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ABSTRACT
Purpose: The tight junction protein claudin-5 (CLDN5) is critical to the control of endothelial 
cellular polarity and pericellular permeability. The role of CLDN5 in chronic obstructive 
pulmonary disease (COPD) remains unclear. The aim of this study was to investigate the 
association between CLDN5 levels and clinical variables in patients with COPD.
Methods: In total, 30 patients with COPD and 30 healthy controls were enrolled in the study. 
The plasma CLDN5 level was checked in patients with stable or exacerbated COPD and in 
healthy controls.
Results: The mean plasma CLDN5 level of patients with COPD was 0.63 ± 0.05 ng/mL and 
that of healthy controls was 6.9 ± 0.78 ng/mL (P = 0.001). The mean plasma CLDN5 level was 
0.71 ± 0.05 ng/mL in exacerbated COPD patients and 0.63 ± 0.04 ng/mL in patients with stable 
COPD (P < 0.05). The plasma CLDN5 level among COPD subjects was correlated with the 
smoking amount (r = −0.530, P = 0.001). The plasma CLDN5 level in stable COPD patients was 
correlated with forced expiratory volume in one second (FEV1, %pred.) (r = −0.481, P = 0.037).
Conclusions: The plasma CLDN5 level was not correlated with age. CLDN5 may be involved 
in the pathogenesis of COPD. Further studies having a larger sample size will be needed to 
clarify CLDN5 in COPD.
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INTRODUCTION

Claudins are structural molecules of tight junctions (TJs).1 Twenty-seven claudins are known, 
and their expression is responsible for changes in the electrolyte and solute permeability of 
cell layers.2 Claudins 1, 3, 4, 5, 7, 8 and 18 are expressed in human bronchi and bronchioles.3,4 
An integral membrane protein, claudin-5 (CLDN5), is mainly expressed by the vascular 
endothelium, including in the pulmonary microcirculation, and is a critical component of 
endothelial TJs that control pericellular permeability.5 CLDN5, albeit expressed weakly in 
the epithelium, is expressed strongly in the endothelium of normal lung and intensely in the 
endothelium of lungs with interstitial pneumonia.4

Lung CLDN5 expression tends to be inversely correlated with the severity of lung injury. 
CLDN5 expression was more increased in injury-resistant mouse strains compared with 
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injury-sensitive mouse strains subjected to acrolein-induced acute lung injury.6 CLDN5 was 
down-regulated in lung tissue in human immunodeficiency virus type 1 (HIV-1)-infected 
patients with interstitial pneumonitis.7 The plasma CLDN5 levels were lower in patients 
with stable asthma compared with in control subjects and higher in those with exacerbation 
compared with in those with stable asthma.8-10

Chronic obstructive pulmonary disease (COPD) is characterized by a progressive 
deterioration of lung function. In many patients, the disease course is punctuated by 
exacerbations, an acute worsening of symptoms that, in severe cases, can necessitate 
hospitalization and even result in death.11,12 Exacerbations are the major cost driver, 
directly and indirectly, in COPD.13 COPD exacerbations cluster in time and patients who 
have experienced 1 episode are at increased risk of further exacerbations.14 Furthermore, 
exacerbations accelerate the deterioration of lung function,15 which in turn increases the 
likelihood and severity of further exacerbations.

However, there has been no report on the biology of CLDN5 in COPD. We thus investigated 
the association between circulating CLDN5 levels and clinical variables in patients with COPD.

MATERIALS AND METHODS

Subjects
We collected clinical data from 30 COPD patients registered in a cohort of the Genome 
Research Center for Allergy and Respiratory Diseases in Korea. All patients were randomly 
recruited from Soonchunhyang University Bucheon Hospital. The biospecimens and data 
used for this study were provided by the biobank of Soonchunhyang University Bucheon 
Hospital, a member of the Korea Biobank Network.

Both male and female adults were enrolled, aged 40 years and over and with a clinical 
diagnosis of stable COPD or moderate-to-severe COPD (GOLD 2015 criteria)16 and a smoking 
history of at least 10 pack-years. Both current and ex-smokers were included. Inclusion 
depended on confirmed post-bronchodilator spirometry criteria: forced expiratory volume 
in 1 second (FEV1) ≥ 30% and < 70% of the predicted normal and FEV1/forced vital capacity 
(FVC) < 0.70. Key exclusion criteria included a history of a clinically significant disease other 
than COPD that could interfere with the assessments (including asthma), and a history of 
malignancy within the past 5 years.

