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Abstract

Only a few patients with germline AXIN2 variants and colorectal adenomatous poly-

posis or cancer have been described, raising questions about the actual contribution

of this gene to colorectal cancer (CRC) susceptibility. To assess the clinical relevance

for AXIN2 testing in patients suspected of genetic predisposition to CRC, we col-

lected clinical and molecular data from the French Oncogenetics laboratories analyz-

ing AXIN2 in this context. Between 2004 and June 2020, 10 different pathogenic/

likely pathogenic AXIN2 variants were identified in 11 unrelated individuals. Eight var-

iants were from a consecutive series of 3322 patients, which represents a frequency

of 0.24%. However, loss-of-function AXIN2 variants were strongly associated with

genetic predisposition to CRC as compared with controls (odds ratio: 11.89, 95% con-

fidence interval: 5.103–28.93). Most of the variants were predicted to produce an

AXIN2 protein devoid of the SMAD3-binding and DIX domains, but preserving the

β-catenin-binding domain. Ninety-one percent of the AXIN2 variant carriers who

underwent colonoscopy had adenomatous polyposis. Forty percent of the variant

carriers developed colorectal or/and other digestive cancer. Multiple tooth agenesis

was present in at least 60% of them. Our report provides further evidence for a role

of AXIN2 in CRC susceptibility, arguing for AXIN2 testing in patients with colorectal

adenomatous polyposis or cancer.

K E YWORD S

adenomatous polyposis, colorectal cancer susceptibility, oligodontia, Wnt signaling pathway

1 | INTRODUCTION

Monoallelic germline pathogenic variants in the APC (adenomatous

polyposis coli; MIM *611731) and biallelic germline pathogenic variants

in MUTYH (human Mut Y homolog; MIM *604933) genes are identified

in most patients with classic familial adenomatous polyposis (FAP) or

attenuated familial adenomatous polyposis (AFAP). Several other genes

including AXIN2 have been associated with risk of developing colorectal

adenomatous polyposis and colorectal cancer (CRC).1,2

The AXIN2 gene (MIM* 604025) encodes axis inhibition protein

2, which plays a major role in regulation of the canonical Wnt

(Wingless and INT-1) signaling pathway.3,4 AXIN2 is with APC a key

component of the dynamic multiprotein assembly which targets

β-catenin for proteolysis in the absence of a Wnt stimulus.5 Mutations

in AXIN2 have been shown to cause CRC by activating β-catenin/TCF

(T-cell factor) signaling,6 leading to transcription of target genes that

play a role in control of cell growth and survival.7,8

In patients with colorectal adenomatous polyposis or CRC, only a

few pathogenic or likely pathogenic (P/LP) germline variants of AXIN2

have been reported. The first one was described in 2004 in a large

Finnish family in which multiple permanent tooth agenesis (oligodontia)

and colorectal polyps of various histologies (adenomatous, hyperplastic,

and mixed) or CRC segregated with a heterozygous nonsense variant

(NM_004655.4:c.1966C>T, p.(Arg656*)).9 Subsequently, another non-

sense AXIN2 variant (c.1989G>A, p.(Trp663*)) was described as segre-

gating with oligodontia, colonic polyposis, early CRC, and other findings

including gastric polyps, early breast cancer, and mild ectodermal dys-

plasia phenotype with sparse hair and eyebrows.10 Four additional

AXIN2 variants were further reported in patients with both oligodontia

and colorectal adenomatous polyposis (c.1972del, p.(Ser658Alafs*31))11

or CRC (c.1987dup, p.(Trp663Leufs*44)),12 or with isolated colorectal

adenomatous polyposis (c.1994dup, p.(Asn666Glnfs*41))13 or CRC

(c.254del, p.(Leu85Tyrfs*24)).14 A variant of uncertain significance

(c.1387C>T, p.(Arg463Cys)) was also reported in a patient with isolated

colorectal adenomatous polyposis.15

Given the paucity of available information, many questions

remain about the actual contribution of AXIN2 variations to colorectal

adenomas and CRC (and other types of cancer) susceptibility, chal-

lenging genetic counseling and clinical management. The purpose of

this study was to collect and characterize AXIN2 variants identified in

French Oncogenetics laboratories, and to report the clinical pheno-

types associated with P/LP variants.
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2 | METHODS

2.1 | Patients and controls

We collected AXIN2 P/LP variants identified between 2004 and June

2020 in the French Oncogenetics laboratories from the Genetics and

Cancer Group-Unicancer analyzing AXIN2 in a context of suspected

predisposition to CRC.

