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Abstract
We examine reaction networks (CRNs) through their associated continuous-time
Markov processes. Studying the dynamics of such networks is in general hard, both
analytically and by simulation. In particular, stationary distributions of stochastic
reaction networks are only known in some cases. We analyze class properties of
the underlying continuous-time Markov chain of CRNs under the operation of join
and examine conditions such that the form of the stationary distributions of a CRN is
derived from the parts of the decomposed CRNs. The conditions can be easily checked
in examples and allow recursive application. The theory developed enables sequential
decomposition of the Markov processes and calculations of stationary distributions.
Since the class of processes expressible through such networks is big and only few
assumptions are made, the principle also applies to other stochastic models. We give
examples of interest from CRN theory to highlight the decomposition.

Keywords Stochastic reaction networks · mass-action system · product-form
stationary distributions · Markov process · Continuous-time Markov process

Mathematics Subject Classification 60J28 · 60K35 · 80A30 · 82C20 · 92C42 · 92B05 ·
92E20

1 Introduction

Reaction networks (CRNs) form a broadly applicable paradigm to describe the inter-
actions of different constituents through mathematical models. CRNs are vital for the
prediction and analysis of data in biochemistry, systems biology and cellular biol-
ogy, and have found further applications (May 1973; W. Weidlich 2012; Goutsias and
Jenkinson 2013). Besides their relevance in applications, CRNs continue to drive the
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development of areas of mathematics such as dynamical systems theory, stochastic
processes and applied algebraic geometry (Anderson et al. 2010; Gorban and Yablon-
sky 2015).

A CRN consists of reactions with associated reaction rates that govern the speed
of the reactions. CRNs are often defined via the reaction graph, that highlights the
interactions between species and their transformations. As an example consider the
enzymatic Michaelis-Menten mechanism, where an enzyme E catalyzes the conver-
sion of a substrate S into a product P through an intermediate molecule ES:

S + E � ES → P + E . (1)

Either a deterministic or a stochastic model is chosen to represent the dynamics of
CRNs. Traditionally, deterministic models have been the preferred modelling choice.
However, with the emergence of systems biology, cellular biology and synthetic biol-
ogy the importance of modelling systems with small molecular counts have become
important. Stochastic models of CRNs are used when the molecular counts in the
system are low. They typically consist of continuous time Markov chains (CTMC),
which apply to many processes in living systems (Gardiner 2004; Goutsias and Jenk-
inson 2013; Mélykúti et al. 2014). Furthermore the efficient mathematical analysis
of their stochastic properties is an invaluable tool for their application. Two realms
of investigation are generally of interest for such systems. The transient behaviour
describes the time-dependent dynamics, whereas the stationary behaviour describes
the dynamics in the long term after the system has reached an equilibrium.

Studying the dynamics of stochastic CRNs is difficult in general, and so they are
often examined via simulations (Gillespie 1977). The stationary behaviour and its
characterization are typically analysed via the master equation. In many cases, the
stationary behavior of Markov chains can be described through their stationary dis-
tribution. Exact solutions for the stationary distribution (if it exists) are not known
for most systems, except for some special cases. Complex balanced reaction net-
works are fairly well understood by now. Deterministic complex balanced CRN have
their stochastic counterparts with product-form stationary distributions of Poisson-
type (Anderson et al. 2010). The reverse statement is essentially also true: a stochastic
CRN with product-form stationary distribution of Poisson-type (on any irreducible
component) is complex balanced (Cappelletti and Wiuf 2016). Complex balanced
CRNs are in particular weakly-reversible. Apart from that, there are some results on
form of stationary distributions of non-weakly reversible reaction networks, like, e.g.
autocatalytic CRN (Hoessly and Mazza 2019).

Here, we study unions (or, joins) of reaction networks in the stochastic setting. Our
main focus is the form and existence of stationary distributions. While (Hoessly and
Mazza 2019) focussed on a particular class of interest of non-weakly reversible CRNs
with applications in particle systems, life sciences and condensation, we generalise
here the underlying proof principle for stationary distributions. We give tools to sys-
tematically find the stationary distributions for the joined CRN, given the stationary
distributions of the smaller CRNs. To be more precise, in CRNs where the stationary
distributions of the decompositions are of product form and concur in the species in
common (or factor in a more general way), we can derive the stationary distribution of
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the full CRN from its parts. These are sufficient conditions, and examples can come
from any combination of CRNs as long as the stationary distributions are of product
form and satisfy some condition on the state spaces. Since the class expressible through
such networks is big (i.e. interacting particle systems, cf., e.g., (Liggett 2012)), the
principle also applies to other stochastic models. As an example, consider (Hoessly
and Mazza 2019) for the relation to the inclusion process. In particular, autocatalytic
CRNs and more general non-weakly reversible as well as some weakly reversible
(including all complex balanced) CRNs fall under the framework we consider.

