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Introduction
Long-distance intracellular transport is driven by kinesin and 

dynein motor proteins that ferry cargoes along microtubule 

tracks. A large body of work has revealed the chemomechanical 

mechanisms of motor proteins (Schliwa and Woehlke, 2003; 

Vale, 2003). However, key aspects of motor-driven transport, 

such as cargo loading/unloading, regulation of motor activity, 

and coordination of bidirectional movement, remain unknown.

It has been recognized for some time that motor protein 

activity must be tightly regulated in cells to prevent the futile 

hydrolysis of ATP. Current models suggest that only a fraction of 

Kinesin-1 inside cells is carrying cargo at any time (Hollenbeck, 

1989; Verhey et al., 1998). How is Kinesin-1 kept inactive in 

the absence of cargo? In most species, Kinesin-1 is a hetero-

tetramer of two kinesin heavy chain (KHC) and two kinesin light 

chain (KLC) polypeptides. Purifi ed Kinesin-1 can exist in two 

conformations in vitro, depending on ionic concentration, that 

correlate with the activity of Kinesin-1–folded molecules are 

thought to be inactive for microtubule-based motility, whereas 

extended molecules are thought to be active. The folded con-

formation enables an autoinhibitory interaction of the KHC 

C-terminal tail with the KHC N-terminal motor (for reviews see 

Verhey and Rapoport, 2001; Adio et al., 2006). The actin-based 

motor myosin Va undergoes a similar conformational change 

that correlates with activity (Liu et al., 2006; Thirumurugan 

et al., 2006). Thus, autoinhibition may be a general mechanism 

for the regulation of cytoskeletal motor proteins.

Several lines of evidence suggest that regulation of Kinesin-1 

in vivo may be more complex. For example, the motor activity 

of native, purifi ed Kinesin-1 is typically 10 times less than that 

of recombinant protein (Hackney et al., 1991; Hancock and 

Howard, 1998). In addition, the intramolecular association be-

tween the N- and C-terminal domains of Kinesin-1 comprises 

low-affi nity interactions in vitro (Stock et al., 1999). Thus, the 

mechanisms of Kinesin-1 autoinhibition and activation in vivo 

remain unclear.

To build a structural model of the spatial and molecular 

relationships within Kinesin-1 in intact cells, we used a quanti-

tative fl uorescence resonance energy transfer (FRET) approach 

(Wallrabe and Periasamy, 2005). We show that FRET stoichi-

ometry (Hoppe et al., 2002), which is a method for measuring 

both FRET effi ciency and the fraction of interacting fl uorescent 

protein (FP) molecules, reveals conformational states of Kinesin-1 

in living cells. Specifi cally, we show that two conformational 

Kinesin-1 structural organization and 
conformational changes revealed by FRET 
stoichiometry in live cells

Dawen Cai,1,2 Adam D. Hoppe,3 Joel A. Swanson,3 and Kristen J. Verhey2

1Biophysics Research Division, 2Department of Cell and Developmental Biology, and 3Department of Microbiology and Immunology, University of Michigan, 
Ann Arbor, MI 48109

 K
inesin motor proteins drive the transport of cellular 

cargoes along microtubule tracks. How motor pro-

tein activity is controlled in cells is unresolved, but it 

is likely coupled to changes in protein conformation and 

cargo association. By applying the quantitative method 

fl uorescence resonance energy transfer (FRET) stoichiom-

etry to fl uorescent protein (FP)–labeled kinesin heavy 

chain (KHC) and kinesin light chain (KLC) subunits in live 

cells, we studied the overall structural organization and 

conformation of Kinesin-1 in the active and inactive states. 

Inactive Kinesin-1 molecules are folded and autoinhibited 

such that the KHC tail blocks the initial interaction of the 

KHC motor with the microtubule. In addition, in the inac-

tive state, the KHC motor domains are pushed apart by 

the KLC subunit. Thus, FRET stoichiometry reveals confor-

mational changes of a protein complex in live cells. For 

Kinesin-1, activation requires a global conformational 

change that separates the KHC motor and tail domains 

and a local conformational change that moves the KHC 

motor domains closer together.

Correspondence to Kristen J. Verhey: kjverhey@umich.edu

Abbreviations used in this paper: DTNB, 3-carboxy-4-nitrophenyl disulfi de 
6,6‘-dinitro-3,3′-dithiodibenzoic acid bis(3-carboxy-4-nitrophenyl) disulfi de; FP, 
fl uorescent protein; FRET, fl uorescence resonance energy transfer; KHC, kinesin 
heavy chain; KLC, kinesin light chain; mCit, monomeric Citrine; TPR, tetratrico-
peptide repeat; SLO, streptolysin O.

The online version of this article contains supplemental material.



JCB • VOLUME 176 • NUMBER 1 • 2007 52

changes occur when Kinesin-1 is activated for interaction with 

microtubule tracks. First, we show for the fi rst time in intact 

cells that inactive Kinesin-1 is folded in an autoinhibitory 

conformation, whereas active Kinesin-1 molecules are in a 

more extended conformation. Second, we describe a novel con-

formational change in which the two motor domains are pushed 

apart in the inactive molecule and brought closer together for 

productive interactions with the microtubules. This novel local 

conformational change contrasts with what was predicted based 

on the crystal structure of dimeric Kinesin-1 motors (Kozielski 

et al., 1997).

Results
FP fusions to KHC and KLC
To analyze the structure of Kinesin-1 in living cells by FRET, 

donor (monomeric ECFP [mECFP]) and acceptor (monomeric 

Citrine [mCit]) FPs were fused to the N and/or C termini of both 

KHC and KLC (Fig. 1 A). COS cells were chosen for their fl at 

morphology and because their low levels of endogenous Kinesin-1 

are unlikely to interfere with formation of donor–acceptor FP 

complexes (Fig. S1 A, available at http://www.jcb.org/cgi/ 

content/full/jcb.200605097/DC1; unpublished data). Only cells 

expressing low-to-medium levels of FP proteins were chosen 

for data analysis to avoid artifacts caused by protein aggrega-

tion and ATP-independent microtubule interactions (Fig. S1 B). 

FRET stoichiometry (which is discussed in the following two 

paragraphs) and coimmunoprecipitation (Fig. S1 A) experi-

ments verifi ed that FP fusions to KHC and KLC did not alter 

their interactions.

