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ABSTRACT

Objective: Coronavirus disease 2019 (COVID-19) patients are at risk for resource-intensive outcomes including me-

chanical ventilation (MV), renal replacement therapy (RRT), and readmission. Accurate outcome prognostication

could facilitate hospital resource allocation. We develop and validate predictive models for each outcome using retro-

spective electronic health record data for COVID-19 patients treated between March 2 and May 6, 2020.

Materials and Methods: For each outcome, we trained 3 classes of prediction models using clinical data for a

cohort of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2)–positive patients (n¼2256). Cross-

validation was used to select the best-performing models per the areas under the receiver-operating character-

istic and precision-recall curves. Models were validated using a held-out cohort (n¼855). We measured each

model’s calibration and evaluated feature importances to interpret model output.

Results: The predictive performance for our selected models on the held-out cohort was as follows: area under

the receiver-operating characteristic curve—MV 0.743 (95% CI, 0.682-0.812), RRT 0.847 (95% CI, 0.772-0.936),

readmission 0.871 (95% CI, 0.830-0.917); area under the precision-recall curve—MV 0.137 (95% CI, 0.047-0.175),

RRT 0.325 (95% CI, 0.117-0.497), readmission 0.504 (95% CI, 0.388-0.604). Predictions were well calibrated, and

the most important features within each model were consistent with clinical intuition.

Discussion: Our models produce performant, well-calibrated, and interpretable predictions for COVID-19

patients at risk for the target outcomes. They demonstrate the potential to accurately estimate outcome progno-

sis in resource-constrained care sites managing COVID-19 patients.
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Conclusions: We develop and validate prognostic models targeting MV, RRT, and readmission for hospitalized

COVID-19 patients which produce accurate, interpretable predictions. Additional external validation studies are

needed to further verify the generalizability of our results.

Key words: COVID-19, supervised machine learning, renal replacement therapy, respiration, artificial, patient readmission

INTRODUCTION

The United States continues to be a major epicenter for coronavirus

disease 2019 (COVID-19), the disease caused by severe acute respi-

ratory syndrome coronavirus 2 (SARS-CoV-2).1,2 In the early phase

of the pandemic, hospitals in hard-hit regions, such as the New

York Metropolitan Area, suffered large caseloads which heavily

strained medical resources.3–5 The surge in cases throughout the

country continues to drive medical resource expenditure, exhausting

limited supplies. In this setting, delivering optimal care to COVID-

19 patients will require matching scarce resources to patients in

need across hospital systems, cities, and even across the country. Ef-

ficient distribution of resources will depend critically on prognostic

assessments for newly presenting patients. With accurate prognosti-

cation, patient needs may be anticipated and met with the necessary

equipment and provider expertise to limit disease progression or

guard against avoidable adverse outcomes. In this study, we de-

velop, validate, and analyze predictive models for the prognostica-

tion of 3 prevalent and actionable adverse outcomes in the setting of

COVID-19.

Acute respiratory failure (ARF) requiring mechanical ventilation,

severe acute kidney injury (AKI) requiring renal replacement therapy

(RRT), and readmission are 3 common and critical adverse out-

comes for patients with COVID-19. Roughly 12% to 33% of

patients suffer ARF and require mechanical ventilation.6–9 34% of

all patients with COVID-19 and 78% of COVID-19 intensive care

unit (ICU) patients develop AKI, with up to 14% of all patients and

35% of ICU patients requiring RRT.10 In addition, while hospitals

struggle to manage heavy COVID-19 caseloads, patients who would

normally be admitted may be discharged home, leading to higher

than expected readmission rates.11 Each of these outcomes carries

significant implications for patient outcomes, long-term sequelae,

and utilization of scarce resources including hospital beds and the

equipment and materials needed for mechanical ventilation and

RRT. Clinical prediction models could be used effectively to assess

patient prognosis, informing resource planning and triage deci-

sions.12,13 Nevertheless, most published COVID-19 prediction mod-

els have focused on disease diagnosis, while the few prognostic

models have targeted COVID-19 disease severity or mortality.14

In this work, we aim to build interpretable prognostic models for

COVID-19 patients that estimate the risk of ARF requiring mechan-

ical ventilation, AKI requiring RRT, and hospital readmission. We

develop our models using electronic health record (EHR) data from

a major tertiary care center in New York City during the peak of the

COVID-19 crisis, and externally validate them using data from a

community hospital.