All subjects17 underwent standardized assessments, which included analyses of the complete 
blood cell count with differential counts, chest posteroanterior radiography and spirometry. 
All data were collected at the time of stable status and during the period of exacerbation. 
The healthy control subjects were recruited from the spouses of patients or members of the 
general population, based on the following criteria: 1) negative responses on a screening 
questionnaire for respiratory symptoms and other respiratory diseases, 2) FEV1 values > 80% 
of predicted values, and 3) normal findings on simple chest radiographs. Exclusion criteria 
included respiratory infection during inclusion, asthma, vocal cord dysfunction, obstructive 
sleep apnea, Churg-Strauss syndrome, cardiac dysfunction, allergic bronchopulmonary 
aspergillosis or poor adherence to treatment. This study was approved by Soonchunhyang 
University's Institutional Review Board.
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COPD exacerbation: Defined as a worsening of respiratory symptoms that required treatment 
with oral corticosteroids, antibiotics or both.

Spirometry
Spirometric testing was performed in accordance with American Thoracic Society (ATS)/
European Respiratory Society (ERS) standards18 using established reference values19 with 
modification.17 Spirometry was performed before and after bronchodilator use. Baseline FVC 
and FEV1 measurements were obtained in the absence of bronchodilator use (within 8 hours).20 
Basal and post-bronchodilator FEV1 and FVC values were measured. Vmax Series 2130 Autobox 
Spirometer (Sensor Medics, Yorba Linda, CA, USA) was used.

Body mass index (BMI)
The BMI21-24 was calculated as weight (kg)/height (m2).

Enzyme-linked immunosorbent assay (ELISA)
Plasma CLDN5 level was measured by ELISA (USCN, Wuhan, China). To compare results 
from different plates, test sample optical densities (ODs) were adjusted relative to the 
positive and negative control samples supplied in each kit. The mean OD of duplicate wells 
was calculated. The index value of each tested serum sample was calculated by the following 
formula: index = (OD of tested serum − OD of negative control)/(OD of positive control − OD 
of negative control) × 100. The lower limit of detection was set at 0.061 ng/mL for CLDN5 as 
per the manufacturer's recommendations.

Statistical analysis
The data were entered into the SPSS statistical software package (ver. 14.0; SPSS Inc., Chicago, 
IL, USA) for analysis. The data are expressed as means ± standard deviation (SD) or standard 
error of the mean (SEM). Group differences were compared using the 2-sample t test, Mann-
Whitney test or Pearson's χ2 test for normally distributed, skewed and categorical data, 
respectively. Differences between the patient populations were analyzed by the χ2 test with 
Fisher's exact test when low expected cell counts were encountered. A P value of < 0.05 was 
considered to indicate statistical significance.

RESULTS

Clinical characteristics of the subjects
The period of study was from January 2014 to November 2017. The clinical characteristics 
of 30 COPD patients (mean age = 67.61 ± 6.4 years) and 30 control subjects (66.3 ± 7.4 years) 
are presented in Table. The initial FEV1 (%pred.), FVC (%pred.) and FEV1/FVC values were 
significantly lower in COPD patients than in control subjects. BMI was significantly lower in 
patients with COPD than in control subjects. FEV1%pred., FVC%pred. and FEV1/FVC values 
were significantly lower in patients with exacerbated COPD than in those with stable COPD. 
Blood neutrophil percents were significantly higher in exacerbated COPD patients than in 
those with stable COPD.

Alterations of CLDN5 levels in patients with COPD
The mean plasma CLDN5 level of patients with COPD was 0.63 ± 0.05 ng/mL and that of 
healthy controls was 6.9 ± 0.78 ng/mL (Fig. 1A, P = 0.001). The mean plasma CLDN5 level was 
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0.71 ± 0.05 ng/mL in patients with exacerbated COPD and 0.63 ± 0.04 ng/mL in those with 
stable COPD (Fig. 1B, P < 0.05).