All the patients but one were originally referred to clinical geneti-

cists because of colorectal polyposis and/or personal or family history

of early CRC, leading to analysis of a panel of genes known for their

implication in CRC predisposition which included AXIN2 (Figure 1).

One patient, a 10-year-old child, presented with ectodermal dysplasia,

leading to analysis of a panel of genodermatosis-causing genes,

including AXIN2.

Information on personal and familial history was obtained during

genetic counseling and from medical records. Full informed consent

for genetic analyses and the use of clinical data for research purposes

was obtained from all patients or legal representatives.

Population control frequencies of AXIN2 variants were obtained

from gnomAD v.2.1 database (https://gnomad.broadinstitute.org).

Non-Finnish European, non-cancer individuals (n = 59 095) were

retained for comparisons with patients.

2.2 | AXIN2 variant classification

Variants were described according to the HGVS (Human Genome Var-

iation Society) nomenclature guidelines using the reference sequence

NM_004655.4 with c.1 corresponding to the first nucleotide of the

start codon (www.hgvs.org/varnomen). The pathogenicity assessment

was based on the American College of Medical Genetics and

Genomics and the Association for Molecular Pathology (ACMG/AMP)

criteria.16 Tools and criteria used for the interpretation are summarized

in Figure S1. Allele frequencies in control populations were obtained

from gnomAD v.2.1. The impact of missense variants was evaluated

using the in silico predictive algorithms PolyPhen-2 (Polymorphism Phe-

notyping v.2), SIFT (Sorting Intolerant From Tolerant), and Mutation

Taster through Alamut Visual v2.15 (Sophia Genetics). Prediction of the

effect on splicing was assessed using SPiP (Splicing Prediction Pipeline,

https://github.com/raphaelleman/SPiP)17 and SpliceAI18 tools. Predic-

tion of translation initiation sites was performed using ATGpr

(Prediction of Translation initiation ATG)19 and TIS Miner.20 Using avail-

able evidence for their interpretation, variants were classified as

benign/likely benign (B/LB), of unknown significance (VUS), and patho-

genic/likely pathogenic (P/LP).16 A consensus in the French Genetics

and Cancer Group is to consider allele frequency over 1% in control

populations as stand-alone evidence of benign impact (instead of 5%).

2.3 | Statistical analyses

Fisher's exact test, two-sided, was used to compare allele frequencies

between cases and controls, and to calculate odds ratios (ORs) and

confidence intervals (CIs). Results were considered statistically signifi-

cant when p < 0.05. Statistical tests were carried out using GraphPad

Prism 7.00.

3 | RESULTS

3.1 | AXIN2 variant analysis

Between 2004 and June 2020, 10 different pathogenic/likely patho-

genic AXIN2 variants were identified in 11 unrelated individuals

(Table 1).

All the patients but one were originally referred to clinical geneti-

cists because of colorectal polyposis and/or personal or family history

of early CRC, leading to analysis of a panel of genes known for their

implication in CRC predisposition which included AXIN2 (Figure 1).