MATERIALS AND METHODS

Data sources and patient population
We focus on patients whose hospital courses included emergency

room visits, inpatient admissions, or both at Columbia University Ir-

ving Medical Center/NewYork-Presbyterian (CUIMC/NYP) be-

tween March 2 and May 6, 2020. As we are interested in studying

patients with active SARS-CoV-2 infection, we further limit this co-

hort to patients with a positive, polymerase chain reaction–based

SARS-CoV-2 test at any point during their hospital course. All clini-

cal observations were extracted from CUIMC/NYP’s Clinical Data

Warehouse formatted according to the Observational Medical Out-

comes Partnership (OMOP) common data model.15 Data from

CUIMC including Milstein Hospital and the Morgan Stanley Child-

ren’s Hospital were used for model development. Observations for

patients treated at NYP Allen Hospital, a community hospital mem-

ber of NYP, were held out as a validation set. We use chi-square per-

mutation tests to compare the distribution of outcomes and

demographics between our 2 cohorts (see Table 1).

We note that the development and validation cohort data are de-

rived from care sites with distinct inpatient and critical care capaci-

ties. To characterize these differences, we provide each site’s regular

inpatient and ICU bed counts as well as their average annual admis-

sions (see Supplementary Table 1).

Clinical observations

Our datasets comprise demographics, smoking status, laboratory

test results, vital signs, and conditions. Clinical laboratory tests and

vital signs are standardized while demographics and conditions are

transformed into a binary encoding indicating presence (see Supple-

mentary Methods). We include in our feature set only those condi-

tions that appeared in the clinical records of at least 5 patients. A

full list of the variables included in our feature set is provided in Sup-

plementary Table 2.

For RRT and mechanical ventilation models, we use data gath-

ered during the first 12 hours of the current hospital course. The 12-

hour constraint is meant to exclude early events, which are likely to

be anticipated on presentation and are therefore less likely to be in-

tervened upon based on the output from a predictive model. This

constraint also removes episodes occurring prior to a patient’s ar-

rival at the hospital; such events must be excluded to permit con-

struction of prognostic models. We also include data from patients’

prior visits. For numerical data types like laboratory tests and vital

signs, we use only the most recent values. Our binary encoding

accounts for the presence of conditions in a patient’s current visit

and all their prior visits.

The dataset for our readmission models is constructed in the

same way as is done for the mechanical ventilation and RRT models

with one important difference: we extend the data-gathering period

to cover the entirety of the index hospital admission, not just the

first 12 hours.

Handling missing values

For conditions, the binary encoding does not require imputation as

it encodes presence directly. For numerical variables, we impute

missing values using Scikit-learn’s16 implementation of the MICE al-

gorithm17 with its default parameterization. Categorical variables

(excluding conditions) were imputed using the most common class

in the training set. Furthermore, for imputed variables, we expand

our features to include binary missingness indicators specifying
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whether a value was observed or imputed. See Supplementary Table

3 for a detailed account of each variable’s missingness proportion.

Outcome definitions
We construct definitions for mechanical ventilation, RRT, and read-

mission, and constrain our analysis to the earliest such event within

a patient’s available timeline. Note that we do not exclude patients

who died during their index hospital course. As such, our outcome-

positive cohorts contain patients who experienced the target out-

come and died afterward. Conversely, outcome-negative cohorts

contain patients who died without ever experiencing the target out-

come. This choice is in line with our aim of constructing clinically

useful prognostic models. Doing so requires that we construct our

models using data for all available patients, including those who de-

teriorate so quickly that they expire before our target outcomes can

take place as well as those who deteriorate after all potential clinical

interventions have been exhausted. See Table 1 for summary mortal-

ity statistics.

We validate all our outcome definitions by iteratively sampling

50 to 100 patients, reviewing their clinical records to determine if

our outcome definitions correctly classified their outcome status,

and refining the outcome definitions to reduce misclassifications.

Furthermore, we train preliminary models and review the clinical

records for false positive and false negative patients to further revise

our outcome definitions where appropriate.

Mechanical ventilation

In our Clinical Data Warehouse, structured data in electronic nurs-

ing flowsheets contain the most accurate observations and time-

stamps regarding a patient’s mechanical ventilation status. From

these flowsheets, we extract the mechanical ventilation onset times

for each patient in our cohort. If a patient undergoes multiple me-

chanical ventilation episodes within a single hospital course, we use

the earliest onset time to identify the first such episode.