Relationship of circulating CLDN5 levels with clinical variables in patients 
with COPD
The plasma CLDN5 level was correlated with the smoking amount in COPD patients 
including stable and exacerbated status (Fig. 2, r = −0.530, P = 0.001, COPD STA r = −0.007, 
COPD EXA r = −0.006). The plasma CLDN5 level in COPD patients including stable and 
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Table. Clinical characteristics in patients with COPD
Variables Control subjects COPD patients

Stable Exacerbated
No. of subjects 30 30
Sex (male/female) 14/16 30/0
Age (of initial visit) (yr) 66.34 ± 7.4 67.61 ± 6.4*
Smoking status (NS/ES/CS) 28/2/0 1/18/11
Cigarettes smoked (pack/yr) 38.17 ± 24.50
Medication (ND/ICS/OCS/ICS+OCS) 30/0/0/0 13/15/1/1 9/18/1/2
BMI (kg/m2) 24.7 ± 1.97 21.38 ± 2.24*
Initial lung function

FEV1 (%pred.) 107.77 ± 21.93 66.90 ± 23.59*
FVC (%pred.) 91.23 ± 15.50 44.43 ± 13.89*
FEV1/FVC 82.87 ± 8.13 47.10 ± 12.17*

Stable and exacerbate lung function
FEV1 (%pred.) 66.90 ± 23.59 56.00 ± 14.65†

FVC (%pred.) 44.43 ± 13.89 35.67 ± 12.37†

FEV1/FVC 47.10 ± 12.17 43.75 ± 9.04†

Blood WBC (/µL) 5,580.7 ± 1,653.6 7,699.4 ± 2,202.8* 11,341.7 ± 3,804.2†

Blood eosinophil (%) 2.30 ± 1.35 2.48 ± 1.84 2.42 ± 2.82
Blood neutrophil (%) 55.20 ± 10.99 58.96 ± 8.88* 70.96 ± 17.42†

Data expressed as mean ± standard deviation.
COPD, chronic obstructive pulmonary disease; NS, non-smokers; ES, ex-smokers; CS, current smokers; ND, not done; ICS, inhaled corticosteroid; OCS, oral 
corticosteroid; BMI, body mass index; FEV1, forced expiratory volume in one second; %pred., % of predicted value; FVC, forced vital capacity; WBC, white blood cells.
*P < 0.05 compared with control subjects; †P < 0.05 compared with stable COPD.
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Fig. 1. Plasma CLDN5 levels in patients with COPD and control subjects (A), and in patients with stable or exacerbated COPD (B). 
NC, normal control; CLDN5, claudin-5; COPD, chronic obstructive pulmonary disease; STA, stable; EXA, exacerbated. 
*P < 0.05, control vs. STA COPD; †P < 0.05, STA vs. EXA COPD.



exacerbated status was correlated with FEV1%pred. (Fig. 3, r = −0.481, P = 0.037). The plasma 
CLDN5 level was not correlated with age.

DISCUSSION

In this study, we investigated the role of circulating CLDN5 in patients with stable or 
exacerbated COPD. Several novel findings emerged. First, we demonstrated that the CLDN5 
level decreased in patients with COPD. Secondly, we found that the CLDN5 level increased 
in patients with COPD exacerbation. Thirdly, the CLDN5 level was correlated with clinical 
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variables, such as smoking amount, BMI and lung function, suggesting that CLDN5 be 
involved in pathogenesis of COPD.

TJs act as a semipermeable barrier (or gate) to the paracellular transport of ions, solutes 
and water as well as cells, and are considered to also function as a fence that divides apical 
and basolateral domains of plasma membranes.22,23 In addition, like other cell–cell and 
cell–extracellular matrix junctions24 TJs coordinate a variety of signaling and trafficking 
molecules that regulate cell differentiation, proliferation and polarity, thereby serving as a 
multifunctional complex.25-27 These functions of TJ are critical for establishing via epithelial 
and endothelial cell sheets, distinct tissue compartments within the body as well as for 
maintenance of homeostasis. The CLDN5 expressed highly by the endothelium and also 
expressed in alveolar epithelial cells.1,5,28,29 Our previous study of acrolein-induced acute lung 
injury in different mouse strains showed that CLDN5 more increased in injury-resistant 
strains as compared with injury-sensitive strains,1,6 indicating that lung CLDN5 expression 
tends to be inversely correlated with the severity of lung injury. In HIV-1-infected patients with 
interstitial pneumonitis, CLDN5 was down-regulated in lung tissue.7