One result is then that given a reaction network G that can be decomposed as
a reaction-disjoint union G = G1 ∪ G2, with G1,G2 essential and of product form
stationary distributions such that the product-form functions agree in the species in
common, the stationary distribution of G is of product form and derived from G1,G2
under a summability condition.

As an illustration consider the following CRN with Mass-action kinetics.

S1
κ1�
κ2

S2
κ5�
κ6

S3, 2S1
κ3�
κ4

S1 + S2, 2S3
κ7�
κ8

S2 + S3

Then, taking as G1 the reactions between S1, S2, and G2 the reactions between S2, S3,
we can apply our result to derive the product-form stationary distribution of G =
G1 ∪ G2 for all positive rate constants. The stationary distribution is (see Example 1)

π(x1, x2, x3) = 1

Z
f1(x1) f2(x2) f3(x3),

where the product form functions are

f1(x1) = 1

x1!
x1∏

l=1

κ2 + κ4(l − 1)

κ1 + κ3(l − 1)
, f2(x2) = 1

x2! , f3(x3) = 1

x3!
x3∏

l=1

κ6 + κ8(l − 1)

κ5 + κ7(l − 1)
.

As the overall CRN G = G1 ∪ G2 is reversible and of deficiency two, such examples
show that weakly reversible non-complex balanced CRNs can have product-form
stationary distributions.

As another example consider the next CRN that can be decomposed in a complex
balanced (reactions between S3, S5 and between S1, S3) and a join of a non-weakly
reversible and aweakly reversible non-complex balanced CRN(all the other reactions)

S1� S2 � S3� S4, S1+S2→2S2, S2+S3→2S2, 2S4�S3+S4, 3S3 � 3S5

2S1 2S3

S1 + S3
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with product-form stationary distributions (see Example 3)

π(x1, x2, x3, x4, x5) = 1

Z
f1(x1) f2(x2) f3(x3) f4(x4) f5(x5)

with f1, f3, f5 of Poisson-form, f2 of a form from autocatalytic CRNs and f4 as f1
of the previous example.

Structure

In Sect. 2 we introduce basic definitions and terminology for reaction networks. Then
we introduce the models for CRNs in Sect. 3 and focus on the stochastic model by
reviewing definitions, properties, and results on stationary distributions, where at the
endwe introduce unions of CRNs. In Sect. 4 we study stochastic CRNs under joins and
give some results on extending the stationary distributions from smaller CRNs to their
joins. Sect. 5 introduces some examples to outline the application of the developed
theory.

Relation to existing approaches

Previous approaches for extending analytical results on stationary distributions for
reaction networks have focussed on gluing one state (Mélykúti et al. 2014) or two
states (Mélykúti and Pfaffelhuber 2014) of finite irreducible CTMCs.

2 Reaction networks

A reaction network G consists of a finite set of species S = {S1, · · · , Sn}, a finite
set of complexes, and a finite set of reactions R, which is then denoted as the triple
G = (S, C,R).

We represent the complexes by vectors in Z
n≥0, and write reactions as ν → ν′,

where we assume ν, ν′ ∈ C and ν �= ν′ for all ν → ν′ ∈ R.
For a reaction ν → ν′, ν is called the reactant and ν′ the product. Every reaction

ν → ν′ has a positive rate constant κν→ν′ associated. Then, given the vector of
reaction rates κ ∈ R

R
>0, we denote the CRN with rates by (G, κ).

2.1 Basic terminology

We illustrate reaction networks by their reaction graph, which is the directed graph
obtained by taking the vertices C and arrowsR. Connected components of the reaction
graph are called linkage classes. A CRN is reversible if for every ν → ν′ ∈ R,
ν′ → ν ∈ R. A CRN is weakly reversible if for any reaction ν → ν′ ∈ R, there is a
directed path in the reaction graph that begins with ν′ and ends in ν. The molecularity
of a reaction ν → ν′ ∈ R is equal to the number of molecules in the reactant |ν| =∑

i νi , and correspondingly we say such reactions are unimolecular, bimolecular,
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three-molecular or n-molecular. The stochiometric subspace spans a subspace of Rn

and is given as T = spanν→ν′∈R{ν − ν′} ⊂ R
n . The deficiency of a reaction network

G is given by δ = |C|−�−dim(T ), where � is the number of linkage classes. A CRN
G is conservative if there is a vector c ∈ R

S
>0 such that for any reaction ν → ν′ ∈ R

we have
∑

i∈S νi ci = ∑
i∈S ν′

i ci .