FP-KHC and -KLC expressed in COS cells demonstrated 

similar localization patterns to those described previously for 

other tagged Kinesin-1 motors (Fig. S1 B). Because steady-

state fl uorescence patterns do not indicate the activity of kinesin 

motors, we developed an assay to delineate between active and 

inactive motors in vivo. To do this, we took advantage of the 

ability of the nonhydrolyzable ATP analogue AMPPNP to block 

the release of active kinesin motors from microtubules (Kawaguchi 

and Ishiwata, 2001). Live cells were transiently permeabilized 

with low levels of the bacterial toxin streptolysin O (SLO), 

and active FP-Kinesin-1 motors were trapped on microtubules 

by the addition of AMPPNP. FP-Kinesin-1 (e.g., mCit-KHC + 

HA-KLC; Fig. 1 B, column 1) did not become trapped on 

 microtubules, but remained diffuse and cytosolic upon addition 

of AMPPNP, indicating that the Kinesin-1 holoenzyme is in an 

inactive state in vivo. In contrast, in cells expressing FP-KHC 

Figure 1. Localization and activity of FP-tagged Kinesin-1 in COS cells. (A, left) Schematic diagram of KHC (red) and KLC (orange) domain structure and 
positions of the epitope and FP tags. (right) Current model of Kinesin-1 structural organization. Red ovals, KHC motor domains; Red triangles, KHC tail 
 domains; yellow rectangles, mCit; cyan rectangles, mECFP. (B) Live-cell microtubule-binding assay. Cells expressing the indicated KHC and/or KLC constructs 
were transiently permeabilized with SLO, and then AMPPNP was added. Shown is the mCit channel of videos taken during permeabilization (0 min) and 
the indicated time points after AMPPNP addition. Bar, 10 μm.



FRET STOICHIOMETRY OF KINESIN-1 IN LIVE CELLS • CAI ET AL. 53

alone (e.g., mCit-KHC; Fig. 1 B, column 2), the motor rapidly 

accumulated on microtubules after exposure to AMPPNP, indi-

cating that the KHC subunit exists in an active state in vivo.

Several lines of evidence verify that FP-KHC alone is 

capable of ATP-dependent microtubule motility, and thus rep-

resents the Kinesin-1 active state. First, single molecule mo-

tility assays demonstrate that FP-KHC molecules are capable 

of microtubule-based motility in vitro (Fig. S1 C). Second, re-

moval of the cryptic ATP-independent microtubule-binding site 

in the KHC tail (KHC[1–891]) resulted in a KHC molecule that 

retained ATP-dependent microtubule binding (Fig. 1 B, mCit-

KHC[1–891]). Third, this microtubule localization was caused 

by direct interaction between the KHC motor domain and the 

microtubules because FRET between mCit-KHC(1–891) and 

mECFP-tubulin increased after addition of AMPPNP (Fig. S4). 

Fourth, mutation of the microtubule-binding site in the KHC 

motor domain (∆loop12 mutation; Woehlke et al., 1997) aboli-

shed the ability of FP-KHC to be locked in a microtubule-

bound state after addition of AMPPNP (Fig. 1 B, mCit-

KHC[1–891]/∆loop12). Collectively, these results indicate that 

KHC homodimers are active for microtubule binding and motility, 

whereas the complete Kinesin-1 holoenzyme (KHC + KLC) 

remains inactive and predominantly in the cytosol. In addition, 

these results validate the use of fl uorophore-tagged subunits to 

study Kinesin-1 structure and function in vivo.

FRET stoichiometry reveals conformational 
changes in Kinesin-1 in live cells
For FRET stoichiometry of Kinesin-1, various combinations of 

KHC and KLC FRET pairs were cotransfected into COS cells, 

and 24 h later the data were collected on a wide-fi eld fl uores-

cence microscope calibrated for FRET stoichiometry. FRET 

stoichiometry uses three fl uorescence images from a calibrated 

microscope to calculate three parameters that describe each 

pixel (Fig. S2, available at http://www.jcb.org/cgi/content/full/

jcb.200605097/DC1; Hoppe et al., 2002; Beemiller et al., 2006): 

(a) RM, the mole ratio of acceptor- to donor-labeled proteins, 

(b) EA, the apparent acceptor FRET effi ciency (FRET effi ciency × 

fraction of acceptor molecules in complex), and (c) ED, the ap-

parent donor FRET effi ciency (FRET effi ciency × fraction of 

donor molecules in complex). EA and ED range between 0 and 

100%, where 100% indicates all acceptor and donor molecules 

Figure 2. FRET monitors conformational changes in Kinesin-1 in live cells. (A) Schematic diagram of the linked mCit-16aa-mECFP calibration molecule, as 
well as FP-KHC and -KLC constructs. Yellow rectangles, mCit; cyan rectangles, mECFP. (B and D) FRET stoichiometry under different ionic conditions. COS 
cells expressing mCit-KHC-mECFP + Myc-KHC + HA-KLC (B) or the mCit-16aa-mECFP (D) calibration molecule were imaged (−1 min), permeabilized with 
SLO (0 min), kept in physiological salt buffer (low ion) for 5 min, and supplemented with high salt (6 min). Shown are the images collected as fl uorescence 
(IF, top), mCit/mECFP molar ratio (RM, middle), and FRET effi ciency (EAVE, bottom). High salt causes a conformational change in KHC + KLC (B), but not 
in mCit-16aa-mECFP (D). Bars, 10 μm. (C) Quantifi cation of FRET effi ciency for cells expressing mCit-KHC-mECFP + Myc-KHC + HA-KLC (left; n = 5) or 
the mCit-16aa-mECFP molecule (right; n = 8) under physiological salt (open bars) and high salt (hatched bars) conditions. Data are the mean ± the SD. 
*, P < 0.001.
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in the FRET complex and with complete energy transfer. 

 Because protein expression levels infl uence the fraction of donor 

or acceptor molecules in FRET complex for nonlinked mole-

cules, we analyzed cells with RM close to 1.0 and we calculated 

an average FRET effi ciency, EAVE = (ED + EA)/2, which is less 

sensitive to expression ratio (Beemiller et al., 2006). For the 

control calibration molecule, mECFP-16aa-mCit, EAVE ≈ 37% 

(Fig. 2 B). 

Because the subunits of Kinesin-1 interact with very high 

affi nity and are of known stoichiometry, changes in EAVE should 

refl ect structural changes in the Kinesin-1 molecule. Modeling 

the spatial arrangements between the FP and the KHC motor 

domain based on crystal structures supports this assumption, as 

the short linker sequences (4 or 5 aa) limit the fl exibility of the 

FP (Fig. S1 D). To verify that FRET stoichiometry can detect 

conformational changes in Kinesin-1 in live cells, we obtained 

FRET effi ciencies under ion concentrations known to induce 

Kinesin-1 conformational changes in vitro (Hackney et al., 

1992). To monitor Kinesin-1 motor-to-tail FRET, FRET pairs 

were placed on the N and C termini of the same KHC polypep-

tide (mCit-KHC-mECFP; Fig. 2 A). Coexpression with Myc-

KHC was required to prevent aggregation of the four FPs in the 

KHC homodimer (Fig. S3, available at http://www.jcb.org/cgi/

content/full/jcb.200605097/DC1). COS cells expressing mCit-

KHC-mECFP + Myc-KHC + HA-KLC (Fig. 2 B) were tran-

siently permeabilized with SLO under physiological salt 

conditions (I ≈ 0.15). After 5 min, the cells were exchanged 

into high ionic strength buffer (I ≈ 0.8). High motor-to-tail 

FRET effi ciencies were observed before permeabilization 

(EAVE = 11.5 ± 1.9%; Fig. 2 B, EAVE), indicating a close asso-

ciation of the KHC motor and tail regions. FRET remained high 

during permeabilization at physiological ionic strength (Fig. 2, B 

[EAVE] and C); however, high ionic strength buffer resulted in a 

rapid and signifi cant decrease in FRET effi ciency (EAVE = 4.0 ± 

1.1%; Fig. 2, B [EAVE] and C). COS cells expressing the 

mCit-16aa-mECFP calibration molecule exposed to the same 

conditions showed no signifi cant change in FRET effi ciency 

(EAVE = 37.8 ± 2.1% at physiological ionic strength and 37.4 ± 

1.8% at high ionic strength; Fig. 2, C and D [EAVE]). Note that 

RM remained constant in both cases, indicating negligible dif-

ferences in acceptor and donor photobleaching. These results 

indicate that Kinesin-1 is folded (high motor-to-tail FRET) at 

physiological ionic strength, but is more extended (low motor-

to-tail FRET) under high ionic strength conditions. Thus, FRET 

stoichiometry can detect conformational changes in Kinesin-1 

in living cells.

