
prognostic NRlncRNAs signature

First, the prognosis-related NRlncRNAs were identified in

TCGA-LUAD through univariate Cox proportional

regression analysis (p < 0.05). Significant lncRNAs were

visualized in heatmap by using “heatmap” package. The

Sankey plot was created by the “limma”, “dplyr,”

“ggalluvial,” and “ggplot2” packages to visualize the

correlation between NRGs and NRlncRNAs. Then, “caret”

package was utilized to allocate all patients into the training

and the testing sets. The “glmnt” was performed to select

significant NRG-lncRNA into the Least absolute shrinkage

and selection operator (LASSO) cox regression. The LASSO

Cox regression approach was used to find the best panel of

prognostic lncRNAs and create an optimum signature. The

standardized expression levels of NRLs and the related

regression coefficients produced from the LASSO regression

analysis were then used to calculate each LUAD patient’s

survival risk score. The formula is given:

Risk score = Σ(Coef (lncRNAi)×Exp (lncRNAi)).

Coef and Exp denote the coefficient and the standardized

expression levels of each NRL. The training set’s median risk

score was used as the demarcation point to divide LUAD

samples into low- or high-risk subgroups. To compare the

overall survival (OS) of the high-risk and low-risk subgroups

among the training and testing sets, Kaplan-Meier (K-M)

curves were generated by performing the “survival”

package. A heatmap was utilized to display the significant

lncRNA in this model. Time-dependent ROC curves were

generated to assess the survival predictive ability of the

NRlncRNAs signature. Univariate and multivariate cox

regression analysis were performed to detect the

independence of this prognostic risk model. We also

contrasted the differences among different risk groups and

clinical characteristics by using “limma” R package (Ma et al.,

2020). To determine if our NRlncRNAs signature risk model is

superior to previously reported signatures in LUAD, we

compared its predictive power to that of other signatures,

including two five-lncRNA signatures (Song et al., 2021; Wang

et al., 2022) and a seven-lncRNA signature (Yao et al., 2021).

The lncRNAs in these signatures were obtained from the

corresponding published literature, and the AUC of 1-, 3-,

and 5-year ROC curves, as well as the OS, were calculated for

each signature.

Development of a nomogram score
system

Subsequently, a nomogram score system based on age, stage,

gender, and risk score of each patient with LUAD was

constructed to predict the prognosis of individual patient

outcomes. The procedure was run by using “survival” and

“rms” packages. The calibration curve was conducted to assess

the consistency between the actual outcomes and the predicted

prognosis. The AUC of the ROC curve was used to compare the

prediction abilities of the nomogram with other prognostic

factors. Moreover, decision curve analysis (DCA) was used to

evaluate the net clinical utility of the nomogram.

Function enrichment analysis and gene set
variant analysis (GSVA)

To investigate the difference in potential molecular function

and cancer-associated signaling, we analyzed the DEGs between

high-risk and low-risk groups. Then Gene Oncology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment

analyses were conducted via R packages including clusterProfiler,

org. Hs.eg.db and enrichplot. In addition, we performed GSVA to

explore the NRlncRNAs signature in KEGG and GO. “c2.

cp.kegg.v7.2. symbols.gmt” and “c5. go.v7.4. symbols.gmt”

gene sets were downloaded from the MSigDB database. The

procedure was conducted by using R packages including GSVA,

limma, GSEABase and heatmap. Adjusted p < 0.05 was

considered as statistical significance.

Immune microenvironment, immune
check-point and immune therapy
response analysis

To estimate the connection between the NRlncRNAs

signature and immune microenvironment of LUAD samples,

a gene expression matrix-based ESTIMATE algorithm was

utilized to determine the infiltration levels of stromal cells and

immune cells in tumors (Yoshihara et al., 2013). The immune

and stromal scores reflected the infiltration levels of immune cells

and stromal cells, respectively, while the ESTIMATE score was a

stroma-immune composite score. Tumor-infiltrating immune

cell dataset was obtained from TIMER2.0 (http://timer.

cistrome.org) database. We applied TIMER (Li et al., 2017),

CIBERSORT (Chen et al., 2018), QUANTIseq (Plattner et al.,

2020), MCP-counter (Dienstmann et al., 2019), xCELL (Aran

et al., 2017), and EPIC (Racle et al., 2017) algorithms to compare

immune cell abundance between high-risk and low-risk groups

based on the NRlncRNAs signature. The expression of immune

checkpoint genes between different risk groups was examined to

assess the potential effects on immunotherapy. To predict
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immunotherapy response in patients with malignant tumors,

tumor immune dysfunction and exclusion (TIDE) score (http://

tide.dfci.harvard.edu/) was calculated.