3 Models and kinetics for reaction networks

3.1 Stochastic model

The progression of species counts is described by a vector X(t) = x ∈ Z
n≥0, which

changes according to the ’firing’ of the reactions ν → ν′ by jumping from x to
x + ν′ − ν with transition intensity λν→ν′(x). The Markov process with intensity
functions λν→ν′ : Zn≥0 → R≥0 can then be given by

P(X(t + Δt) = x + ν′ − ν|X(t) = x) =
∑

ν→ν′∈R|−ν+ν′=ξ

λν→ν′(x)Δt + o(Δt),

with the generator A acting by

Ah(x) =
∑

ν→ν′∈R
λν→ν′(x)(h(x + ν′ − ν) − h(x)),

for h : Zn → R.
The transition intensity under mass-action kinetics (more general kinetics are pos-

sible as well (Anderson et al. 2010; Anderson and Nguyen 2019)) associated to the
reaction ν → ν′ is

λν→ν′(x) = κν→ν′
(x)!

(x − ν)!1x≥ν, (2)

where z! := ∏n
i=1 zi ! for z ∈ Z

n≥0, and x ≥ ν if and only if this holds for every
component, i.e. xi ≥ νi ∀Si ∈ S.

General inquiry into stochastic CRNs proceeds by inspection of the underlying
CTMC. After identifying the class structure and the (so-called) stoichiometric com-
patibility classes where the dynamics is confined to, the state space is decomposed
into different types of states (cf. (Norris 1997)). On irreducible components, positive
recurrence is equivalent to non-explositivity together with existence of an invariant
distribution (Norris 1997).

The classification and description of the stochastic behaviour of CRNs is complex.
Many interesting results were investigated, like positive recurrence (Anderson and
Kim 2018; Anderson and Nguyen 2020), non-explositivity of complex balanced CRN
(Anderson andKurtz 2018), extinction/absorption events (Johnston et al. 2018;Hansen
and Carsten 2020), quasi-stationary distributions (Hansen and Carsten 2020) or the
classification of states of some stochastic CRNs (Xu et al. 2019). However, even in
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situations where theorems apply, we are far from a complete characterization, see
(Anderson and Kim 2018; Anderson and Kurtz 2018; Johnston et al. 2018; Hansen
and Carsten 2020; Xu et al. 2019) for examples.

We next introduce some terminology for stochastic reaction networks. A reaction
y → y′ is active on x ∈ Z

n≥0 if x ≥ y. Similarly a reaction y → y′ is active on a
set A ⊆ Z

n≥0 if there is a state x ∈ A such that the reaction is active on x . This will
mostly be used for A = Γ an irreducible component. A state u ∈ Z

n≥0 is accessible
from x ∈ Z

n≥0 if it can be reached from x via the underlying CTMC. We will denote
this by x →G u.

A non-empty set Γ ⊂ Z
n≥0 is an irreducible component of G if for all x ∈ Γ and

all u ∈ Z
n≥0, u is accessible from x if and only if u ∈ Γ .

We say G is essential if the state space is a union of irreducible components, and G
is almost essential if the state space is a union of irreducible components except for a
finite number of states.

3.2 Stationary distributions of reaction networks

Let X(t) denote the underlying stochastic process associated to a reaction network
on an irreducible component Γ . Then, given that the stochastic process X(t) is posi-
tive recurrent and starts in Γ , we have that the limiting distribution is the stationary
distribution, i.e.

lim
t→∞ P(X(t) ∈ A) = πΓ (A), for any A ⊂ Γ .

In particular, if the underlying CTMC is positive recurrent, the stationary distribution
πΓ on an irreducible component Γ is unique and describes the long-term behavior
(cf., e.g. (Norris 1997)).

The stationary distribution is determined by the master equation of the underlying
Markov chain:

∑

ν→ν′∈R
π(x + ν − ν′)λν→ν′(x + ν − ν′) = π(x)

∑

ν→ν′∈R
λν→ν′(x), (3)

for all x ∈ Γ . A popular choice as rate function is mass-action kinetics, which then
gives the following master equation:

∑

ν→ν′∈R
π(x + ν − ν′)κν→ν′

(x − ν′ + ν)!
(x − ν′)! 1x≥ν′ = π(x)

∑

ν→ν′∈R
κν→ν′

(x)!
(x − ν)!1x≥ν . (4)

Solving Eq. (3) is in general a challenging task, even when restricting to the mass-
action case.

Remark 1 Observe that for conservative CRNs the irreducible components are finite.
Therefore the CTMC dynamics are positive recurrent (e.g., by Reuters criterion, c.f.,
e.g. (Norris 1997)) on these irreducible components and the limiting distribution is the
unique stationary distribution. Recall in particular that for infinite CTMCs existence
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of stationary distribution does not imply positive recurrence, cf., e.g. (Norris 1997, Ex
3.5.4) or (Anderson et al. 2018).

3.3 Known results on stationary distributions

Studying transient and stationary behaviour of reaction networks are formidable tasks
in general, and they are often examined via simulations (Gillespie 1977). Analytical
solutions for the stationary distribution (if it exists) are not known for most systems,
except for some special cases.