Structural relationships within inactive 
Kinesin-1 molecules
To probe the overall structure of inactive Kinesin-1 in vivo, FP-

labeled KHC and KLC were coexpressed in COS cells. We fi rst 

measured FRET effi ciencies for FRET pairs located on the KHC 

subunit (Fig. 3 A, 1–4). For the KHC motor-to-tail relationship, 

higher FRET effi ciencies were obtained for FRET pairs on the 

same KHC polypeptide (EAVE = 12.4 ± 1.0% for mCit-KHC-

mECFP + Myc-KHC + HA-KLC; Fig. 3 A, 1) than for FRET 

pairs on separate KHC polypeptides (EAVE = 4.8 ± 0.5% for 

mCit-KHC + KHC-mECFP + HA-KLC; Fig. 3 A, 2). Although 

these data cannot distinguish the relationship between each 

 motor and its tail domain because of differences in fraction of FP 

protein in complex and orientation of the FPs, these FRET effi -

ciencies demonstrate that inactive Kinesin-1 molecules are in a 

folded conformation in vivo. For KHC motor-to-motor mea-

surements, the FRET effi ciency was low (EAVE = 2.4 ± 0.5%; 

Fig. 3 A, 3), suggesting that the KHC N-terminal motor domains 

are separated in the inactive molecule. In contrast, for KHC tail-

to-tail measurements, the FRET effi ciency was higher (EAVE = 

8.6 ± 0.9%; Fig. 3 A, 4) indicating that the KHC C-terminal tail 

domains are relatively close together in vivo.

We next measured FRET effi ciencies within inactive 

 Kinesin-1 molecules for FRET pairs located on the KLC subunit 

(Fig. 3 A, 5–7). Little to no FRET was detected between the 

N and C termini of KLC (EAVE = 0.2 ± 0.1%; Fig. 3 A, 5), indicat-

ing that the KLC subunit is in an extended conformation. Low 

FRET effi ciencies obtained for the C termini of KLC indicate 

that these regions are separated (EAVE = 2.3 ± 0.4%; Fig. 3 A, 6), 

whereas the higher FRET effi ciencies obtained for the N 

termini of KLC indicate that these regions are in close  proximity 

(EAVE = 11.2 ± 1.7%; Fig. 3 A, 7), presumably because of 

 dimerization via the heptad repeats.

Finally, we measured FRET effi ciencies within inactive 

Kinesin-1 molecules for FRET pairs located on both the KHC 

and KLC subunits (Fig. 3 A, 8–11). Moderate FRET effi cien-

cies between the C terminus of KLC and either the N terminus 

of KHC (EAVE = 5.8 ± 0.5%; Fig. 3 A, 8) or the C terminus of 

KHC (EAVE = 6.4 ± 0.4%; Fig. 3 A, 9) suggest that the KLC 

C terminus is in close proximity to both the KHC motor and tail 

domains. In contrast, negligible FRET effi ciencies were ob ser-

ved between the N terminus of KLC and either the N terminus 

of KHC (EAVE = 0.4 ± 0.1%; Fig. 3 A, 10) or the C terminus of 

KHC (EAVE = 0.6 ± 0.3%; Fig. 3 A, 11). This suggests that the 

N terminus of the KLC subunit is close to the region in the KHC 

stalk that allows folding. These data also indicate that the KLC 

subunits lie in a direction parallel to the KHC subunits 

(N’ to N’ and C’ to C’; Fig. 1 A). Collectively, these results support 

the overall structure of Kinesin-1 gleaned from various in vitro 

experiments (Vale, 2003) and demonstrate that inactive Kinesin-1 

molecules are in a folded conformation in intact cells.

Structural relationships within active 
Kinesin-1 molecules
To probe the structure of active Kinesin-1 in vivo, we measured 

FRET effi ciencies from combinations of FP-KHCs expressed 

in COS cells (Fig. 3 B). FRET effi ciencies from KHC mole-

cules accumulated at the cell periphery in highly expressed 

cells (Fig. 3 B, 1–4) were very high (EAVE > 20%), regardless 

of FP position, and correlated with fl uorescence intensities 

(Fig. S2 C), indicating that intermolecular FRET occurs be-

tween crowded KHC molecules accumulated at the plus ends of 

the microtubules. FRET effi ciencies for FP-KHC molecules lo-

calized in the rest of the cell (Fig. 3 B, 5–8) remained constant 

despite variations in fl uorescence intensity (Fig. S2 C), suggest-

ing that these FRET measurements represent only intramolecular 

FRET. Thus, we only collect data from these regions or from 
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cells with low-to-medium expressions to avoid artifacts caused 

by KHC accumulation.

For KHC motor-to-tail measurements, moderate FRET 

effi ciencies were obtained for FRET pairs on the same KHC 

polypeptide (EAVE = 7.9 ± 1.5%; Fig. 3 B, 5) and on separate 

KHC polypeptides (EAVE = 4.7 ± 1.0%; Fig. 3 B, 6), indicating 

that the motor and tail domains of KHC remain in relatively 

close proximity upon activation. Moderate FRET effi ciencies 

were also obtained for KHC motor-to-motor FRET pairs (EAVE = 

6.1 ± 1.2%; Fig. 3 B, 7) indicating that the two motor  domains 

are in close proximity, as expected for active Kinesin-1. FRET 

effi ciencies obtained for KHC tail-to-tail FRET pairs (EAVE = 

8.3 ± 2.8%; Fig. 3 B, 8) indicate that the KHC tails are also in 

close proximity.