Nine different P/LP AXIN2 variants were identified in those 10 unre-

lated individuals (Figure 1 and Table 1). The frequency of P/LP AXIN2

F IGURE 1 Flowchart indicating the origins of the 11 pathogenic/likely pathogenic (P/LP) AXIN2 variants identified in French Oncogenetics
laboratories. †Panel including APC, MUTYH, MLH1, MSH2, MSH6, PMS2, POLE, POLD1, SMAD4, BMPR1A, STK11, PTEN +/- NTHL1, GREM1/SCG5,
and MSH3. ‡One individual (Re-3) with AFAP and CRC with co-occurrence of a P/LP AXIN2 variant and a homozygous pathogenic MUTYH
variant.
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variants was 0.24%, as assessed from the consecutive series of 3322

patients from four Oncogenetics laboratories (Lille, Rennes, Lyon,

Paris; 8/3322 patients). All these variants were protein-coding loss-

of-function (LoF) variants (frameshift or stop-gain). LoF AXIN2 vari-

ants were more frequent in the patients suspected of genetic predis-

position to CRC compared to controls (0.24% vs. 0.020%

[12/59 095], OR = 11.39, 95% CI 5.103–28.93; p < 0.0001) (Table 2).

No other P/LP variant was detected in APC, MUTYH or other CRC-

susceptibility genes for 9 out of the 10 patients. Co-occurrence of a

homozygous pathogenic variant in MUTYH (NM_001048171.1:

c.1145G>A, p.Gly382Asp) was identified in the last one (Re-3).

In addition, one patient, a 10-year-old child (Li-5 III.2), presented

with ectodermal dysplasia associating ichthyosis, multiple tooth agen-

esis, sparse dry hair, and recurrent keratitis, leading to analysis of a

panel of genodermatosis-causing genes and identification of a likely

pathogenic AXIN2 variant. Medical investigation revealed the exis-

tence of family history of CRC and other digestive cancer.

In total, 10 different P/LP AXIN2 variants, of which 8 have

never been reported before, were identified in 11 patients

(Figure 1; Table 1). Of these 10 variants, 8 were located in the

exon 6 (n = 2) or 8 (n = 6), the last 2 being located in exon 2 (first

coding exon) (Figure 2). All variants in exons 6 and 8 were pre-

dicted to lead to a truncated protein devoid of the C-terminal DIX

(Disheveled and Axin) domain and of all or part of an upstream

domain interacting with SMAD3, and to preserve the β-catenin

binding domain.4,25 The c.204_214del variant was predicted to

generate an extra-short protein devoid of all functional domains or

to lead to absence of protein production due to nonsense-

mediated mRNA decay (NMD). The last variant was a deletion

encompassing the translation initiation site (c.-12_8del). No alter-

nate in-frame translation initiation site in close proximity was pre-

dicted, suggesting absence of protein synthesis.

In addition to the P/LP variants, 125 different variants classified

as B/LB or as VUS were collected from two laboratories (Lille, Rennes)

(Table S1). They consisted in 61 intronic variants and 64 exonic vari-

ants, including 60 coding variants (Table S2; Figure S2). Analysis of

variant distribution in AXIN2 showed that LoF coding variants were

more often located in the region coding the SMAD3-binding domain

in patients suspected of genetic predisposition to CRC compared to

controls (7/10 vs. 1/8; p = 0.025) (Table 3). In contrast, non-LoF cod-

ing variants were located all along the coding sequence in both

patients and controls, with no enrichment in the SMAD3-binding

domain (23/60 in patients versus 136/427 in controls; p = 0.378)

(Table 3).

3.2 | Clinical features associated with AXIN2 P/LP
variants

The case Re-3 was removed from clinical evaluation, since the homo-

zygous MUTYH pathogenic variant is likely to explain at least in part

his history of colorectal polyposis and cancer. Clinical data of the

10 remaining index cases and of 5 relatives carrying a P/LP variant inT
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AXIN2 were collected. Only a few family members (n = 10) were

tested due to the lack of guidelines regarding the management of indi-

viduals carrying a P/LP AXIN2 variant. Clinical features are summa-

rized in Table 1; Figure 3.

3.2.1 | Colorectal polyps and cancer

Of the 15 AXIN2 variant carriers, 11 underwent colonoscopy and

10 had colorectal adenomatous polyposis (≥10 adenomatous

polyps) (10/11, 91%). The median age at diagnosis was 55 [range

36–82]. The total number of polyps ranged from more than 20 to

several hundred, but was <100 in most cases (7/10, 70%), indica-

tive of attenuated adenomatous polyposis. Polyps were generally

distributed throughout the entire colon. Forty adenomas were

detected in one of the two relatives who underwent screening

colonoscopy. Sessile serrated adenomas and hyperplastic polyps

were also reported in several cases.