Some stationary distributions of weakly reversible reaction networks are well-
understood. Complex balanced CRNs have a Poisson product-form stationary dis-
tribution (Anderson et al. 2010) and can even be characterized by that. For (G, κ) a
complex balanced CRN and an irreducible component Γ , the stochastic system has
product-form stationary distribution of the form

π(x) = MΓ

cx

x ! , x ∈ Γ ,

where c ∈ R
n
>0 is a point of complex balance, cx := ∏

Si∈S cxii , and MΓ is a normal-
izing constant.

On the other hand, by (Cappelletti andWiuf 2016,Theorem5.1) any almost essential
stochastic reaction network with product-form stationary distribution of Poisson-type
(i.e. in the form as above) is deterministically complex balanced. Notice that since
complex balanced implies weakly reversible, these results do not apply to non-weakly
reversible CRNs. Results on both product-form stationary distribution and connec-
tion to the deterministic system extend to non-mass action kinetics (Anderson et al.
2010; Anderson and Nguyen 2019). Hence complex balanced CRNs are fairly well-
understood.

For other classes of CRNs some results are also known (Hoessly and Mazza 2019),
i.e. so-called autocatalytic CRNs, a class of non-weakly-reversible CRNs also have
product-form stationary distributions. Their product form functions come from an
infinite family of functions, where the first one specializes to the Poisson form as
above. So for a autocatalytic CRN in the sense of (Hoessly and Mazza 2019, § 3), the
stochastic dynamics has the product-form stationary distribution

π(x) = Z−1
Γ

∏

Si∈S
fi (xi ), (5)

with product-form functions

fi (xi ) = λ
xi
i

1

xi !
xi∏

l=1

(
1 +

ni∑

k=2

βk
i

k−1∏

r=1

(l − r)

)

on its irreducible components (λi and βk
i are determined by the autocatalytic CRN, cf.

(Hoessly and Mazza 2019, § 3)) and with ZΓ the normalising constant. Some other
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results on the stochastic behavior of CRN beyond complex balance are in (Bibbona
et al. 2020) or (Levien and Bressloff 2017).

Beyond these results little is known concerning explicit stationary distributions.

3.4 Balance equations for stationary distributions of CRNs

We start with a general definition for balance equations, and recover some classical
notions inRemark2.Thedefinitionbelowessentially states that stationarydistributions
factorise according to a decompositionof the reactions of the underlyingCRN(Hoessly
and Mazza 2019).

Definition 1 Consider a CRN (G, κ)with stochastic dynamics onΓ and π a stationary
distribution on Γ . We say (G, κ) is generalized balanced for π on Γ if there exists
{(Li , Ri )i∈A} a set of tuples of subsets of R with A an index set such that

⋃̇
i∈A

Li =
⋃̇

i∈A
Ri = R

such that for all i ∈ A and all x ∈ Γ we have

∑

ν→ν′∈Li

π(x + ν − ν′)λν→ν′(x + ν − ν′) = π(x)
∑

ν→ν′Ri
λν→ν′(x). (6)

Remark 2 The notion of generalized balanced includes the following:

1. reaction balanced with index given by reactions, i.e. the tuples of subsets are {(ν →
ν′, ν′ → ν)ν→ν′∈R}

2. complex balanced with index given by complexes, i.e. the tuples of subsets are
defined for C ∈ C LC = {ν → ν′ ∈ R|ν = C}, RC = {ν → ν′ ∈ R|ν′ = C}.

3. reaction vector balanced with index given by a ∈ Z
n , i.e. the tuples of subsets are

defined for a ∈ Z
n La = {ν → ν′ ∈ R|ν − ν′ = a}, Ra = {ν → ν′ ∈ R|ν − ν′ =

−a}.
but also combinations and other possibilities.

In this paper, the following will be often used.

Remark 3 Let the reactions of a CRN be divided intoR = R1∪R2, then it might hap-
pen that the stationary distribution factorises through these reactions. More formally
this corresponds to generalised balance with {(Ri ,Ri )i∈{1,2}}.
Furthermore generalized balanced distributions on irreducible components give sta-
tionary distributions for the reaction network.

Proposition 1 (Hoessly and Mazza 2019) If (G, κ) is a CRN with stochastic dynamics
on Γ that is generalized balanced for π , then π is a stationary distribution for (G, κ)

on Γ .
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3.5 Unions of reaction networks

Here we look at the operation of combining two reaction networks. Such operations
were already introduced and studied in the deterministic setting in (Gross et al. 2020)
where they studied the effects of combining reaction networks in the ODE setting with
respect to identifiability, steady-state invariants, and multistationarity. While we will
use the same framework, we study stationary properties of the stochastic model under
combination and focus only on the two cases of reaction-disjoint and non-reaction-
disjoint union.

We next introduce the formalisation of unifying reaction networks.