Renal replacement therapy

We use nursing flowsheets to extract the onset time of RRT for each

patient and restrict to the earliest such episode. In addition, we ex-

clude patients with a likely history of RRT by eliminating patients

whose records contained OMOP concepts related to end-stage renal

disease or stage 5 chronic kidney disease (see Supplementary Table

4).

Readmission

Readmissions were defined as any emergency visit or inpatient ad-

mission occurring 1 to 7 days after a previous emergency room or in-

patient discharge. To calculate the interval between an individual

patient’s visits, we simply take the difference between the first and

second visit’s end time and start time, respectively. Readmissions oc-

curring within 1 day postdischarge were excluded as these events are

difficult to distinguish from transfers within an ongoing hospital

stay. If multiple readmissions are observed, we focus on the one

with the earliest start date.

Table 1. Characteristics and target outcomes for patients with SARS-CoV-2–positive tests

Development (CUIMC) (n ¼ 2256) Validation (Allen Hospital) (n ¼ 855) P Value

Outcome

Mechanical ventilation 352 (15.60) 60 (7.02) <.0001

Renal replacement therapy 142 (6.29) 20 (2.34) <.0001

Readmission 193 (8.55) 77 (9.01) .7216

Age <.0001

<18 y 50 (2.22) 0 (0)

18-30 y 113 (5.01) 25 (2.92)

30-60 y 761 (33.73) 242 (28.30)

60-80 y 916 (40.60) 378 (44.21)

>80 y 416 (18.44) 210 (24.56)

Sex .8987

Female 1005 (44.55) 375 (43.86)

Male 1250 (55.41) 479 (56.02)

Missing 1 (0.04) 1 (0.12)

Race .1275

American Indian or Alaska Native 3 (0.13) 1 (0.12)

Asian 29 (1.29) 5 (0.58)

Black or African American 455 (20.17) 192 (22.46)

Native Hawaiian or Other Pacific

Islander

10 (0.44) 0 (0)

White 542 (24.02) 196 (22.92)

Missing 1217 (53.95) 461 (53.92)

Ethnicity .0003

Hispanic or Latino 1068 (47.34) 439 (51.35)

Not Hispanic or Latino 605 (26.82) 254 (29.71)

Missing 583 (25.84) 162 (18.95)

DNR/DNI 331 (14.67) 169 (19.76) <.0001

Died in hospital 228 (10.11) 150 (17.54) <.0001

Values are n (%).

CUIMC: Columbia University Irving Medical Center; DNI: do not intubate; DNR: do not resuscitate; SARS-CoV-2: severe acute respiratory syndrome corona-

virus 2.
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Statistical analysis
Models

We employ 3 types of models: L1-penalized logistic regression (logistic

L1), elastic-net logistic regression (logistic EN), and gradient boosted

trees (GBT). The former 2 are based on logistic regression, an effective

model for clinical prediction tasks.18,19 GBTs are nonparametric mod-

els that have also shown strong clinical prediction performance.20–23

These models are relatively simple, interpretable, and straightforward

to apply for prognostic modeling. These characteristics align well with

the aims of the present study. Furthermore, each of these models has a

built-in regularization mechanism.24–27 This is crucial in our setting in

which the number of features is on the order of the number patients.

We use Scikit-learn to implement each model type.16 Both logistic L1

and logistic EN have a hyperparameter, alpha, which controls the

strength of regularization. In addition, logistic EN has a second, mix-

ing hyperparameter which controls the relative weight of the L1 vs L2

penalties. We use the default hyperparameter settings for GBT.

Model selection (hyperparameter tuning)

Our model selection approach relies upon 2 performance metrics: the

area under the receiver-operating characteristic curve (AUROC) and

the area under the precision-recall curve (AUPRC). For each model

and outcome, we conducted 5-fold cross validation on the develop-

ment cohort data searching across different hyperparameters (alpha:

[0.3, 0.5, 0.7]; mixing: [1 � 10-4, 1 � 104] equally spaced range of

10 values). We select the model with the best average AUROC across

all folds. For the selected model, we compute the mean AUROC and

AUPRC across all folds.28 We obtain 95% confidence intervals (CIs)

for all statistics by pooling the predicted probabilities and true labels

across all folds within a reverse percentile bootstrap. For the valida-

tion cohort, we use the selected model to obtain outcome predictions

and subsequently compute the reverse percentile bootstrap.