Five patients (four index cases and one relative, 5/15, 30%)

developed CRC. One (Li-4 III.1) presented with two synchronous

colorectal carcinomas. The median age of onset was 62 [range

58–82].

3.2.2 | Extracolonic digestive manifestations

Small bowel carcinoma was reported in one patient (Li-3 II.1) who

subsequently developed caecal carcinoma. One patient (Li-5 II.1) died

at age 53 because of an ampullary (papillary) carcinoma of pancreato-

biliary histotype. Duodenal polyps (n = 5) were observed in one

patient (Li-1 III.4). No gastric polyposis or cancer was reported, but

antral intestinal metaplasia was observed in one case (Li-5 II.4), which

could not be attributed to Helicobacter pylori infection. A few fundic

gland polyps (n = 3) were reported in another case (Li-2 III.1).

3.2.3 | Extradigestive manifestations

Ovarian cancer of endometrioid type was observed in one patient

(Li-2 III.1) who had previously developed CRC. A breast cancer and a

melanoma were described in two cases.

Multiple tooth agenesis was present in at least nine cases

(9/13, 69%). Anodontia (i.e., lack of all permanent teeth) was reported

in one case (Re-1 III.6). Oligodontia (i.e., absence of 6 or more perma-

nent teeth, excluding the third molars) was more frequent as it was

reported in eight cases, the number of missing teeth ranging from

8 (12 including the third molars) to 23 permanent teeth. An example is

shown in Figure 4.

Additional ectodermal features were observed in one case (Li-5

III.2) and were the reason for clinical referral. Symptoms associated

F IGURE 2 Genomic structure of AXIN2
gene showing the location of variants
associated to colorectal adenomatous
polyposis or CRC. Boxes represent exons.
Pathogenic/likely pathogenic AXIN2 variants
described in this study are indicated in black.
All were novel, except two (marked by #).10,21

Variants which were described in other
studies are indicated in gray.9,11–15 Functional
domains of AXIN2 protein are shown
below.4,22–24 TBM, tankyrase-binding motifs
(role in regulation of AXIN2 stability);22–25

RGS, regulator of G-protein signaling (APC-
binding domain); GSK-bd, glycogen synthase
kinase 3β-binding domain; β-cat-bd, β-catenin-
binding domain;4 SMAD3-bd, SMAD3-binding
domain;4,24 DIX, Disheveled and Axin
(Disheveled-binding domain and Axin
homodimerisation).4

TABLE 2 Number of LoF AXIN2 varianta carriers in patients
suspected of genetic predisposition to CRC and controls.

Population Nb of carriers OR (95% CI) p Valueb

Patientsc (n = 3322) 8 (0.24%) 11.39 (5.103–28.93) <0.0001

Controls (non-cancer,

NFE)d (n = 59 095)

12 (0.020%)

aLoF AXIN2 variants include stop-gain, frameshift, canonical splice-site,

and start-loss variants.
bFrequencies between groups were compared using Fisher's exact test.

Associated ORs were calculated for each group.
cOnly patients tested in consecutive series were considered (Figure 1).
dControl population data were obtained from gnomAD v2.1 (non-cancer,

non-Finnish European individuals).
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oligodontia with ichthyosis, sparse dry hair, sparse eyebrows, dysplas-

tic nails, and keratitis. For this patient, co-occurrence of a heterozy-

gous pathogenic variant in FLG (Filaggrin, MIM *135940) was

identified, which could explain cutaneous manifestations, but not the

other symptoms, including oligodontia.

A variety of other symptoms were reported. In particular, abnor-

mal severe bleeding during polypectomies was reported in two cases

(Li-1 III.4, Li-3 II.1), requiring re-hospitalization in ICU in one case. In

one family (Li-4), idiopathic myopathy was reported in the three vari-

ant carriers (III.1, III.2, and III.3).