Analysis of tumor mutation burden,
prediction of the effect of chemotherapy
and target therapy

The “maftools” R package was used to analyze the tumor

mutation burden (TMB) of LUAD samples (Mayakonda et al.,

2018). By comparing TMB between high- and low-risk groups,

the top 20 genes with the highest mutation rate and their

mutation types were obtained. Then the Kaplan–Meier

survival curves were used to assess the effect of TMB on the

OS of LUAD patients. The “pRRophetic” R package was

performed to predict the IC50 of commonly used

chemotherapeutic drugs (Geeleher et al., 2014). Wilcoxon

signed-rank test was used to determine the difference between

the groups.

Consensus clustering for NRlncRNAs
signature

Unsupervised consensus clustering was conducted on

490 LUAD patients using “ConsensusClusterPlus” based on

the expression of the NRlncRNAs signature to find potential

molecular subgroups (Wilkerson and Hayes, 2010). The

“survival” and “survminer” packages were used to perform

Kaplan–Meier survival analysis between distinct clusters in R

software. Principle component analysis was performed to

explore the discrimination among different clusters and

risk groups. A Sankey diagram was plotted to display the

molecular subtypes and survival status of patients in different

risk groups. The “heatmap” R package was used to examine

the differences in molecular subtypes for diverse

clinicopathological characteristics. GSVA analysis was

performed to identify the potential KEGG pathways

associated with different clusters. TMB value, the

abundance of infiltrating immune cells, the expression of

checkpoints and drug sensitivity analysis of different

clusters were evaluated as mentioned earlier.

Cell culture

Immortalized lung epithelial cells (BEAS-2B) and lung

adenocarcinoma cells (A549/PC9) were all obtained from

American Type Culture Collection (ATCC). BEAS-2B and

A549 cells were incubated in DMEM high glucose medium

with 10% fresh fetal bovine serum. PC9 cells were incubated

in RPMI 1640 medium with 10% fresh fetal bovine serum. All

the cells were cultured in a constant-temperature incubator

(37°C, 5% CO2) for proper time to get the total RNA.

Quantitative real-time PCR (RT-qPCR)

Total RNA of cells (BEAS-2B, A549 and PC9) and tissues was

extracted by using an RNA extraction kit (Tiangen) following the

protocol. 1000ng of total RNAwas reversely transcribed and then

PCR amplification of obtained cDNA was processed by using the

kit (Cowin Bio.) and right primers. Sequences of primers we used

in this study were designed by Primer-BLAST and were listed in

supplemental table (Supplementary Table S1).

Statistical analysis

R 4.0.4 (https://www.r-project.org/) was used for all statistical

analyses. The chi-square test or Fisher’s exact test were used to

test categorical variables. On continuous variables, the t-test or

Wilcoxon test was used. Statistical significance was defined as

p < 0.05.

Results

Identification of differentially expressed
necroptosis-related LncRNAs in patients
with LUAD

In this study, 490 LUAD samples with comprehensive

clinical data were included for further analysis. A flowchart of

the study is presented in Figure 1. Firstly, we identified 67 NRGs

from previous studies (Supplementary Table S2). Then, we

analyzed the expression matrix of NRGs and lncRNAs by

performing Pearson correlation analysis and obtained

586 NRlncRNAs (Supplementary Table S3). The network of

mRNA-lncRNA co-expression showed a potential connection

of 46 NRGs and 586 NRlncRNAs (Figure 2A). Among the

586 NRlncRNAs, 249 were found to be differentially

expressed using the criteria: |logFc = 1|, FDR < 0.05

(Figure 2B). The heatmap displayed the 249 NRG-lncRNAs

expression landscape between tumor and normal tissues

(Figure 2C).