Figure 3. Structural organization of inactive and active Kinesin-1 in live COS cells. (A) FRET stoichiometry of inactive Kinesin-1 (KHC + KLC). (top left) 
Representative fl uorescence image. (top right) The white boxed area of the image was enlarged, binned, and threshold-masked for FRET stoichiometry. 
For 1–11, the FRET pair being analyzed is indicated on the top, the transfected constructs are shown schematically in the middle left, and the calculated 
FRET effi ciencies (EAVE) and n values are indicated on the bottom. The cartoon illustration on the right side of each panel indicates the interpreted structure 
of Kinesin-1 based on the measured FRET effi ciencies. In 1 and 2, the black-lined motor and tail domains are from the same KHC polypeptide chain. 
(B) FRET stoichiometry of active Kinesin-1 (KHC alone). (top left) Representative fl uorescence image. (top right) Enlarged, binned, and threshold-masked re-
gion for FRET stoichiometry that distinguishes molecules accumulated in the cell periphery (red region in top right and red numbers in 1–4) from molecules 
soluble in the rest of the cell (blue region in top right and blue numbers in 5–11). For 1–8, the FRET pair being analyzed is indicated at the top, the trans-
fected constructs are shown schematically in the center, and the n values are indicated at the bottom. The measured FRET effi ciencies and interpreted 
 Kinesin-1 structures are indicated on the left for KHC molecules accumulated at the microtubule plus ends (1–4) and on the right for KHC molecules soluble 
in the cell (5–8). For 9–11, the data are presented as in A. Microtubules are represented as light green (β-tubulin) and light gray (α-tubulin) rod shapes. 
“+” and “−” signs represent the plus and minus ends of the microtubules. Yellow rectangles, mCit; cyan rectangles, mECFP. Data are the mean ± the 
SD. Bars, 10 μm. 
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To compare the structure of KHC motor domains engaged 

with microtubules with those in cytosol, FRET effi ciencies were 

measured for KHC molecules forced on or off the microtubules. 

FP-KHC(1–891) was forced to remain on the microtubule by ad-

dition of AMPPNP (Fig. 3 B, 9) or was prevented from binding to 

microtubules by mutation of the microtubule-binding site in the 

motor domain (∆loop12 mutation; Fig. 3 B, 10; Woehlke et al., 

1997). Similar motor-to-motor FRET effi ciencies were obtained 

for microtubule-bound and unbound motors (EAVE = 6.7 ± 1.6% 

and 6.4 ± 0.6%, respectively). These results indicate that KHC 

motor domains in active molecules likely stay in close proximity 

regardless of whether they are on or off the microtubules.

Two conformational changes in Kinesin-1
To identify conformational changes within Kinesin-1 upon acti-

vation, we compared the FRET effi ciencies of inactive (KHC + 

KLC; Fig. 3 A) and active (KHC alone; Fig. 3 B) molecules. 

KHC motor-to-tail FRET pairs on the same KHC polypeptide 

had higher FRET effi ciency in the presence (EAVE = 12.4 ± 

0.1%) than in the absence (EAVE = 7.9 ± 1.5%) of KLC. This 

difference is statistically signifi cant (P < 0.001; Table I) and in-

dicates a smaller distance between the KHC motor and tail do-

mains in the inactive state. This global conformational change 

(Fig. 4, green arrows) likely displaces the KHC tail from the 

KHC motor domains for Kinesin-1 activation. 

For KHC motor-to-motor FRET pairs, a lower FRET effi -

ciency was observed in the presence (EAVE = 2.4 ± 0.5%) than 

the absence (EAVE = 6.1 ± 1.2%) of KLC. This difference is 

statistically signifi cant (P < 0.001; Table I) and indicates a 

larger distance between the two KHC motor domains in the in-

active state. That the two KHC motor domains are pushed apart 

in the inactive holoenzyme was surprising because crystallog-

raphy and 3D cryoelectron microscopy suggested that the motor 

domains of truncated KHC molecules are closer together when 

free in solution than when engaged with a microtubule (Marx 

et al., 2006). A local conformational change (Fig. 4, blue arrows) 

upon activation is, thus, likely required to position the motor 

domains for processive motility.

To confi rm that the two KHC motor domains are pushed 

apart in the inactive state, we tested biochemically whether the 

KHC neck coiled-coil segments are closer together in the active 

state (absence of KLC) than in the inactive state (presence of 

KLC). A Cys residue was introduced into the neck coiled 

coil of a Cys-lite version of KHC (KHC[Cys344]; Fig. 5 A) 

at a position accessible to cross-linker, but demonstrated to 

have no effect on the motile properties of the truncated KHC 

 (Tomishige and Vale, 2000). When COS cell lysates expressing 

KHC(Cys344) in the absence of KLC (i.e., active Kinesin-1) 

were treated with the cross-linker 3-carboxy-4-nitrophenyl 

Figure 4. Conformational changes upon Kinesin-1 activation. Inactive 
 Kinesin-1 (left) is in a folded conformation such that the KHC motor and tail do-
mains are in close proximity (green arrow), but the KHC motor domains are 
pushed apart from each other (blue arrow). Upon activation (right), the KHC 
motor and tail domains are more widely separated (green arrow), whereas 
the KHC motor domains come closer together (blue arrow). Microtubules are 
represented as light green (β-tubulin) and light gray (α-tubulin) rod shapes. 
“+” and “−” signs represent the plus and minus ends of the microtubules.

Table I. t test comparing FRET effi ciencies of inactive and active Kinesin-1

Comparison Expression EAVE Fig. P

%

Motor to same tail Inactive Kinesin-1 (KHC+KLC) mCit-KHC-mECFP
 + Myc-KHC
 + HA-KLC

12.4 ± 1.0 3 A, 1 <0.001

Active Kinesin-1 (KHC only) mCit-KHC-mECFP
 + Myc-KHC

7.9 ± 1.5 3 B, 5

Motor to other tail Inactive Kinesin-1 (KHC+KLC) mCit-KHC
 + KHC-mECFP
 + HA-KLC

4.8 ± 0.5 3 A, 2 >0.5

Active Kinesin-1 (KHC only) mCit-KHC
 + KHC-mECFP

4.7 ± 0.1 3 B, 6

Motor to motor Inactive Kinesin-1 (KHC+KLC) mCit-KHC
 + mECFP-KHC
 + HA-KLC

2.4 ± 0.5 3 A, 3 <0.001

Active Kinesin-1 (KHC only) mCit-KHC
 + mECFP-KHC

6.1 ± 1.2 3 B, 7

Tail to tail Inactive Kinesin-1 (KHC+KLC) KHC-mCit
 + KHC-mECFP
 + HA-KLC

8.6 ± 0.9 3 A, 4 >0.5

Active Kinesin-1 (KHC only) KHC-mCit
 + KHC-mECFP

8.3 ± 2.8 3 B, 8
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 disulfi de 6,6′-dinitro-3,3′-dithiodibenzoic acid Bis(3-carboxy-4-

nitrophenyl) disulfi de (DTNB), nearly all of the KHC(Cys344) 

was rapidly cross-linked as indicated by a shift to a slower mo-

bility form (Fig. 5 B, lanes 2–5). In contrast, in the presence 

of KLC (i.e., inactive Kinesin-1), little to no cross-linking of 

KHC(Cys344) was observed (Fig. 5 B, lanes 7–9). Incubation 

in the presence of DTNB for long periods of time resulted in 

cross-linking of KHC(Cys344) + KLC (Fig. 5 B, lane 10), pre-

sumably caused by “breathing” of the Kinesin-1 holoenzyme. 

These results confi rm that the KHC neck coiled coil is more 

separated in the inactive state than in the active state.