3.3 | Family history of individuals with P/LP AXIN2
variants

Detailed family history data were available for 9 index cases

(Figure 3).

Only 10 relatives were tested for AXIN2 variant and 5 of them

were found to carry the P/LP variant identified in their family. Never-

theless, adenomatous polyps, CRC or intestinal cancer were reported

in a number of relatives. A large variety of other cancers were also

observed, including a salivary gland cancer at 50 in one first-degree

relative with oligodontia (Li-4 II.2), and a head-and-neck cancer before

64 in another relative with adenomatous polyposis (Li-1 II.2).

Tooth agenesis was frequently reported (16 individuals from

5 unrelated families). Notably, oligodontia was reported in seven

first-/second-degree relatives on three generations in one family

(Li-4).

3.4 | Genotype–phenotype correlation

To look for potential genotype–phenotype correlation, P/LP AXIN2

variants identified in our series were classified according to their

nature and location in the gene. All the variants identified in exon 6 or

8 were truncating and associated with colorectal adenomatous poly-

posis. However, the colorectal phenotype was variable, the number of

adenomatous polyps ranging from several hundred at 53-year-old to

less than 50 at age 82.

The c.-12_8del variant (exon 2), was associated with a particular

phenotype, that is, oligodontia and ectodermal dysplasia in the index

case, and extracolonic (ampullary) cancer in his paternal uncle

(Figure 3, Li-5). Colorectal findings in this family consisted in only one

adenoma with low grade dysplasia in the father, and no evidence of

adenomatous polyps in the uncle who developed ampullary cancer.

No digestive manifestation was reported in the paternal grandmother

(age 77) who was recently shown to carry the variant, but no colonos-

copy has yet been performed. Of note, this variant has been reported

previously in a patient with breast cancer.21 No breast cancer was

reported in our family.

The presence of multiple tooth agenesis was not associated with

variant nature or location.

4 | DISCUSSION

AXIN2 is an important negative regulator of the canonical Wnt signal-

ing pathway, which plays a critical role in oncogenesis.7,8 Its key

TABLE 3 Distribution of LoFa and non-LoF AXIN2 coding variants in patients suspected of genetic predisposition to CRC and control
population.

Location (aa)4,24
Functional
domain Exon(s)

Patients Controls

Nb of LoF
variants (%) (n = 10)

Nb of non-LoF
variants (n = 60)

Nb of LoF
variants (%) (n = 8)

Nb of non-LoF
variants (n = 427)

1–22 – 2 1 (10%) 1 (1.67%) 2 (25%) 8 (1.87%)

23–30 TBM-1 2 1 (0.25%)

31–55 – 2 1 (1.67%) 11 (2.58%)

56–69 TBM-2 2 1 (10%) 5 (1.17%)

70–77 – 2 1 (1.67%) 3 (0.70%)

78–200 RGS 2 7 (11.67%) 39 (9.13%)

201–342 – 2–4 4 (6.67%) 1 (12.5%) 59 (13.82%)

343–396 GSK3β-bd 4–5 2 (3.33%) 29 (6.79%)

397–465 β-catenin-bd 5–6 9 (15%) 2 (25%) 45 (10.54%)

466–512 – 6 1 (10%) 6 (10%) 33 (7.73%)

513–718 SMAD3-bd 6–9 7 (70%) 23 (38.33%) 1 (12.5%) 136 (31.85%)

719–785 – 9–10 3 (5%) 2 (25%) 31 (7.25%)

786–843 DIX 10–11 3 (5%) 27 (6.32%)