Definition 2 The union of reaction networks G1 = (S1, C1,R1) and G2 =
(S2, C2,R2) is

G1 ∪ G2 := (S1 ∪ S2, C1 ∪ C2, R1 ∪ R2) .

The union G1 ∪ G2 can be built under different assumptions between the underlying
reaction networks G1,G2. The following implications holds (Gross et al. 2020):

S1 ∩ S2 = ∅ ⇒ C1 ∩ C2 = ∅ or C1 ∩ C2 = {0} ⇒ R1 ∩ R2 = ∅ .

Consider now taking the union of CRNs with rates (G1, κ1), (G2, κ2), i.e. with κ1 ∈
R
R1
>0 , κ2 ∈ R

R2
>0 . We focus on the following two cases.

1. Gluing reaction-disjoint networks: If the two networks have no reactions in com-
mon (i.e., R1 ∩ R2 = ∅), then the vector of reaction rates of the union of the
reaction networks is equal to (κ1, κ2) ∈ R

R1∪R2
>0 .

2. Gluing over reactions: If the two networks have at least one reaction in common
(i.e., R1 ∩ R2 �= ∅), then the rates of the reactions of the union of the networks
which are common reactions (i.e. in R1 ∩ R2) are the sum, i.e., if ν → ν′ ∈ R1
with reaction rate κ1

ν→ν′ and ν → ν′ ∈ R2 with reaction rate κ2
ν→ν′ , then the

reaction rate of ν → ν′ ∈ R = R1 ∪ R2 is κν→ν′ = κ1
ν→ν′ + κ2

ν→ν′ .

If the two species sets are disjoint (S1 ∩S2 = ∅), then the dynamics of the reaction
networks G1 and G2 are independent of each other, hence some properties are directly
determined by the dynamics on G1 and G2 (cf. Remark 5 for more on this in the
stochastic case).

Remark 4 It is easy to see that both detailed balanced and complex balanced reaction
networks are not closed under reaction-disjoint unions. Consider, e.g., the following
example:

2A � A + B, A + 2B � 3B,

with G1 the part with two-molecular reactions and G2 as the three-molecular reactions.
The deficiency of G = G1 ∪ G2 is equal to one, hence for almost all parameters it will
not be complex balanced. However, it is easy to check that both G1 and G2 are detailed
balanced and hence complex balanced by themselves.
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4 Stochastic reaction networks under joins

Notation

Let G = G1 ∪ G2 be a reaction network obtained from a union of networks as in
Definition 2. We denote the projections by

p1 : ZS1∪S2 → Z
S1

p2 : ZS1∪S2 → Z
S2

p12(= p21) : ZS1∪S2 → Z
S1∩S2

p11 : ZS1∪S2 → Z
S1\(S1∩S2)

p22 : ZS1∪S2 → Z
S2\(S1∩S2)

pSi : ZS1∪S2 → Z

where pSi is the projection to the i th component.

4.1 Properties of stochastic dynamics under joins I

We first go through the case of a join where S1 ∩ S2 = ∅ for the sake of exposition
and to introduce the reader to the setting. For notations on CTMCs in the context of
CRNs we refer to § 3.1, or, e.g., (Norris 1997).

Remark 5 If G = G1 ∪ G2 is such that S1 ∩ S2 = ∅ and x, y ∈ Z
S≥0, then x → y with

dynamics of G if and only if both pi (x) →Gi pi (y)with dynamics of Gi , i = 1, 2. The
decomposition of state space with respect to irreducible components is simple. If Γ

is an irreducible component of G, then p1(Γ ) and p2(Γ ) are irreducible components
of G1, G2 such that Γ = p1(Γ ) × p2(Γ ). So, for Γ a positive recurrent irreducible
component we have

π(x) = π1(p1(x))π2(p2(x)),

where π1, π2 are the stationary distributions on p1(Γ ) and p2(Γ ) of G1, G2 (there
is no normalizing factor since the CTMC is a product). It is easy to see that the
stationary distribution on the irreducible component Γ is generalized balanced with
{(Ri ,Ri )i∈{1,2}} (cf. Remark 3 and Theorem 1 for a proof of a generalisation).

Remark 6 Even in the simplest setting of Remark 5 we can not say much concerning
class structure of an x ∈ Z

S≥0 given only information about the classes of p1(x) for
G1 and p2(x) for G2 (cf., e.g., the simple symmetric random walk on Zd ). In general,
x is surely transient for G if p1(x) is transient for G1 or p2(x) is transient for G2.

We next establish some simple correspondences for the decomposition of the state
space where we omit the proofs.

Lemma 1 The following are equivalent for a CRN G:
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1. G is essential.
2. For all x ∈ Z

S≥0 either there are no active reactions on x or we have that x →G x ′
implies x ′ →G x.