Contribution of the KHC tail domain 
to Kinesin-1 autoinhibition
The KHC globular tail domain has been implicated in contribut-

ing to both the folded conformation and autoinhibition of KHC 

in vitro (Coy et al., 1999; Friedman and Vale, 1999; Hackney 

and Stock, 2000). In particular, a conserved stretch of residues 

in the KHC tail domain (the IAK region) is critical for autoinhi-

bition of motor activity in vitro (Hackney and Stock, 2000). To 

determine whether the KHC tail and/or the IAK region play a 

role in autoinhibition or conformational changes in the Kinesin-1 

holoenzyme in vivo, we expressed truncated (KHC[1–891]) 

and mutated (KHC[∆IAK]) versions of KHC in COS cells. 

KHC(1–891) + KLC did not localize to microtubules or accu-

mulate at the cell periphery at steady state, but became locked 

on microtubules upon exposure of permeabilized cells to 

AMPPNP (Fig. 6, A [left] and B). The microtubule-bound state 

of KHC(1–891) + KLC refl ects a direct interaction between the 

motor domain of KHC(1–891) and the microtubule because 

FRET effi ciency between the mCit-KHC(1–891) motor domain 

and mECFP-tubulin signifi cantly increased upon AMPPNP 

 addition (Fig. S4, available at http://www.jcb.org/cgi/content/full/

jcb.200605097/DC1). Like the tail-truncated molecules, Myc-

KHC(∆IAK) + mCit-KLC molecules were capable of micro-

tubule binding (locked on microtubules with AMPPNP; Fig. S5, 

D and E), but not processive motility (did not accumulate at 

ends of microtubules; Fig. 6 C). These results indicate that re-

moval of the KHC tail, or mutation of the IAK region, results in 

a Kinesin-1 holoenzyme that is active for microtubule binding, 

in contrast to KHC + KLC (Fig. 6, A [right] and B). Thus, the 

IAK segment of the KHC tail plays an important role in auto-

inhibition in vivo, specifi cally in preventing the microtubule 

 association of Kinesin-1.

To test whether activation of Kinesin-1 by mutation of 

the IAK segment results in a global conformational change in 

Kinesin-1, we measured motor-to-tail FRET for FRET pairs on 

the same KHC(∆IAK) polypeptide (Fig. 6, C–E). High FRET 

effi ciencies were obtained for KHC(∆IAK) + KLC molecules in 

the absence of AMPPNP (EAVE = 14.4 ± 1.8%, Fig. 6, C–E), 

which is similar to wild-type Kinesin-1 (KHC + KLC) mole-

cules with the same labeling (EAVE = 12.4 ± 1.0%; Fig. 3 A, 1), 

and no change (P > 0.5) was detected upon addition of AMPPNP 

(EAVE = 14.5 ± 2.2%; Fig. 6, C–E). Thus, despite a statistically 

signifi cant difference (0.001< P <0.01) in the Relocation In-

dex of KHC(∆IAK) + KLC (Fig. 6 E, red), no difference in the 

motor-to-tail spatial relationship (Fig. 6 E, black) was detected 

(0.1< P <0.5), even after 30 min of exposure to AMPPNP.

We next looked for a local conformational change in active 

KHC(∆IAK) + KLC molecules by measuring motor-to-motor 

FRET (Fig. 6, F–H). Low FRET effi ciencies were obtained in 

the absence of AMPPNP (EAVE = 2.5 ± 1.5%; Fig. 5, F–H), 

similar to the values obtained for wild-type Kinesin-1 (EAVE = 

2.4 ± 0.5%; Fig. 3 A, 3), and no change (P > 0.5) was detected 

after 10 min of AMPPNP exposure (EAVE = 3.1 ± 0.1%; 

Fig. 6, F–H). Interestingly, if left in the presence of AMPPNP 

for 30 min, KHC(∆IAK) + KLC molecules showed a statistically 

sig nifi cant (P < 0.001) increase in motor-to-motor FRET (EAVE = 

5.7 ± 0.7%; Fig. 6 H, black). This may refl ect the ability of 

 Kinesin-1 motors to exist in single- and double-headed binding 

states in the presence of AMPPNP, with the double-headed state 

predominating at low load in vitro (Kawaguchi and Ishiwata, 

2001) and after prolonged incubation in vivo.

Collectively, these results indicate that the IAK inhibitory 

region plays an important role in Kinesin-1 autoinhibition in 

vivo by preventing the microtubule association of inactive 

 Kinesin-1 molecules. The IAK inhibitory region does not, 

 however, contribute to the autoinhibited conformation in vivo 

Figure 5. The KHC motor/neck domains are separated in the inactive 
molecule by the presence of KLC. (A) Schematic diagram of mECFP-tagged 
KHC(Cys344) and KLC in the Kinesin-1 holoenzyme. (B) Lysates of COS 
cells expressing KHC(Cys344) alone (left) or with KLC (right) were treated 
with the cross-linker DTNB for the indicated times. Cross-linking was 
stopped by the addition of SDS-PAGE sample buffer, and the lysates were 
run on nonreducing SDS PAGE gels, transfered to nitrocellulose, and Western 
blotted with an antibody to FP tag. The size of molecular weight markers 
(in kiloDaltons) is indicated on the left of the gel. 
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because mutant Kinesin-1 molecules remained tightly folded 

with the motor domains pushed apart. Thus, other parts of the 

Kinesin-1 molecule must be required for generating the folded 

conformation and for keeping the motor domains pushed apart 

in the absence of cargo.

Contribution of the KLC subunit 
to Kinesin-1 autoinhibition
The KLC subunit contributes to both the folded conformation of 

Kinesin-1 and to the separation of the KHC motor domains 

(Fig. 4). To determine the regions of KLC that contribute to 

Figure 6. The KHC tail domain contributes to autoinhibition of Kinesin-1, but not conformational changes. (A) Live-cell microtubule-binding assay. mCit fl uo-
rescence images of COS cells expressing Myc-KHC + KLC-mCit (right) or Myc-KHC(1–891) + KLC-mCit (left) before permeabilization (top) and after 
10 min in the presence of AMPPNP (bottom). (B) Quantifi cation of microtubule binding for Myc-KHC + FP-KLC (red bars; n = 13) or Myc-KHC(1–891) + FP-KLC 
(blue bars; n = 11) before (open bars) and 20 min after addition of AMPPNP (hatched bars). Motor-to-tail (C–E) and motor-to-motor (F–H) FRET stoichi-
ometry of ∆IAK molecules before and after addition of AMPPNP. (C and F) Shown are the images collected as fl uorescence (IF, top row), ratio (RM, middle 
row), and FRET effi ciency (EAVE, bottom row). (D and G) FRET pair being analyzed (top center) and schematic of transfected constructs (middle center). Left 
sides indicate measured FRET effi ciencies, n values, and illustration of interpreted FRET results before the addition of AMPPNP, whereas the right sides indi-
cate the same for after addition of AMPPNP. (E and H) Time course of change in FRET effi ciency (EAVE, black line) and Relocation Index (red line). Data are 
the mean ± the SD. Bars, 10 μm. 
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 autoinhibition in vivo, we used a truncated version of KLC 

(KLC[1–176]) that lacks the tetratricopeptide repeat (TPR) 

 motifs required for cargo binding, but retains the heptad repeats 

required for association with KHC (Verhey et al., 1998). 