Development and validation of the
prognostic risk model

First, a total of 15 NRlncRNAs were identified as the

prognostic lncRNAs for patients with LUAD by univariate

Cox regression analysis. (Figure 3A). The expression heatmap

of 15 prognostic NRlncRNAs was presented in Figure 3B. The
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Sankey diagram showed the positive regulatory relationship

between 16 NRGs and 15 NRlncRNAs (Figure 3C). Next, we

randomly divided 490 LUAD samples into a training dataset

(n = 245) and a testing dataset (n = 245), and we performed

LASSO cox regression to select 13 NRlncRNAs for multiple

cox regression (Figures 3D,E; Supplementary Table S4).

Finally, the risk model was updated using multivariate Cox

regression analysis and included six NRlncRNAs. Risk score =

TRMT2B-AS1 * (-1.5285) + LINC01480 * (-0.7024) +

FRMD6-AS1*1.3853 + FAM83A-AS1 * 0.3043 + MED4-

AS1 * (-1.2861) + LINC01415 * 2.0938. The expression of

six NRlncRNAs between high- and low-risk groups was

presented in Supplementary Figure S1. Based on the

median risk score of the training set, we divided samples

into high-risk group and low-risk group in the training,

testing and entire datasets (Supplementary Figure S2). And

we discovered that the majority of the dead patients belonged

to the high-risk category (Supplementary Figure S2). The

expression of six NRlncRNAs in high- and low-risk groups

was shown in Figures 4A–C. Additionally, the K-M curves

indicated that patients with a high-risk score had a lower

chance of survival than patients with a low-risk score. (Figures

4D–F). NRlncRNAs To further investigate the prognosis value

of this signature, we performed the time-dependent receiver

operating characteristic (ROC) analysis. The area under curve

(AUC) values for the 1-year, 2-year, and 3-year survival rates

showed good specificity and sensitivity of this signature in

predicting OS either in the training, testing, or entire group

(Figures 4G–I). Next, we investigated whether the signature

was independent of other clinical characteristics using

univariate and multivariate cox regression analysis. The

results indicated that the risk score of our signature was

correlated with the OS and it acted as an independent

prognostic predictor for patients with LUAD (Figures

5A–F). To explore the differences in risk score among

different subgroups of patients, we discovered that male

and advanced patients had a higher risk score than female

and early-stage patients in the entire TCGA cohort (Figures

5G–I). Furthmore, the survival rate was significantly lower in

the high-risk group than in the low-risk group in the age ≥ 60

(p < 0.001), age < 60 (p = 0.033), male (p < 0.001), female (p <
0.001), stage I and stage II (p = 0.001), and stage III and stage

IV (p = 0.002) subgroups of patients, according to stratified

survival analysis in combination with clinical characteristics

(Supplementary Figure S3). Additionally, compared with

other previously identified signatures, our risk model based

on the 6 lncRNAs signature had better predictive power

(Supplementary Figure S4).

FIGURE 1
Flow diagram of the study design.
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FIGURE 2
Identification of differentially expressed necroptosisNRlncRNAs in Lung adenocarcinoma. (A) A co-expression network of the 586 NRlncRNAs-
mRNA was constructed and visualized by using “igraph” R package. (B,C). The volcano plot and heatmap showed the differentially expressed
NRlncRNAs in tumor and normal tissues.
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The signature-based nomogram score
system for predicting the prognosis of
LUAD patients

In order to create a more reliable model for prognosis

prediction, a nomogram comprised of the identified NRlncRNAs

signature and several clinical characteristics was found to be effective

for predicting 1-, 3-, and 5-year survival probabilities in the entire

dataset (Figure 6A). Furthermore, the calibration curve revealed an

accordant agreement between observation and prediction for 1-, 3-,

and 5-year OS in LUAD (Figure 6B). In addition, the nomogram

score system had superior predictive power (1-year AUC = 0.735, 3-

year AUC = 0.724, and 5-year AUC= 0.697) than the risk score, age,

gender and stage (Figures 6C–E). The DCA curves suggested that

the nomogram and risk score had good consistency in forecasting

survival rate at 1-, 3-, and 5-year (Figures 6F–H).