Calibration

For the development cohort, we use the pooled predicted probabili-

ties and the true labels to generate the calibration curves. For the

validation cohort, we use the predicted probabilities and true labels

for the full cohort.

Feature importance

Feature importances for all models were evaluated using SHAP,29 a

method for estimating instance-wise Shapley values, which represent

fair estimates of the effect each feature has upon an outcome predic-

tion. SHAP allows for instance-wise visualization, which for a given

feature can demonstrate the distribution of the effect size and direc-

tion across the cohort.

Institutional review board
This study was approved by CUIMC’s institutional review board

and issued institutional review board number AAAS9678.

RESULTS

Cohort description
Our final development and validation cohorts contained 2256 and

855 patients, respectively. The distributions of outcome and demo-

graphic variables for each cohort are presented in Table 1. The dis-

tributions of sex and race and the number of readmissions were not

significantly different between cohorts (P values >.05). Significant

differences were found in the distributions of age and ethnicity, the

numbers of mechanical ventilation and RRT cases, and the numbers

of patients with do not intubate or do not resuscitate status or who

died during their hospitalization (P < .001).

Model performance in development cohort
Performance metrics for all models and outcomes on the develop-

ment cohort are presented in Table 2. The models with best AUROC

for mechanical ventilation, RRT, and readmission were logistic EN

(0.878 [95% CI, 0.858-0.902]), logistic L1 (0.847 [95% CI, 0.815-

0.882], and GBT (0.838 [95% CI, 0.814-0.864]), respectively. The

best performing models according to AUPRC were GBT (0.613

[95% CI, 0.555-0.668], logistic L1 (0.381 [95% CI 0.293-0.453],

and logistic EN (0.307 [95% CI, 0.249-0.353]), respectively.

Logistic L1 achieved the highest AUROC and AUPRC for RRT

prediction; we use logistic L1 for all remaining RRT prediction

experiments. No single model yielded the best performance on both

metrics for mechanical ventilation and readmission. We chose GBT

for mechanical ventilation and logistic EN for readmission, as they

had the highest AUPRC and nearly highest AUROC (mechanical

ventilation, 0.869 [95% CI, 0.848-0.891]; readmission, 0.830 [95%

CI, 0.803-0.858]). See Figures 1 and 2 for development cohort

ROC and precision-recall curves, respectively.

Model performance in validation cohort
Table 2 displays the performance metrics for all models on the vali-

dation cohort. Relative to the development cohort, mechanical ven-

Table 2. Performance metrics for all models and outcomes

Outcome Model AUROC (Development) AUPRC (Development) AUROC (Validation) AUPRC (Validation)

Mechanical ventila-

tion

Logistic L1 0.869 (0.847-0.893) 0.569 (0.510-0.624) 0.741 (0.682-0.806) 0.127 (0.052-0.157)

Logistic EN 0.878 (0.858-0.902)a 0.562 (0.501-0.616) 0.738 (0.675-0.805) 0.141 (0.046-0.183)a

GBTb 0.869 (0.848-0.891) 0.613 (0.555-0.668)a 0.743 (0.682-0.812)a 0.137 (0.047-0.175)

Renal replacement

therapy

Logistic L1b 0.847 (0.815-0.882)a 0.381 (0.293-0.453)a 0.847 (0.772-0.936)a 0.325 (0.117-0.497)a

Logistic EN 0.844 (0.812-0.881) 0.378 (0.295-0.451) 0.841 (0.759-0.931) 0.314 (0.113-0.476)

GBT 0.837 (0.805-0.871) 0.325 (0.242-0.385) 0.829 (0.761-0.912) 0.196 (0.009-0.312)

Readmission Logistic L1 0.818 (0.789-0.847) 0.293 (0.233-0.344) 0.868 (0.823-0.917) 0.505 (0.395-0.602)a

Logistic ENb 0.830 (0.803-0.858) 0.307 (0.249-0.353) 0.871 (0.830-0.917)a 0.504 (0.388-0.604)

GBT 0.838 (0.814-0.864)a 0.287 (0.233-0.323) 0.869 (0.830-0.910) 0.427 (0.321-0.509)