Abbreviations: aa, amino acid; bd, binding domain; DIX, disheveled and Axin; GSK3, glycogen synthase kinase 3; LoF, loss of function; RGS, regulator of G-

protein signaling; TBM, tankyrase-binding motif.
aLoF coding variants include stop-gain, frameshift, and start-loss variants.
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F IGURE 3 Pedigrees of patients with germline P/LP AXIN2 variants. Filled symbols, affected; +, variant carrier; �, non-carrier; arrow, index case.
Ages at diagnosis or at information gathering (in brackets) or at death (d.) are indicated. For colorectal polyps, the cumulative number from age at first
presentation or screening colonoscopy to age at last contact is indicated. AOd, anodontia; AC, ampullary cancer; ad, adenoma; AdP, adenomatous
polyposis; BC, breast cancer; CUP, cancer of unknown primary; CRC, colorectal cancer; EDy, ectodermal dysplasia; HNC, head and neck cancer; hp,
hyperplastic polyps; IC, intestinal cancer (site not specified); IM, idiopathic myopathy; Lk, leukemia; Me, melanoma; OC, ovarian cancer; Od, oligodontia;
PC, prostate cancer; SBC, small bowel cancer; Sbi, spina bifida; SGC, salivary gland cancer; ssa, sessile serrated adenoma; TC, thyroid cancer.
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function is to serve as a scaffold, bringing together β-catenin and

GSK3β, thus promoting phosphorylation and subsequent proteasomal

degradation of β-catenin.3 Notably, the AXIN2 gene is a direct target

of the Wnt/β-catenin pathway and hence also acts as a negative feed-

back regulator of Wnt signaling.26–28 AXIN2 also interacts with

SMAD3, facilitating its activation by TGFβ receptors and leading to

stimulation of TGFβ signaling.24,29 The AXIN2 gene is negatively regu-

lated by TGFβ and mediates cross-talk between TGFβ and Wnt signal-

ing pathways.29

AXIN2 somatic mutations or promoter hypermethylation have

been reported in a variety of cancers, including CRC, gastric carcinomas,

ovarian endometrioid carcinoma, and medulloblastoma.6,30–33

F IGURE 3 (Continued)
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Mutations in AXIN2 have been reported in approximately 20%–25% of

mismatch repair (MMR)-deficient colorectal tumors and in a few other

MMR-deficient tumors.6,30–32 Almost all mutations correspond to one-

bp deletions/insertions in short mononucleotide repeat sequences

located in exon 8, leading to premature protein truncation,6,30–32 and

have been shown to activate β-catenin/TCF signaling.6

Only a few cases with AXIN2 germline variants and colorectal

adenomas or cancer have been described, raising questions about its

contribution to CRC (and other types of cancers) susceptibility. The

present study allowed characterization of the largest series of patients

carrying a P/LP AXIN2 variant identified in a context of CRC

predisposition.