FIGURE 3
Construction of the NRlncRNAs signature in the TCGA. (A,B). The forest plot and heatmap showed 15 NRlncRNAs with prognostic value in
LUAD. (C). The Sankey diagram of 16 NRGs and 15 NRlncRNAs. (D,E). The LASSO coefficient and the 10-fold cross-validation for variable selection in
the LASSO model.

Frontiers in Genetics frontiersin.org07

Wu et al. 10.3389/fgene.2022.966896

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.966896


Function enrichment analysis

We performed GO and KEGG to investigate the probable

mechanisms of the NRlncRNAs signature-related genes’

expression. The results revealed that these genes were associated

with immune pathways, such as MHC class II protein complex

binding, Th17 cell or Th1 and Th2 cell differentiation, and antigen

processing and presentation. Moreover, cancer-associated biological

functions such as cell cycle, apoptosis, and glycolysis were found to

be significant in LUAD patients (Supplementary Figure S4). We

then run a GSVA enrichment analysis to delve deeper into the

underlying differences in biological characteristics that underlie the

different risk groups. As shown in Figures 7A,B, the high-risk group

had a considerable enrichment of metabolic- and necroptosis-

related pathways, such as pyruvate metabolism, glucose

metabolism, DNA replication, cell cycle and P53 signal pathway.

Tumor microenvironment, immune cell
infiltration, and immunotherapy response
of LUAD patients

As above, we discovered that the risk score was associated

with immune-associated pathways. Next, we compared the

difference in immunological state among different risk

categories. The results based on ESTIMATE algorithm

revealed that the immune and ESTIMATE scores were

lower in the high-risk group than in the low-risk group

(Figures 8A–C). The correlation examination of immune

cell infiltration in two risk groups indicated that CD4+

T cells, NK cells, and B cells were negatively regulated in

multiple algorithms, whereas neutrophil cells were positively

regulated (Figure 8D). The CD4+ Th2 cells and B cells had the

most obvious coefficient connection with the risk score

FIGURE 4
Prognosis value of the 6 NRlncRNAs model in the train, test, and entire sets. (A–C) The heatmap of six NRlncRNAs between two groups in the
train, test, and entire set, respectively. (D–F) Survival status and time of patients between two groups in the train, test, and entire set, respectively,
(G–I) The time-dependent ROC curve of patients between two groups in the train, test, and entire set, respectively.
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(Figures 8E,F; Supplementary Table S5). Then, to investigate

the difference in immunological status between the high-risk

and low-risk groups, we examined their TIDE scores,

exclusion scores, and dysfunction scores. According to the

findings, the TIDE and exclusion score were higher in the

high-risk group than in the low-risk group (Supplementary

Figure S6). Low-risk patients had a greater dysfunction score

than high-risk patients, whereas the exclusion score had the

opposite pattern (Supplementary Figure S6). These data

indicated that the high-risk group had higher immune

escape risk and poor prognosis. The different expression

of 28 immune check points between the two risk groups

showed that the expression of TNFSF4, CD276 was higher in

the high-risk group, while the other multiple checkpoints

presented higher expression in the low-risk group

(Figure 8G).

Analysis of tumor burden mutation and
drug sensitivity

Previous studies have reported that TMB plays a crucial role in

immunotherapy, chemotherapy, and target therapy responses.