AUROC: area under the receiver operating characteristic curve; AUPRC: area under the precision-recall curve; GBT: gradient boosted trees; Logistic EN: elas-

tic-net logistic regression; Logistic L1: L1-penalized logistic regression.
aThe best performance for the given outcome according to the metric specified by the column heading.
bSelected models are in bold for each outcome.
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tilation predictive performance fell significantly across both

AUROC (0.743 [95% CI, 0.682-0.812]) and AUPRC (0.137 [95%

CI, 0.047-0.175]). RRT predictive performance remained consistent

across both metrics (AUROC: 0.847 [95% CI, 0.772-0.936];

AUPRC: 0.325 [95% CI, 0.117-0.497]). For readmission, both met-

rics increased (AUROC: 0.871 [95% CI, 0.830-0.917]; AUPRC:

0.504 [95% CI, 0.388-0.604]). See Figures 1 and 2 for validation

cohort ROC and precision-recall curves, respectively.

Calibration
Figure 3 shows the calibration curves for each outcome’s selected

model. In the development cohort, predicted probabilities for me-

chanical ventilation closely approximate the observed fraction of

positive cases. Meanwhile, for both RRT and readmission, the pre-

dicted probabilities overestimate the fraction of positive cases. How-

ever, these estimates improve as the value of the predicted

probability increases. Similar trends are observed for calibration in

the validation cohort.

Feature importance
SHAP values for each outcome’s selected model are visualized in

Figure 4. Respiratory illnesses including acute hypoxemic respira-

tory failure, acute respiratory distress syndrome (ARDS), and acute

lower respiratory tract infection served as positive predictors (posi-

tive SHAP values) for mechanical ventilation. High respiratory rate,

high neutrophil count, hypoxemia, shock, and documented disease

due to coronaviridae (ie, the presence of the concept code “Disease

due to Coronaviridae” in a patient’s clinical record) were also strong

positive predictors. Greater age was negatively predictive (negative

SHAP values).

Respiratory and renal illnesses including acute renal failure,

acute hypoxemic respiratory failure, ARDS, and acute lower respira-

tory tract infection functioned as positive predictors for RRT. Sev-

eral features drove the predicted likelihood either positively or

negatively depending on their value. Serum creatinine, neutrophil

count, C-reactive protein, and hyaline casts transition from nega-

tively to positively predictive as values increase from low to high.

Meanwhile, serum bicarbonate and calcium make the same transi-

tion as values decrease. Furthermore, the presence of procalcitonin,

urea nitrogen-to-creatinine ratio, and glomerular filtration rate

measurements were positively predictive for RRT.

Readmission prediction was driven positively by high values for

temperature, hemoglobin, and oxygen saturation (SpO2). Con-

versely, it was driven negatively by low values for these variables.

The opposite trend was observed for leukocyte count, respiratory

rate, erythrocyte sedimentation rate (ESR), calcium, and erythrocyte

distribution width. Fever and abdominal pain were positively pre-

dictive, whereas respiratory disorder and documented coronaviridae

infection were negatively predictive. Missing values for laboratory

tests including fibrin d-dimer, ferritin, procalcitonin, lactate dehy-

drogenase, ESR, and activated partial thromboplastin time were

positively predictive.

DISCUSSION

Our results demonstrate that interpretable, performant, prognostic

models targeting resource-intensive outcomes important to the man-

agement of COVID-19 may be trained using routinely recorded clin-

ical variables. For mechanical ventilation and RRT, our models use

only the data available within the first 12 hours of a patient’s hospi-

tal course. Thus, their predictions may be made available to clini-

cians actively managing COVID-19 patients. Meanwhile, for

readmission, our model utilizes data gathered throughout the cur-

rent stay, making predictions available by the end of a hospital

course when they would have the largest impact.