Ten different P/LP AXIN2 variants, of which 8 are novel, were

identified in 11 patients from unrelated families. Comparison with

population-based controls showed that LoF AXIN2 variants are

strongly associated with colorectal adenomatous polyposis and cancer

susceptibility. The frequency was estimated to be 0.25%, indicating

that AXIN2 variants are a rare cause of colorectal polyposis and can-

cer. Notably, all P/LP AXIN2 variants identified in our series but two

(8/10, 80%) were located in the exon 6 or 8 and predicted to lead to a

truncated protein. The pattern of P/LP AXIN2 variants is similar to the

few cases previously described and somewhat similar to what is

observed in MMR-deficient tumors. These variants are expected to

lead to the synthesis of truncated proteins. Indeed, analysis of a

medulloblastoma with a frameshift mutation in AXIN2 exon 6 showed

efficient expression of the truncated protein (p.Val506*), as assessed

by Western blotting, suggesting no NMD.33 Moreover, RNA analysis

performed in blood and tumor ofone of our patients with a frameshift

variant showed expression of the two alleles, also arguing against

NMD (Figure S3). However, it cannot be excluded that some variants

may be associated with NMD. AXIN2 mutants with a premature stop

codon located in exon 6 or 8 (p.Val506*, p.Arg656*, p.Leu688*) have

also been shown in vitro to be more stable than the wild-type pro-

tein.6,33,34 These variants lead to absence of the DIX domain, which

mediates AXIN2 homo-oligomerisation, as well as binding to other

DIX domain-containing proteins and most notably Disheveled.35–40

AXIN2 oligomerization and AXIN2-Disheveled interaction are crucial

for regulation of the Wnt/β-catenin signaling.35,39,41 Cell transfection

with AXIN2 mutants results in the accumulation of β-catenin in the

cytoplasm and the nuclei and in activation of the Wnt pathway.6,34

These variants also impact the integrity of the SMAD3-binding

domain, which plays a role in TGFβ signaling, with possible impact on

the Wnt pathway.24,29 This suggests a major role of the DIX domain

and/or of the SMAD3-binding domain in colorectal tumorigenesis and

genetic predisposition to CRC. Conversely, these variants preserve

the APC, GSK3β-, and β-catenin-binding domains, suggesting selection

for AXIN2 mutants retaining some activity.

Only three AXIN2 truncating variants predicted to be devoid of

the β-catenin domain have been reported in patients suspected of

predisposition to CRC. The first one (c.254del, p.(Leu85Tyrfs*84)) was

identified in a patient with a rectal cancer but no polyposis at age

79,14 and another one (c.204_214del, p.(Ala69Phefs*68)) is reported

in the present study in a patient with AFAP who also carries a homo-

zygous pathogenic variant in MUTYH, raising the question of their

implication in the phenotypes. However, one variant (c.1049del, p.

(Pro350Leufs*13)) has been reported recently in a family in which five

of the seven variant carriers developed multiple colorectal polyps

or/and cancer.42 Further studies are needed to evaluate the implica-

tion of such variants in CRC susceptibility.

Only one of the 10 P/LP variants, that is, c.-12_8del, was not pre-

dicted to lead to a truncated protein, but to lead to absence of protein

synthesis. Given the multiple interactions between AXIN2 and other

components of the destruction complex, a decrease of the amount of

AXIN2 protein is likely to impact regulation of the Wnt/β-catenin

pathway, with consequences depending on the cell type. Indeed,

AXIN proteins are thought to be the concentration-limiting compo-

nent of the complex.4,43,44

AXIN2 variants have been reported in patients with non-

syndromic or syndromic oligodontia without evidence of CRC suscep-

tibility.9,45–47 Notably, most of these variants are missense, suggesting

that AXIN2 variants associated with isolated oligodontia differ in

nature from those observed in colorectal polyposis and CRC. The only

exception corresponds to a de novo frameshift mutation (c.1994dup,

p.(Asn666Glnfs*41)) identified in a 13-year-old-patient9 and a

17-year-old-patient,45 both with isolated oligodontia. However, given

the young age of these patients at genetic diagnosis, predisposition to

F IGURE 4 Panoramic radiograph of
patient Li-2 III.1. This radiograph shows
oligodontia with absence of 12 permanent
teeth (4 incisors [2 maxillary lateral and
2 mandibular central], 1 first molar,
3 second molars, and the 4 third molars).
White stars indicate missing permanent
teeth.
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CRC cannot be excluded. Of note, as our manuscript was being final-

ized, this variant was reported in a 65-year-old patient with colorectal

polyposis (57 adenomatous polyps),48 and in a family with tooth agen-

esis and variable clinical findings including polyps and CRC,49 and we

recently identified another variant at the same position (c.1994del, p.

(Gly665Alafs*24)) in a 66-year-old patient presenting with a similar

phenotype (46 adenomatous polyps), suggesting once again that trun-

cating variants in exon 8 are associated with colorectal polyposis and

cancer susceptibility. Conversely, one missense AXIN2 variant

(c.1387C>T, p.(Arg463Cys)) was reported in two siblings with attenu-

ated adenomatous polyposis at young age.15 However, loss of the

mutated allele in polyps argues against its pathogenicity.