Hence, we further investigated the correlation between risk

score and TMB. It showed that the high-risk group had higher

TMB than low-risk group, and the risk score was positively

correlated with TMB (Figures 9A,B). Patients with lower TMB

and higher risk score had worse prognosis (Figure 9C). According

FIGURE 5
Univariate and multivariate Cox regression analysis in the train, test, and entire set, respectively. (A–C) Univariate Cox regression analysis in the
train, test, and entire set, respectively. (D–F)Multivariate Cox regression analysis in the train, test, and entire set, respectively. (G–I)Distribution of risk
score stratified by age, gender and clinical stage in entire set.
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to the status of TP53, KRAS and EGFR, the patients with TP53 and

KRAS mutations had higher risk scores, while patients with EGFR

mutation showed lower risk scores (Figures 9D–F). The waterfall

plot presented the top 20 genes with the most mutations in

different risk groups. The high-risk group presented higher

genetic alteration rate than the low-risk group (92.28 vs.

84.19%), and TP53 and TTN were the top two genes in each

risk group (Figures 9G,H). Drug sensitivity analysis between

different risk groups showed that patients with high risk scores

were more sensitive to docetaxel, doxorubicin, erlotinib and

gefitinib et al. (Supplementary Figure S7).

Characterization of clusters in different
risk groups

To further assess the distinct molecular patterns based on the

expression of the NRlncRNAs signature, we performed

FIGURE 6
The nomogram used to predict the OS prognosis of LUAD patients at 1, 3, and 5 years. (A) A nomogram based on characteristics and clinical
information. (B). Calibration curve of nomogram. (C–E) ROC analysis of risk score, nomogram, age, gender and clinical stage predicting OS at 1, 3,
and 5 years. (F–H) The DCA of NRlncRNAs prognostic risk scores and several clinicopathological factors such as gender, age, and stage.
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FIGURE 7
Molecular characteristics of patients in the high- and low-risk groups. The GSVA analysis in the high- and low-risk group to enrich GO
characteristic gene sets (A) and KEGG gene sets (B).
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FIGURE 8
The immune landscape analysis of NRlncRNAs signature in LUAD patients. (A–C) The TME score (immune score, stromal score, and ESTIMATE
score) between different risk group. (D–F) Relationship between the NRlncRNAs risk score and immune cells infiltration. (G) The differential
expression of immune checkpoint between high- and low-risk group.
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unsupervised consensus clustering to divided patients with

different risk scores into two clusters, with k = 2 shown to be

the best for clustering stability (Figure 10A). As presented in

Figure 10B, the patients in cluster 1 had a poorer prognosis than

those in cluster 2. Furthermore, the results of PCA suggested that

clusters and risk groups can be completely distinguished (Figures

10C,D). The Sankey plot revealed the distribution of patients in

different risk groups, clusters and survival status, with cluster

1 accounting for the majority of high-risk patients (Figure 10E).

Furthermore, the heatmap presented the expression landscape of

six NRG-LncRNAs in two clusters, which indicated that two

clusters had significant differences in clinical stage, age, and

FIGURE 9
The TMB level and Somaticmutation analysis of risk score. (A)Differences of tumormutation burden (TMB) in the high-risk and low-risk groups.
(B) Relationship between TMB and risk score. (C) Survival analysis between patients with high- and low-TMB. (C) Two-factor survival analyses of risk
score and TMB levels. (D–F) Differences of risk score between different status of TP53, KRAS, and EGFR. (G,H) Landscape of top 20 mutated gene
mutation profiles between high- and low-risk group.
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survival status (Figure 10F). The GSVA results revealed that

cluster1 was associated with cell cycle, mismatch repair and some

cancer-associated pathways (Supplementary Figure S8). Similar

to the risk model, cluster 2 had a higher immune score and

ESTIMATE score (Supplementary Figure S9). The status of

multiple immune cells infiltration in two clusters exhibited

significant differences. The heatmap of the immune

infiltration landscape revealed that cluster 1 had a positive

correlation with B cells, CD4+ T cells, macrophages cells, mast

cells activated and cancer-associated fibroblasts, while it had a

FIGURE 10
Identification of two clusters based on prognostic NRlncRNAs signature. (A) Consensus clustering (K-means) algorithm was performed for
overall patients. Consensus matrix plots. K = 2 was determined as optimal clustering number. (B) K–M survival analysis in clusters C1 and C2. (C,D)
The distribution of different patients from two clusters and risk groups. (E). The Sankey diagram showed distribution of patients in different risk
groups, two clusters and survival status. (F). Heatmap of the lncRNA expression of prognostic NRlncRNAs signature between two clusters.
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negative correlation with monocytes (Supplementary Figure S9).