Our work extends and improves on the current state-of-the-art

in outcome prediction for COVID-19 patients. Our mechanical ven-

tilation prediction model is competitive with the deep learning

model introduced by Shashikumar et al.30 Though our objectives are

distinct (their model targets hourly predictions), their validation

AUROC (0.882) and AUPRC (0.209) lie near or within our 95%

CIs. Our RRT prediction model demonstrates superior performance

Figure 1. Receiver-operating characteristic (ROC) curves for ventilation, renal replacement therapy (RRT), and readmission. Curves are for each outcome’s se-

lected model. Dark lines correspond to averages over all folds. Shaded areas correspond to 95% confidence intervals. AUC: area under the curve; AUROC: area

under the receiver-operating characteristic curve.
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relative to previously described work which also utilized data from

patients in New York City31; they obtained a validation AUROC of

0.79, which lies within our 95% CI (0.759-0.931). Though the cur-

rent literature contains retrospective analysis studying the subpopu-

lation of readmitted COVID-19 patients, to our knowledge, we are

the first to describe a predictive model for COVID-19 patient read-

mission.32,33

Each of our models demonstrates reasonably good calibration in

the development and validation cohorts. Nevertheless, caution

should be taken when interpreting our models’ predicted probabili-

Figure 2. Precision-recall curves for ventilation, renal replacement therapy (RRT), and readmission. Curves are for each outcome’s selected model. Dark lines cor-

respond to averages over all folds. Shaded areas correspond to 95% confidence intervals. AUC: area under the curve; AUPRC: area under the precision-recall

curve.

Figure 3. Calibration reliability curve for development and validation cohorts. The reliability curve shows how close each model is to a perfectly calibrated model.

This plot is created by binning predicted probabilities and examining the true fraction of cases in each bin. The plot under each reliability curve shows the support

(number of positives) in each bin. RRT: renal replacement therapy.
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ties as estimates of the true risk of the target outcome for a given pa-

tient. Otherwise, a method for posttraining calibration should be

employed, such as isotonic regression.34

The use of SHAP values illuminates which features are driving

our models’ predictions and in which directions. This information is

vital for evaluating what our models have learned. Consistent with

expectations, predicted likelihoods of mechanical ventilation and

RRT correlated positively with markers of respiratory and renal dis-

tress, as well as markers of active infectious or inflammatory pro-

cesses. Notably, patient age was negatively predictive of mechanical

ventilation, which is potentially a reflection of advance directives

and clinical decision making, rather than a lower incidence of severe

respiratory failure. In addition, as described in recently published

work,31 we find that respiratory distress is strongly associated with

RRT. Predicted probabilities for readmission were mostly driven by

the absence of labs, which would be ordered if clinical suspicion for

an infectious process were high (eg, lactate dehydrogenase, C-reac-

tive protein, ESR). This finding suggests that readmitted patients

may not have been considered ill enough to warrant admission and

thus were given only a limited clinical workup for COVID-19. In ad-

dition, high respiratory rates were negatively predictive for readmis-

sion, suggesting that signs of respiratory distress may be associated

with presentation later in the disease course, prolonged evaluation,

and hence decreased probability of near-term return after discharge.

Of note, the condition “Disease due to Coronaviridae” is a strong

positive predictor for mechanical ventilation and a negative predic-

tor for readmission. This suggests that the subset of patients whose

documentation contains this concept code may be suffering from

more severe disease on admission, as such patients are more likely to

require invasive intervention (ie, mechanical ventilation) and are un-

likely to be discharged early and be subsequently readmitted.

With further development and prospective validation, our out-

come prediction models could potentially be utilized in practice to

inform triage and resource allocation. Patients with high estimated

risk of mechanical ventilation could be monitored more closely with

continuous pulse oximetry and given early, noninvasive interven-

tions such as self-proning.35 Care could be taken to place these

patients in beds with easy access to advanced oxygen therapies like

high-flow nasal cannula and noninvasive positive pressure ventila-

tion, resources that are typically not evenly distributed throughout a

hospital. Similarly, providers could ensure that patients at high risk

for RRT are placed in locations with the personnel and equipment

needed to deliver this service. Such patients may also benefit from

renal-protective therapeutic strategies such as setting a higher

threshold for use of nephrotoxic agents, managing ARDS with less

aggressive volume restriction, and an early nephrology consultation

for AKI—an intervention that has been associated with improved re-

nal prognosis.36,37 Additionally, given the relative paucity of dialysis

equipment and appropriately trained staff during a pandemic surge,

awareness of the risk of AKI requiring RRT could allow for im-

proved resource planning and appropriate timing of surge protocols

such as shared continuous RRT and acute peritoneal dialysis. Fi-

nally, patients with high risk of readmission could be re-evaluated

for discharge, provided more intense monitoring, or provided addi-

tional support such as a visiting nurse that could help avoid a read-

mission while also lowering the risk of these patients

decompensating at home.