The alveolar barrier has dual functions, which plays a protective role in acute respiratory 
distress syndrome through promoting blood-brain barrier function and has increased 
sensitivity to ventilator-induced lung injury.1

COPD, the fourth-leading cause of death worldwide,30 is induced by environmental exposure 
to noxious gases, particles, indoor fumes and pathogens, and most importantly, by active or 
passive exposure to cigarette smoke. COPD is characterized by progressive airflow limitation due 
to an abnormal inflammatory response and structural pathological remodeling of the lung due 
to exposure to these environmental agents.30 COPD is an inflammatory disorder characterized 
by progressive airflow limitation. Exacerbations of COPD lead to a progressive decline in 
lung function, with even a single episode of exacerbation having a prolonged effect on health 
status.31,32 COPD exacerbations aggravate pulmonary emphysema by triggering bacterial or viral 
infections. The mechanisms by which COPD inflammation causes TJ alterations are unclear.34 In 
this study, neutrophil numbers in blood were more increased in patients with COPD than those 
in control subjects as well as in exacerbated patients than in stable patients with COPD, suggest 
that neutrophilic inflammation can cause aggravate COPD status.

Airway microvascular permeability and disruption of vascular integrity are increased in the 
airways of patients with COPD, disease exacerbation or lung injury.34-37 Increased permeability 
of endothelial cells could be disintegration of TJs,34-36 which causes paracellular permeability 
to solutes and large molecules leading to airway inflammation.33 The expression of structural 
membrane proteins—such as ZO-1, CLDN5 and AmotL1—is related to TJ permeability.

However, the role of claudins in patients with COPD has not yet been fully elucidated. 
It is likely that patients with COPD who are former or current smokers have endothelial 
dysfunction, resulting in a change in lung function. Clearly, these observations need to 
be clarified in future studies.34 Therefore, we investigated the impact of CLDN5 of the 
endothelial parts of the alveolar barrier in patients with exacerbated or stable COPD. The 
CLDN5 level more decreased in patients with COPD compared with healthy controls and 
more increased in those with exacerbated COPD compared with those with controlled COPD, 
suggesting that CLDN5 may be a diagnostic marker and therapeutic target in COPD. Further 
studies are needed to clarify the role of CLDN5 in the pathogenesis of COPD.
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Cigarette smoke contains a complex mixture of approximately 4,800 chemicals,37 hampering 
determination of the cellular mechanisms that lead to smoking-related features of COPD and 
airway injury. A recent study demonstrated a transient decrease in airway epithelial barrier 
function in bronchial epithelial cells.38 In addition, human adenocarcinoma Calu-3 cells 
exposed to mainstream smoke exhibited decreased transepithelial electrical resistance as a 
result of a highly regulated yet undefined process, rather than the cytotoxicity of cigarette 
smoke.39 Down-regulation of apical TJ components including claudins was observed 
following chronic exposure of bronchial epithelial cells to cigarette smoke extract.40,41 
However, there are no data on the endothelial TJ protein CLDN5 in patients with COPD. 
In the present study, there was a negative relationship between CLDN5 and the smoking 
amount, suggesting that smoking may damage lung endothelial cells and down-regulate 
CLDN5. COPD is defined as “an inflammatory disease of the lungs caused by long-term 
inhalation exposure to noxious substances such as tobacco smoke.” The most important 
causative factor for COPD is cigarette smoke (current and passive smoking). Furthermore, 
smoking promotes exacerbation of pulmonary function decline with aging, and the decrease 
in pulmonary function is greater compared with that in nonsmokers.41 In this study, the 
CLDN5 level was negatively correlated with lung function, suggesting that smoke affects 
endothelial TJs, leading to structural damage and deterioration of lung function.

Mild/moderate COPD may result in structural and functional abnormalities of skeletal 
muscles and reduce endurance, even in the absence of significant muscle wasting.42-44 Body 
composition in mild/moderate COPD is similar to that in healthy subjects, albeit with 
decreased fat-free mass or a higher fat percentage. In this study, the level of CLDN5 and BMI 
were decreased in COPD patients than in control subjects, suggesting that a decrease in 
body mass results in a decrease in blood vessel mass or integrity, leading to a decrease in the 
CLDN5 level.

In conclusion, these data suggest that CLDN5 may be involved in the pathogenesis of 
COPD and related with clinical variables for COPD, which could lead to further step for the 
evaluation for CLDN5 in COPD.
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