The expression level of these immune checkpoints, such as

TNFSF4, CD274, CD276, NRP1, TNFRSF18 was higher in

cluster 1, while the expression levels of CD44, IDO2,

HHLA2 et al. were higher in cluster 2 (Supplementary Figure

S9). The drug prediction analysis showed similar results to the

risk model. As shown in Supplementary Figure S10, cluster 1 had

a lower IC50 of gefitinib, erlotinib, docetaxel and paclitaxel.

These results revealed that individuals in cluster 1 were more

susceptible to chemotherapy and target therapy.

The expression level of six prognostic
LncRNAs

To further verify the expression of these screened lncRNAs in

lung adenocarcinoma cells, total RNA of BEAS-2B, A549, and

PC9 were extracted and real-time quantitative PCR was

conducted. Surprisingly, our results were consistent with the

database. Compared with normal lung-epithelial cells (BEAS-

2B), the expression level of LINC01415, FRMD6-AS1 and

FAM83A-AS1 was significantly higher in lung

adenocarcinoma cells (A549/PC9), while the expression level

of MED4-AS1 and LINC01480 was lower in lung

adenocarcinoma cells (Figure 11). We also detected the

expression of our signature in lung adenocarcinoma tissues

and adjacent normal lung tissues, and we obtained consistent

results with our observations in cells (Figure 12).

Discussion

Lung adenocarcinoma remains a serious health problem

worldwide with its high mortality and morbidity rates (Mao

et al., 2016). In order to improve prognosis for LUAD patients, it

is vital to identify a precise and reliable prognostic signature.

Recent studies indicated that tumor cells resistant to apoptosis

may be sensitive to the necroptosis (Su et al., 2016; He et al.,

2017), suggesting that necroptosis may be a potential therapeutic

target for lung adenocarcinoma. Besides, lncRNAs also play

important roles in tumor genesis and metastasis. Therefore, a

necroptosis-related lncRNAs signature was constructed here for

the prognosis and treatment of LUAD patients.

In this study, we first identified 15 NRlncRNAs correlated

with the OS of patients with LUAD by performing Pearson

correlation analysis and univariate Cox proportional regression

analysis. Subsequently, a signature including 6 NRlncRNAs

(TRMT2B-AS1, LINC01480, FRMD6-AS1, FAM83A-AS1,

MED4-AS1, LINC01415) was developed by LASSO analyses

and multiple cox regression. Furthermore, LUAD patients

were classified into high- and low-risk groups according to

their risk scores based on the signature. We found that

FIGURE 11
The expression level of six NRlncRNAs in BEAS-2B, A549, and PC9 cell lines. Expression of FAM83A-AS1 (A), FRMD6-AS1 (B), MED4-AS1 (C),
LINC01480 (D), and LINC01415 (E) in normal lung epithelial cells (BEAS-2B) and lung adenocarcinoma cells (A549/PC9) detected by RT-qPCR. *p <
0.05, **p < 0.01, ***p < 0.001.
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patients with high risk scores have lower probabilities of survival

than those with low risk scores. The ROC analysis showed that

our signature had significant prognostic value both in training

and testing sets and it showed superiority over previous lncRNA

signatures in predicting survival of LUAD patients. Besides, the

nomogram system based on our signature and some clinical

characteristics also showed steady predictive performance. To

sum up, our results above indicated that our NRlncRNAs

signature is a good prognostic predictor for LUAD patients.