FP-KHC + FP-KLC(1–176) localized to the cytosol at steady-state 

and after exposure of cells to AMPPNP, similar to wild-type 

Kinesin-1 (Fig. S5, D and E), indicating that the heptad repeat 

region of KLC is suffi cient for autoinhibition. This is likely 

caused by the ability of the KLC heptad repeats to maintain the 

folded conformation (Fig. 7 B, top), as no statistically signifi -

cant difference was seen (0.1 < P < 0.5) in the motor-to-tail 

FRET effi ciency of mCit-KHC-mECFP + KLC(1–176) (EAVE = 

12.1 ± 0.7%; Fig. 7 A, 2) when compared with that of wild-type 

Kinesin-1 (mCit-KHC-mECFP + KLC, EAVE = 12.4 ± 1.0%; 

Fig. 7 A, 1). 

We next looked for a local conformational change in KHC + 

KLC(1–176) molecules by measuring KHC motor-to-motor 

FRET (Fig. 7 A, 3–6). Signifi cantly higher FRET effi ciencies 

(P < 0.001) were obtained for FP-KHC + KLC(1–176) (EAVE = 

5.3 ± 0.5%; Fig. 7 A, 4) than for wild-type Kinesin-1 (EAVE = 

2.4 ± 0.5%; Fig. 7 A, 3), indicating that the KHC motor do-

mains are closer together when the KLC TPR motifs are re-

moved (Fig. 7 B, bottom). To test whether the KHC tail domains 

also play a role in separating the motor domains, we compared 

the motor-to-motor relationships of molecules containing trun-

cations of KLC, KHC, or both. KHC motors that are incapable 

of binding to microtubules (KHC[1–891]/∆loop 12 mutant) 

were used to eliminate potential effects that microtubule bind-

ing may have on motor-to-motor distances. Truncation of the 

KHC tail domain (KHC[1–891]/∆loop12 + KLC) caused no 

signifi cant change (P > 0.5) in motor-to-motor FRET when 

compared with wild-type Kinesin-1 molecules (KHC + KLC; 

EAVE = 2.3 ± 0.8%; Fig. 7 A, 5, vs. EAVE = 2.4 ± 0.5%; Fig. 

7 A, 3, respectively) and a small increase (0.01 < P < 0.02) in 

motor-to-motor FRET when compared with KLC-truncated 

 Kinesin-1 molecules (EAVE = 6.2 ± 1.9%; Fig. 7 A, 6 vs. EAVE = 

5.3 ± 0.5%; Fig. 7 A, 4). In contrast, truncation of KLC caused 

a signifi cant change (P < 0.001) in motor-to-motor FRET when 

compared with either wild-type Kinesin-1 molecules (EAVE = 

5.3 ± 0.5%; Fig. 7 A, 4 vs. EAVE = 2.4 ± 0.5%; Fig. 7 A, 3, re-

spectively) or to KHC-truncated Kinesin-1 molecules (EAVE = 

6.2 ± 1.9%; Fig. 7 A, 6 vs. EAVE = 2.3 ± 0.8%; Fig. 7 A, 5, 

 respectively). These results indicate that the major contribution 

for separation of the KHC motor domains in the inactive con-

formation is provided by the KLC TPR motifs.

Discussion
Knowledge of the structural organization of Kinesin-1 is essen-

tial to understanding how it interacts with cargo components, 

how it generates motile force, and how motility is controlled. 

In this report, we demonstrate the feasibility of using FRET stoi-

chiometry to determine the domain orientations and spatial 

 relationships of Kinesin-1 in living cells. This approach is 

particularly benefi cial for studying protein complexes where re-

combinant expression may not refl ect the true folding, subunit 

interactions, and/or posttranslational modifi cations of a multi-

protein complex.

Advantages of FRET stoichiometry
FRET methods have been successfully used to investigate pro-

tein interactions and conformational changes of individual 

Figure 7. The KLC subunit contributes to both autoinhibition and conformational changes. (A, 1–6) The FRET pair being analyzed is indicated vertically to 
the left of the panels, the transfected constructs are shown schematically in the middle left, and the calculated FRET effi ciencies (EAVE) and n values are indi-
cated on the bottom left. The cartoon illustration on the right side of each panel indicates the interpreted structure of Kinesin-1, based on the measured FRET 
effi ciencies. In 1 and 2, the black-lined motor and tail domains are from the same KHC polypeptide chain. (B) Model for how KLC domains contribute to 
 autoinhibition of Kinesin-1. In the absence of the TPR motifs, the heptad repeats contribute to autoinhibition by promoting the folded conformation (green 
 arrows, top). The TPR motifs contribute to autoinhibition by separating the KHC motor domains (blue arrows, bottom). Data are the mean ± the SD.
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 proteins inside cells (Wallrabe and Periasamy, 2005). We show that 

FRET stoichiometry reveals structural organization and confor-

mational changes of a molecular complex. FRET stoichiometry 

is a superior method for in vivo analysis because it quantifi es 

fundamental parameters describing both proteins interactions 

and the FRET effi ciency (i.e., RM, EA, and ED). Other FRET ap-

proaches, such as acceptor photobleaching, provide only ED and 

do not account for modulation of FRET signals by protein ex-

pression ratios. These methods may also be complicated by 

photoconversion of CFP to a YFP-like chromophore under high 

laser illumination (Valentin et al., 2005). Other multispectral 

FRET approaches have been developed (Gordon et al., 1998); 

however, these calculate arbitrary and nonlinear indicators of 

FRET, and therefore cannot interpret structural changes in a 

molecule. Furthermore, FRET stoichiometry is linear and does 

not require fl uorescence lifetime, contrary to some confusion in 

the literature (Zal and Gascoigne, 2004).

FRET effi ciency refl ects the distance and orientation between 

the FP tags. EAVE could thus be used to compute distances between 

donor and acceptor in these complexes from the usual equation:

 E R r R= +( )0
6 6

0
6 , 

where R0 is the Förster distance. However, the complications 

associated with expression ratio and slow rotational fl uorophore 

diffusion invalidate the assumption that κ2 = 2/3 and permit only 

rough distance calculations. For example, the distance between 

the N termini of dimeric KHC motors bound to the microtubule 

should be less than the distance between two adjacent β-tubulin 

subunits (�8 nm; Hoenger et al., 2000). We measured motor-

to-motor FRET of KHC(1–891) bound to microtubules with 

AMPPNP in vivo (EAVE = 6.7 ± 1.6%; Fig. 3 B, 9). Multiplied 

by 2 to account for random pairing of donor and acceptors, this 

value (EAVE = 13.4%) corresponds to a distance of �6.8 nm, 

with the assumption that R0 ≈ 50 Å (Tsien, 1998). Taking into 

account the fact that FRET measurements refl ect the distance 

between the chromophoric centers of the FPs, rather than the 

actual distance between the KHC N termini, these results dem-

onstrate that the FRET measurements obtained in this study are 

comparable to known structural measurements.