Though our models demonstrate strong performance on the de-

velopment cohort, we must also acknowledge that this performance

deteriorates significantly when they are applied to the validation co-

hort. This observation speaks to the care practitioners must take

when developing models on one patient population and applying

them to another. In our case, the development cohort was drawn

from a major medical center while the validation cohort came from

Figure 4. SHAP feature importances for ventilation, renal replacement therapy

(RRT), and readmission. Each SHAP value plot displays a patient-level SHAP

value as a point which lies on the horizontal axis and uses color to indicate

whether the feature value for a patient was higher (red) or lower (blue) than av-

erage. SHAP values >1 indicate increased risk for a patient. SHAP values <1 in-

dicate decreased risk. This SHAP plot allows for visualization of the distribution

of effect sizes indicated by the spread of the points around 0 and shows the di-

rection of the effect. As an example, a higher respiratory rate (red points are all

>0) indicates higher risk for ventilation. The average of the absolute SHAP val-

ues (shown in parenthesis for each feature) across all points shows the overall

importance of the feature. aPTT: activated partial thromboplastin time; MCHC:

mean corpuscular hemoglobin concentration; SpO2: oxygen saturation.
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a small community hospital. It is likely that these 2 populations con-

tain very different people who experience very different care practi-

ces. The result is development and validation datasets that differ in

both the spectrum of observed variable values as well as the fre-

quency and pattern of variable missingness. These differences limit

our models’ ability to generalize to the validation cohort what they

learned on the development cohort and are likely a major driver of

the performance degradation on the former. We also consider that

differences in resource constraints, specifically regarding equipment

and materials needed for mechanical ventilation and RRT, could

have potentially contributed to our models’ performance degrada-

tion on these outcomes in the validation cohort. However, due to

changes in care practices (eg, having 2 patients share a single contin-

uous RRT machine within a 24-hour on/off cycle) and acquisition of

additional materials and equipment, neither site ever came close to

exhausting it’s supplies. This suggests that resource constraints

played at most a marginal and indirect role in limiting our models’

performance on the validation cohort.

We acknowledge several important limitations to this work. Our

data were derived from a single hospital network. This limits the

generalizability of our results to other institutions, as we cannot cap-

ture the out-of-network variability in COVID-19 population charac-

teristics and care practices. This limitation extends to our validation

experiments, which used data from an in-network community hospi-

tal. This also complicates our modeling of readmission. Our positive

readmission cases are limited to those patients whose discharge and

readmission both occurred in our hospital network. Discharged

patients who were subsequently admitted elsewhere would appear

as negative cases in our models. We adopted a feature-agnostic ap-

proach when choosing which variables to include in our model. This

allowed us to model many of the observations in the clinical record,

but it also complicates the models’ utility. To extract risk estimates

from our model, a user will need to replicate our feature engineering

and apply it to their local data stores. Thus, they will likely need a

pipeline inputting clinical observations directly into the model from

the EHR. Modeling many variables also introduced a significant

amount of missing values (see Supplementary Table 3). To handle

these, we used imputation strategies like MICE, which assume that

the data are missing at random, even though our data are likely

missing not at random. As such, it is likely that our fitted model

parameters are biased.38 However, as we are primarily concerned

with optimizing prediction, we are willing to trade off model param-

eter bias for predictive performance by modeling the imputed data

along with the observed missingness pattern.39 Our use of the

OMOP common data model also introduced challenges and limita-

tions. The first of these concerns our outcome definitions, which re-

lied on structured fields in nursing flowsheet. As these data are not

part of the OMOP common data model, replicating our definitions

at other sites may be difficult. Second, during the extraction, trans-

formation, and loading of data into the OMOP we may have lost

some observations. This is a likely source of the unusually large

amount of missingness in routinely collected clinical measurements

such as vitals and plasma and serum electrolyte labs.

CONCLUSION

In conclusion, we have trained and validated prognostic models tar-

geting 3 significant, resource-intensive outcomes in the context of

COVID-19: mechanical ventilation, RRT, and hospital readmission.

Our models run on routinely collected clinical variables, and pro-

duce accurate, interpretable predicted likelihoods for each outcome.

Additional external validation studies are needed to further verify

the generalizability of our results.
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