In vitro experiments also suggest that AXIN2 truncating and mis-

sense variants may have different consequences on the Wnt signaling

pathway. Whereas AXIN2 variants p.Arg656*, p.Asn666Glnfs*41 and

p.Leu688* have been shown to result in increased levels of β-catenin

and over-activation of the β-catenin/TCF signaling,6,34,50 the p.His660Tyr

variant identified in a family with isolated tooth agenesis resulted in

decreased level of β-catenin and inhibition of the Wnt pathway.34

In line with previous reports,10–15,42 the colorectal phenotype

in the families reported in this study was extremely variable, rang-

ing from several hundred of adenomatous polyps to only one.

However, the number of adenomatous polyps was below 100 in

most cases and the age of onset of polyps and cancer was rela-

tively late (>35 year-old), indicating that AXIN2 variants are gener-

ally associated with attenuated polyposis. Serrated polyps

including sessile serrated adenomas and hyperplastic polyps were

also frequent. This phenotype is very similar to the one observed

in MUTYH-associated polyposis.51,52 Regarding digestive extraco-

lonic features, an ampullar carcinoma and a small bowel carcinoma

were reported, as well as a few duodenal polyps in one case. Given

our observations and previously reported cases, it seems reason-

able for patients with a P/LP AXIN2 variant to propose surveillance

protocols similar to those offered to patients with germline bialle-

lic variants of MUTYH.53,54 Multiple fundic gland polyps in associa-

tion with colonic polyposis have been previously reported in

a patient carrying a nonsense AXIN2 variant (p.(Trp663*)).10

However, there was no evidence of gastric polyposis or cancer in

our patients, although antral intestinal metaplasia was reported in

one case and some fundic gland polyps in another one.

Conversely, although a variety of other cancers have been

observed in AXIN2 variant-carriers, including pancreatobiliary ampullar

cancer (the present report), ovarian cancer (the present report and

Chan et al.42), breast cancer (the present report and Marvin and col-

leagues10,42), melanoma (the present report and Castiglia et al.55),

neuroblastoma,13 and keratoacanthoma,42 the link with AXIN2 vari-

ants remains unclear and would require larger series to evaluate the

actual risk. Particular attention should be paid to the risk of salivary

gland cancer and head and neck cancer as they were observed in

three relatives, including one with oligodontia and one with adenoma-

tous polyposis.

In line with previous reports9–12 oligodontia was frequent in our

patients, being observed in 69%. Therefore, association of colorectal

polyposis and/or CRC with oligodontia is highly predictive of a germline

pathogenic variant in AXIN2. Oligodontia was associated with ectoder-

mal dysplasia phenotype in one case, similar to the description by Mar-

vin et al.10 Intriguingly, whereas AXIN2 variants are only associated with

tooth agenesis, supernumerary teeth together with odontomas and

impacted teeth are observed in some patients with FAP caused by inac-

tivating APC variants, indicating that activation of the Wnt pathway can

be associated with overproduction as well as failure of tooth develop-

ment. This underlines the complexity of the role and regulation of the

Wnt pathway in tooth development.56

A variety of other symptoms were reported in our patients,

including severe abnormal bleeding during polypectomy in two cases,

and antral angiodysplasia and a tendency toward gastrointestinal

bleeding in one of them. Although it is not possible to establish a link

with AXIN2 variants, this should be taken into account when perform-

ing invasive procedures in these patients. In one family, idiopathic

myopathy was reported in the three variant carriers. This manifesta-

tion may be coincidental but fibromyalgia has been reported in

another patient with a truncating AXIN2 variant.10 Moreover,

AXIN2-dependant Wnt/β-catenin signaling has been shown to be

involved in myotube formation.57

In conclusion, our study provides additional evidence of a contri-

bution of AXIN2 to CRC susceptibility, arguing for its inclusion in

hereditary colorectal polyposis and cancer gene-panels. This study

also extends knowledge on AXIN2 variant spectrum and associated

phenotype. However, further collaborative studies are still needed to

precise the mechanism of pathogenicity, as well as genotype–

phenotype correlation and cancer risk and establish standardized

guidelines for counseling, surveillance and management of families

with AXIN2-associated colorectal polyposis or cancer. In the mean-

time, it may be proposed to follow the protocols adapted to the man-

agement of patients with germline biallelic variants of MUTYH.
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