Autoinhibition of Kinesin-1
Our FRET stoichiometry results support current models of the 

organization of KHC and KLC polypeptides in the Kinesin-1 

holoenzyme (Vale, 2003). In addition, our results extend previ-

ous in vitro analyses by demonstrating that inactive Kinesin-1 

molecules exist in a folded conformation in vivo. Folding of 

Kinesin-1 is likely caused by helix-breaking residues in the 

KHC stalk domain. Although mutation of hinge2 in KHC 

 resulted in higher ATPase and microtubule motility activities, 

velocity sedimentation analysis indicated a folded conforma-

tion (Coy et al., 1999; Friedman and Vale, 1999). Thus, it will 

be interesting to probe the folded state of ∆hinge molecules by 

FRET stoichiometry.

Our results demonstrate that two regions of Kinesin-1 are 

required to keep the motor autoinhibited in the absence of cargo. 

First, the IAK region of the KHC tail prevents the initial binding 

of the KHC motor domain to the microtubule. These results 

 extend the original in vitro observations (Hackney and Stock, 

2000) by demonstrating that the IAK region is necessary for 

 autoinhibition (a) in the Kinesin-1 holoenzyme and (b) in vivo. 

The IAK region is not, however, suffi cient for autoinhibition 

under physiological conditions because full-length KHC mole-

cules (i.e., lacking KLC) are capable of microtubule binding 

and motility. This is likely caused by the inability of weak KHC 

neck-to-tail interactions (Bathe et al., 2005; Stock et al., 1999) 

to maintain the tightly folded conformation.

Second, the TPR motifs of the KLC subunit push the KHC 

motors apart in the inactive conformation. This novel “heads 

apart” inactive state was surprising because crystallographic 

and cryoelectron microscopic studies showed that the Kinesin-1 

motor domains are closer together in solution (inactive state) 

than when docked on a microtubule protofi lament (active sate; 

Marx et al., 2006). A separation of the KHC motor domains was 

likely missed in previous studies that analyzed truncated forms 

of KHC in the absence of KLC. Although the original premise 

that unwinding of the neck coiled coil is required for processive 

motility has been disproved, we suggest that that unwinding of 

the Kinesin-1 neck coiled coil is required for autoinhibition, 

specifi cally to separate the KHC motor domains and prevent 

processive motility. This model can explain why several non-

ideal coiled-coil residues in the neck have been so highly con-

served (Bathe et al., 2005; Adio et al., 2006; Marx et al., 2006). 

In addition, our results fi t well with a recent model put forth for 

Neurospora crassa KHC in which an interaction with the KHC 

tail domain leads to a non–coiled-coil conformation of the neck 

(Bathe et al., 2005). These results underscore the importance of 

KLC in regulation of Kinesin-1 activity in vivo (Hackney et al., 

1991; Gindhart et al., 1998; Verhey et al., 1998; Martin et al., 

1999; Rahman et al., 1999). In cases where KLC subunits have 

either not been found (e.g., N. crassa; Adio et al., 2006) or are 

not essential for specifi c transport events (Palacios and St Johnston, 

2002; Ling et al., 2004), how KHC activity is regulated remains 

to be determined.

Activation of Kinesin-1 requires 
two conformational changes
A comparison of the spatial relationships within Kinesin-1 reveals 

two conformational changes that occur upon motor activation. 

First, a novel local conformational change brings the two 

KHC motor domains closer together, presumably in proper po-

sition for processive motility (Fig. 4, green arrows). Second, a 

global conformational change separates the KHC motor and tail 

domains, freeing the motor domains for microtubule binding 

(Fig. 4, blue arrows). Interestingly, in the active state, FRET ef-

fi ciencies between the KHC N-terminal motor and C-terminal 

tail are >0%. This suggests that the linear depiction of Kinesin-1 

based on cryoelectron microscopy (80 nm from motor-to-tail) is 

an artifact of those experimental conditions (Hisanaga et al., 

1989). Rather, Kinesin-1 is likely to be partially folded while 

undergoing microtubule-based transport (Hisanaga et al., 1989; 

Verhey et al., 1998; Coy et al., 1999; Friedman and Vale, 1999). 

Additional work is needed to understand the spatial relation-

ships in cargo-bound Kinesin-1 molecules.



FRET STOICHIOMETRY OF KINESIN-1 IN LIVE CELLS • CAI ET AL. 61

How autoinhibition is relieved is unknown, but must in-

volve conformational changes that separate the inhibitory and 

enzymatic domains. Full activation of Kinesin-1 for microtubule-

based motility requires that the inhibitory effects of both the 

KHC tail and the KLC subunit be relieved to achieve these 

two conformational changes (Fig. 8). Recent data from our lab 

(Blasius et al., 2007) demonstrates that binding of the Kinesin-1 

cargo protein JNK-interacting protein 1 to the KLC subunit is 

not suffi cient to activate Kinesin-1. Similarly, binding of fascic-

ulation and elongation factor 1 to the KHC tail is not suffi cient 

for motor activation. Only when binding partners of both the 

KLC subunit and the KHC tail (JNK-interacting protein 1 and 

fasciculation and elongation factor 1, respectively) are present 

is Kinesin-1 activated for microtubule binding and motility.

Autoinhibition as a control mechanism
Defi ning the mechanisms of inhibition and elucidating how inhi-

bition is relieved is key to understanding biological regulatory 

strategies. Autoinhibition of Kinesin-1 prevents futile ATP hydro-

lysis and allows rapid and specifi c control of motor activity both 

temporally and spatially. Autoinhibition of Kinesin-1 requires sur-

prisingly small regions of the protein involved in weak intra-

molecular interactions. Flexibility of the molecule is, thus, essential 

to bringing the interacting segments into close molecular contact, 

thereby generating relatively high effective local concentrations.

Autoinhibition is a common regulatory strategy used in di-

verse biological systems (Pufall and Graves, 2002; Schlessinger, 

2003). Notably, autoinhibition mechanisms have been proposed 

for members of both the kinesin (Lee et al., 2004; Imanishi 

et al., 2006) and myosin families (Liu et al., 2006; Thirumurugan 

et al., 2006), as well as proteins that control the polymerization 

dynamics of both the actin and microtubule cytoskeletons, such 

as Wiscott-Aldrich Syndrome protein (Millard et al., 2004), 

mDia/formins (Higgs, 2005), and cytoplasmic linker protein 170 

(Lansbergen et al., 2004). Such a regulatory mechanism is 

fi tting for cytoskeletal systems that undergo rapid dynamics to 

drive a wide variety of cellular functions. It will be interesting 

to fi nd out how autoinhibition regulates other motors

Materials and methods
Plasmids
Myc-tagged rat KHC and KHC(1–891), as well as HA-tagged rat KLC and 
KLC(1–176), have been previously described (Verhey et al., 1998). Mono-
meric versions of the FPs ECFP (mECFP) and mCit (an EYFP variant that is a 
superior acceptor for FRET; Griesbeck et al., 2001; Hoppe et al., 2002) 
were used to minimize dimerization artifacts. All FP-KHC and FP-KLC fusion 
proteins were created in the mECFP-C1, mECFP-N1, mCit-C1, and mCit-
N1 vectors (CLONTECH Laboratories, Inc.) by PCR using primers with 
 appropriate restriction sites and verifi ed by DNA sequencing.