3. For all ν → ν′ ∈ R we have ν′ →G ν (i.e. ν is accessible from ν′ in G).

Lemma 2 Consider G = G1 ∪G2 as in Definition 2 and let x ∈ Γ be an element of an
irreducible component Γ of G.
(C1) If G is a join of reaction-disjoint networks(cf. Def. 2), then the following holds:

A reaction y → y′ ∈ R1 is active on x if and only if it is active on p1(x).
(C2) If both G1 and G2 are essential, then their union G is essential.

Remark 7 If G1 is almost essential and G2 is essential, their union G is not necessarily
almost essential. As an example consider the following:

G1 = {X → Y , 3Y → 3X}, G2 = {∅ � W }

Since for G the following part of state space {z ∈ Z
3|zW ≥ 0, zX = 0, zY = 2} is not

part of an irreducible component, G is not almost essential. In particular (C2) does not
extend to almost essential.

Remark 8 Even if G is essential, there might be no reaction-disjoint (or non-reaction
disjoint) decomposition such that G = G1 ∪ G2 with G1,G2 essential. As an example,
consider, e.g., the following CRN

∅ � S1, S2 → ∅, S1 → S1 + S2

which canbe seen as a simplemodel for gene-expression (Thattai andvanOudenaarden
2001). In this example the only essential subnetworks are ∅ � S1 and the CRN itself.

Lemma 3 We have the following implication for a reaction network G: G reversible
�⇒ G weakly reversible �⇒ 3. of Lemma 1 holds for G. In particular, reversible
and weakly reversible reaction networks are essential.

Also compareLemma3 to (Paulevé et al. 2014),which contains a similar result (written
with different notions). Furthermore we need the following Lemma which follows by
the definition of irreducible component.

Lemma 4 LetG = G1∪G2 be as inDefinition 2 and consider an irreducible component
Γ of G such that p1(Γ ) is a union of irreducible components of G1 (i.e. p1(Γ ) =⋃̇

i∈IΓ 1
i ). Then, if for x ∈ Γ , x ′ ∈ Z

S≥0 we have p1(x ′) →G1 p1(x) but p1(x) �→G1

p1(x ′), then x ′ /∈ Γ .

4.2 Stationary distributions of joins of reaction networks

Here we will generalise the setting of Remark 5 in a direction where we can still
deduce the form of a stationary distribution of the joined network G = G1 ∪ G2 from
the combinations of the stationary distributions of the separate reaction networks
G1,G2. Notice that there are no conditions on the type of kinetics.
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Theorem 1 Let G = G1 ∪G2 be a reaction network obtained from a union of reaction-
disjoint networks as in Definition 2 with S1 ∩ S2 �= ∅. Let Γ be an irreducible
component of G. Consider the following assumptions:

(B1) Assume p1(Γ ) is a union of irreducible components of the stochastic dynamics
of G1 (i.e. p1(Γ ) = ⋃̇

i∈IΓ 1
i ) with stationary distributions on the irreducible

components of the following form

π1(p1(x)) = 1

Z

∏

Si∈S1\S2

fi (xi )
∏

Si∈S1∩S2

f 1i (xi ).

(B2) Assume the same (i.e. as in (B1)) for G2, where we denote the stationary distri-
bution on an irreducible component of G2 by

π2(p2(x)) = 1

Z

∏

Si∈S2\S1

fi (xi )
∏

Si∈S1∩S2

f 2i (xi ).

(B3) Assume there is an α > 0 such that for all x ∈ Γ and all Si ∈ S1 ∩ S2 we have

α f 1i (xi ) = f 2i (xi ).

If (B1), (B2) and (B3) are satisfied, then G = G1 ∪ G2 has a product-form stationary
distribution of the form

π(x) = 1

Z

∏

Si∈S
fi (xi ), (7)

where for Si ∈ S1 ∩ S2 we set fi := f 2i on the irreducible component Γ if
(7) is summable. Furthermore G is then generalized balanced for π on Γ with
{(Ri ,Ri )i∈{1,2}}.
Proof It suffices by Definition 1 and Proposition 1 to show that for any x ∈ Γ the
master equation

∑

ν→ν′∈Ri

π(x + ν − ν′)λν→ν′(x + ν − ν′) = π(x)
∑

ν→ν′∈Ri

λν→ν′(x) (8)

is satisfied with solution (7) for i ∈ {1, 2}, which corresponds to generalized balanced
with {(Ri ,Ri )i∈{1,2}}. Note that it is enough to prove it for R1. Then we are done
by the symmetry of the assumption, and (7) is a stationary distribution, given it is
summable.