A mount of studies illustrated the vital role of lncRNAs in

tumor progression, but the relationship between the 6 lncRNAs

and LUAD is still unclear to us. Among these 6 NRlncRNAs

included in our signature, FAM83A-AS1 was found to promote

the development of LUAD and suggesting a novel therapeutic

approach for LUAD by sponging miR-141-3p (Huang et al.,

2022). MED4-AS1 was associated with the prognostic of lung

adenocarcinoma (Tang et al., 2020b). LINC01415 was associated

with a poor prognosis in ESCC (Tang et al., 2020c). However, the

other lncRNAs have not been reported in tumors, which may

give us insight into the mechanism of development of lung

adenocarcinoma. Therefore, we performed function

enrichment analysis based on the differentially expressed

genes between different risk groups to investigate the potential

mechanism. GSVA showed that metabolism- and cell growth-

associated pathways including pyruvate metabolism, glucose

metabolism, mismatch repair, and cell cycle was observed in

the high-risk group. Nowadays, more and more studies have

found that metabolic proteome is involved in tumor

development and immune response, which is likely to be a

new target for future tumor therapy (Malireddi et al., 2020;

Liu et al., 2021). In breast cancer cells glucose deprivation

triggers ZBP1-depedent necroptosis (Yu et al., 2021). In

colorectal cancer cells, by scavenging free radicals in the

mitochondria, glucose confers resistance to 5-FU-induced

necroptosis (Zhu et al., 2021). In summary, the necroptosis-

related signature may be involved in glucose metabolism in

patients with LUAD, thereby influence the necroptosis of lung

adenocarcinoma cells, which may be an important direction for

future research in lung adenocarcinoma treatment.

Previously, a large number of studies have reported that

necroptosis is related to tumor development and immune

response (Malireddi et al., 2020; Liu et al., 2021; Yan et al.,

2022). In our study, the GO and KEGG analysis indicated that the

NRlncRNAs signature-related genes were associated with

immune pathways, especially MHC class II protein complex

binding. Previous reports indicated that MHC class II protein

FIGURE 12
The expression level of six NRlncRNAs in lung adenocarcinoma tissues and adjacent normal lung tissues. Expression of FAM83A-AS1 (A),
FRMD6-AS1 (B), MED4-AS1 (C), LINC01480 (D), and LINC01415 (E) in lung adenocarcinoma tissues and adjacent normal lung tissues detected by RT-
qPCR. *p < 0.05, **p < 0.01, ***p < 0.001.
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may be involved in the polarization of tumor-associated

macrophage (TAM) to M1 phenotype, which could inhibit the

lung cancer cells proliferation and promote the apoptosis (Yu

et al., 2021). In addition, comparing immune status among

different risk groups, we found that the high-risk group had a

higher risk of immune escape and a poorer prognosis. CD4+

T cell, NK cell, and B cells were mainly active among the high-

risk groups, some of which were closely linked to necroptosis. As

studied previously, Rac-1 related-necrotic cells could enhance

proinflammatory NK cell killing (Zhu et al., 2021). The inhibition

of RIP3 can increase the proportion of CD4+ T cells and inhibit

the secretion of inflammatory cytokines (IFN-γ, IL-16 and IL-17)
(Duan et al., 2022). These results indicated that our NRlncRNAs

signature was significantly related with tumor immune

microenvironment and it can predict the immune landscape

of patients with LUAD.

Moreover, our findings demonstrated that patients in high-risk

group had higher TMB, and the risk score was positively correlated

with TMB. Besides, patients with lower TMB and high-risk had

worse prognosis. TMB is considered a potential biomarker for

discriminating NSCLC patients who might benefit more from

immunotherapy (Pan et al., 2022). This also suggests that

patients with high risk may be more sensitive to immunotherapy.

In addition, our results showed that patients in high-risk group were

more sensitive to docetaxel, doxorubicin, erlotinib and gefitinib.

These results allowed us to select these populations that are more

sensitive to drugs and receive better treatment.

Finally, we used RT-qPCR to detect he expression of these

signature NRlncRNAs in lung adenocarcinoma cells and tissues.

Surprisingly, the results confirmed that the expression levels of

these NRlncRNAs were abnormal in LUAD, implying that these

lncRNAsmay play distinct roles in LUAD. Although our findings

shed light on the mechanisms of necroptosis in LUAD, the

limitations and flaws still exist. First, although we conducted

some experiments to validate it, additional clinical evidence is

required to confirm the findings. Second, the underlying

mechanism of NRlncRNAs in LUAD is still unknown, and

more research is needed in the future.
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