A 4-aa linker (SGAG) was inserted between the FP and KHC or KLC 
in the FP-C1 vectors (e.g., mCit-4aa-KHC). A 5-aa linker (GPVAT) was in-
serted between KHC or KLC and the FP in FP-N1 vectors (e.g., KHC-5aa-
mECFP), whereas a 10-aa linker (G A G T G G G G G T ) was used for KHC 
constructs tagged with both mCit and mECFP molecules (e.g., mCit-4aa-
KHC-10aa-mECFP). The KLC-mECFP and KLC-mCit constructs also contain 
an HA tag at the N terminus (e.g., HA-KLC-mECFP) that is not indicated in 
the text or fi gures for clarity (Fig. S1). The HA tag was not used for linking 
the FP and KLC, but rather for ease of cloning. ECFP-tubulin was from 
CLONTECH Laboratories, Inc. The linked mCit-16aa-mECFP calibration 
molecule has been previously described (Hoppe et al., 2002).

Mutation of loop 12 (∆loop12: H275, R279, and K282 to Ala; 
Woehlke et al., 1997) and the IAK region (∆IAK: Q920, I921, A922, 
K923, P924, I925, R926, P927, and G928 to Ala) within the full-length 
rat KHC sequence was done by overlapping PCR. KHC(Cys344) was cre-
ated by fi rst fusing a Cys-lite version of human KHC(1–560) containing the 
introduced Cys344 (HK560[Cys344], a gift from R. Vale [University of 
California, San Francisco, San Francisco, CA]; Tomishige and Vale, 2000) 
to rat KHC(556–955) by overlapping PCR. Cys628 in rat KHC was then 
mutated to Ser by PCR.

Cell culture, permeabilization, and cross-linking
COS cells were cultured as previously described (Verhey et al., 1998), 
except that TransIT-LTI (Mirus) was used for transfection. A coverglass with 

Figure 8. Model for activation of Kinesin-1. 
Full activation of Kinesin-1 requires that the in-
hibitory effects of both the KHC tail and the 
KLC subunit must be relieved. This likely re-
quires both cargo (green stars) binding to the 
KLC TPRs (shown) and cargo or activator (blue 
ovals) binding to the KHC tail. These two pro-
cesses may act sequentially (top and bottom 
paths) or in concert (middle path). Micro-
tubules are represented as light green (β-tubulin) 
and light gray (α-tubulin) rod shapes. “+” and 
“−” signs represent the plus and minus ends of 
the microtubules.
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transfected cells was assembled in a Leiden’s chamber and maintained at 
37°C in Ringer’s buffer (10 mM Hepes, 155 mM NaCl, 5 mM KCl, 2 mM 
CaCl2, 1 mM MgCl2, 2 mM NaH2PO4, and 10 mM glucose, pH 7.2). 
0.1 μg/ml SLO (in Ringer’s buffer with 10 mg/ml of BSA) was added for 
30 s, the cells were rapidly washed three times with Buffer I (25 mM 
Hepes, 5 mM MgCl2, 115 mM KOAc, 5 mM NaOAc, 0.5 mM EGTA, pH 
7.2, and 10 mg/ml of BSA), and 1 mM of AMPPNP or 625 mM NaCl 
was added.

COS cells expressing KHC(Cys344) in the absence and presence of 
KLC were lysed in lysis buffer (25 mM Hepes/KOH, 5 mM MgCl2, 115 mM 
KOAc, 5 mM NaOAc, and 0.5 mM EGTA, pH 7.2) at 4°C and cleared by 
centrifugation. Lysates were or were not incubated with 200 μM DTNB at 
4°C for various times. The reaction was stopped by addition of SDS sample 
buffer. Proteins were separated on 6% SDS-PAGE gel and immunoblotted 
with a polyclonal antibody to the FP (Invitrogen).

Fluorescence microscopy
Fluorescence images were acquired using an inverted microscope (Eclipse 
TE-300; Nikon) with a 60×, NA 1.4, oil-immersion PlanApo objective lens 
(Nikon) and Lambda LS Xenon arc lamp (Sutter Instruments). Image acquisi-
tion was controlled by Metamorph 6.2r6 (Universal Imaging). Fluorescence 
excitation and emission wavelengths were selected using an 86006 fi lter 
set (Chroma Technology) and Lambda 10–2 fi lter wheel controller (Sutter 
Instruments) equipped with a shutter for epifl uorescence illumination control. 
Images were acquired by a Photometrics Quantix cooled charge-coupled 
device camera (Roper Scientifi c) with exposure times of 100–800 ms. All 
microscopy was carried out at 37°C.

FRET stoichiometry, data processing, data sampling, 
and statistical analysis
All images used for FRET microscopy were corrected for illumination shad-
ing and bias offset by collecting shade images from a mixture of mECFP 
and mCit sandwiched between two coverslips, and by collecting bias im-
ages with the excitation light blocked. The FRET microscope was calibrated 
to obtain the parameters α, β, γ, and ξ from COS7 cells expressing mCit (α), 
mECFP (β), or a mECFP-mCit molecule linked by 16 aa (γ and ξ) whose 
FRET effi ciency (E) was measured by fl uorescence lifetime spectroscopy 
(Hoppe et al., 2002). Calculation of EA, ED, EAVE, and RM images was per-
formed using the corrected fl uorescence images and FRET parameters as 
previously described (Beemiller et al., 2006). These equations are identical 
to those described previously (Hoppe et al., 2002), except that the ratio of 
γ/ξ was replaced with simply ξ. Using ImageJ (National Institutes of 
Health), a binary mask was generated on the IF image and applied to the 
EAVE and RM images. For highly expressing cells only, a measurement re-
gion that excluded the nucleus and FP-molecules accumulated at the cell 
periphery (Fig. S2) was defi ned and used to record the average pixel val-
ues for each cell from the EAVE and RM images. A two-tailed t test was used 
to compare steady-state EAVE values. The Relocation Index is described 
in Fig. S5. For comparing time-lapse FRET or Relocation Index changes, 
a paired two-tailed t test was used.

Online supplemental material
Fig. S1 shows that FP fusions to KHC and KLC do not affect the inter-
actions or activities of the Kinesin-1 subunits. Fig. S2 shows the equa-
tions and methods of FRET stoichiometry. Fig. S3 shows measurements 
of KHC motor-to-same tail FRET requires coexpression of mCit-KHC-
mECFP with Myc-KHC. Fig. S4 shows microtubule localization of active 
Kinesin-1 molecules results in FRET between Kinesin-1 and tubulin. Fig. 
S5 shows that the KLC heptad repeats are suffi cient for autoinhibition of 
Kinesin-1. Online supplemental material is available at http://www.jcb.
org/cgi/content/full/jcb.200605097/DC1.
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