We next prove that the master Eq. (8) holds true for reaction set Ri = R1 with
solution (7). For x ∈ Γ by assumption p1(x) ∈ Z

S1≥0 is in an irreducible component of
G1. If this irreducible component is a singleton set, then the equation is trivially true.
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There are no active reactions ofR1 on x and the right side of (8) is zero. The left side of
(8) is zero as well since these states are transient, i.e. the stationary distribution is zero
on such states (cf. Lemma 4). Hence assume it is a non-trivial irreducible component
of G1, then inserting the proposed Ansatz (8) (modulo normalization) gives

∑

ν→ν′∈R1

∏

Si∈S
fi (xi + νi − ν′

i )λν→ν′(x + ν − ν′)

=
∏

Si∈S
fi (xi )

∑

ν→ν′∈R1

λν→ν′(x).
(9)

Since the reactions in R1 do not change the coordinates of S2 \ S1, we have for all
Si ∈ S2 \ S1 and all ν → ν′ ∈ R1 that fi (xi ) = fi (xi + νi − ν′

i ), i.e. we can factor
the equation as

∏

Si∈S2\S1

fi (xi )
∑

ν→ν′∈R1

∏

Si∈S1

fi (xi + νi − ν′
i )λν→ν′(x + ν − ν′)

=
∏

Si∈S
fi (xi )

∑

ν→ν′∈R1

λν→ν′(x).
(10)

By assumption
∏

Si∈S2\S1
fi (xi ) is nonzero (i.e. by contradiction with the assumption

(B2) on the stationary distribution), so (9) is satisfied if the following holds:

∑

ν→ν′∈R1

∏

Si∈S1

fi (xi + νi − ν′
i )λν→ν′(x + ν − ν′)

=
∏

Si∈S1

fi (xi )
∑

ν→ν′∈R1

λν→ν′(x).

Now we identify the left and the right hand sides of the above equation with the
corresponding sides of the master equation from G1 via the projection p1(x) on the
irreducible component. Since the transition rates of the reactions of R1 only depend
on the coordinates ofS1, they are the same as the transition rates of themaster equation
from G1 under p1(x) and we get an equality by assumption (B1). ��
Remark 9 [Assumptions I] Observe the following.

– Theorem 1 assumes that the stationary distributions of G1,G2 are of product-form.
While this is a restriction, current results on form of stationary distributions are
mostly in product-form (cf. (Anderson et al. 2010; Hoessly and Mazza 2019)).
Nonetheless, some examples with stationary distribution of non-product form are
available (Levien and Bressloff 2017, § 4.1) or (Bibbona et al. 2020), but calcu-
lating it or even writing it down in small examples is demanding.

– By definition, p12(Γ ) = p21(Γ ), and condition (B3) requires the functions f 1i , f 2i
with Si ∈ S1 ∩ S2 to be proportional on pSi (Γ ) ⊆ Z≥0.

– Notice that Theorem 1 assumes that the union comes from reaction-disjoint net-
works as inDefinition 2. By the proof of Theorem 1 it would also hold for unions of
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reaction networkswherewe glue over reactionswithDefinition 2 (and similarly for
its consequences, i.e., Theorems 2, 3, and Corollary 1). However, results on gluing
over reactions are only a side product of the intended scope and does not seem
very practical at the moment. We refer to Remark 15 for issues on applicability
with respect to decomposing CRNs under gluing over reactions.

Remark 10 [Assumptions II] Note that assumption (B3) can be stated more general
and Theorem 1 still holds with the same proof, i.e. in the following way:
Assume there are constants αi for all Si ∈ S1 ∩S2 with αi > 0 such that for all x ∈ Γ

we have

αi f
1
i (xi ) = f 2i (xi ).

If this more general condition together with (B1), (B2) still holds, the conclusion of
Theorem 1 is maintained with fi := f 2i for Si ∈ S1 ∩S2. Furthermore it is easy to see
that this does not influence the summability of (11). The same extension then follows
for Theorem 3.

Furthermore, by the same proof as for Theorem 1 we can conclude the following
for a slightly generalised setting (where f11 : ZS1\S2

≥0 → R>0, etc.).

Theorem 2 Let G = G1 ∪G2 be a reaction network obtained from a union of reaction-
disjoint networks as in Definition 2 with S1 ∩ S2 �= ∅. Let Γ be an irreducible
component of G. Consider the following assumptions:

(B’1) Assume p1(Γ ) is a union of irreducible components of the stochastic dynamics
of G1 (i.e. p1(Γ ) = ⋃̇

i∈IΓ 1
i ) with stationary distributions on the irreducible

components of the following form

π1(p1(x)) = 1

Z
f11(p11(x)) f12(p12(x)).

(B’2) Assume the same (i.e. as in (B’1)) for G2, where we denote the stationary distri-
bution on an irreducible component of G2 by

π2(p2(x)) = 1

Z
f21(p21(x)) f22(p22(x)).

(B’3) Assume there is an α > 0 such that for all x ∈ Γ we have

α f12(p12(x)) = f21(p21(x)).

If (B’1), (B’2) and (B’3) are satisfied, then G = G1 ∪ G2 has a stationary distribution
of the form

π(x) = 1

Z
f11(p11(x)) f21(p21(x)) f22(p22(x)) (11)

on the irreducible component Γ if (11) is summable.
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4.3 Properties of stochastic reaction networks under joins II

We want to find sufficient conditions such that the projection p1(Γ ) is a union of irre-
ducible components of the stochastic dynamics ofG1, which is a part of the assumption
(B1) of Theorem 1.

Lemma 5 Let Γ be an irreducible component of G = G1 ∪ G2. If G1 is essential, then
p1(Γ ) is a union of irreducible components of the stochastic dynamics of G1. Note
that this holds in particular if G1 is weakly reversible (cf. Lemma 3).

Proof Let x ∈ Γ , and let p1(x) be the corresponding projected element. We have to
show it is part of an irreducible component of G1. We distinguish the following two
cases:

– If there are no active reactions on p1(x), then by Lemma 1 p1(x) is not accessible
from any other z ∈ Z

S1≥0, hence p1(x) is an irreducible component.

– Assume there are active reactions on p1(x). Then any other z ∈ Z
S1≥0 is accessible

from p1(x) if and only if p1(x) is accessible from this z by Lemma 1. Therefore
the communicating class of p1(x) is closed.

��
Next we further investigate the conditions of the results of § 4.2 by focussing in

particular on essential reaction networks G.

Proposition 2 Let G = G1 ∪ G2 be an essential reaction network. Then the following
conditions are equivalent

(D1) For every irreducible component Γ of G, the projection p1(Γ ) is a union of irre-
ducible components of G1 (i.e. p1(Γ ) = ⋃̇

i∈IΓ 1
i ).

(D2) G1 is essential.

Proof For (D1) �⇒ (D2) it suffices to observe that the projection p1 is surjective,
hence as ZS≥0 is a union of irreducible components of G, we have that p1(ZS≥0) = Z

S1≥0
is a union of irreducible components of G1. In particular, G1 is essential. (D2) �⇒
(D1) follows from Lemma 5.

��
Remark 11 Note that this implies in particular that an essential CRN G has a decom-
position into G = G1 ∪ G2 with state space decomposition as in Theorem 1 for every
irreducible component if and only if there is a decomposition with both G1,G2 essen-
tial. Furthermore even if G = G1 ∪G2 and G1 are essential, there might still be no such
decomposition(cf. the example of Remark 8).

Hence, if G = G1 ∪ G2 can be decomposed such that G1 and G2 are essential, we
know by Lemma 2 that G is essential. Furthermore by Lemma 5 the projections of
irreducible components of G are decomposed into unions of irreducible components
of Gi , i ∈ {1, 2}. Therefore, in this case, we can restate Theorem 1 in a simplified
form.
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Theorem 3 Let G = G1 ∪ G2 be a reaction network that can be decomposed as
a reaction-disjoint union such that G1,G2 are essential. Let Γ be an irreducible
component of G. Assume that the irreducible components of p1(Γ ) of G1 (i.e.
p1(Γ ) = ⋃̇

i∈IΓ 1
i ) have stationary distributions of the form

π1(p1(x)) = 1

Z

∏

Si∈S1\S2

fi (xi )
∏

Si∈S1∩S2

f 1i (xi ),

and the irreducible components of p2(Γ ) of G2 (i.e. p2(Γ ) = ⋃̇
i∈IΓ 2

i ) have station-
ary distributions of the form

π2(p2(x)) = 1

Z

∏

Si∈S2\S1

fi (xi )
∏

Si∈S1∩S2

f 2i (xi ).

Furthermore, assume that there is anα > 0 such that for all x ∈ Γ and all Si ∈ S1∩S2
we have

α f 1i (xi ) = f 2i (xi ).

Then, G = G1 ∪ G2 has a product-form stationary distribution of the form

π(x) = 1

Z

∏

Si∈S
fi (xi ), (12)

where for Si ∈ S1 ∩ S2 we set fi := f 2i on the irreducible component Γ if (12) is
summable.

Then consecutive applications of Theorem 3 along decompositions of essential
CRNs gives the following.

Corollary 1 Let G be a reaction network that can be decomposed as a reaction-disjoint
union such that G = G1∪· · ·∪Gs with all the G j essential. Denote by Sonly

j the species

that are only in S j and no other Si , i �= j , and by Sshared
j the species in S j that are

also in at least one other Si , i �= j . Assume that Γ is an irreducible component of G
and each G j has product-form stationary distribution of the form

π j (p j (x)) = 1

Z

∏

Si∈Sonly
j

fi (xi )
∏

Si∈Sshared
j

f j
i (xi ),

on its irreducible component in p j (Γ ) such that, if S j ∩ Sk �= ∅, then there is an
α > 0 such that for all Si ∈ S j ∩ Sk and all x ∈ Γ we have

α f j
i (xi ) = f ki (xi ).

123



Stationary distributions via decomposition... Page 17 of 25 67

Then, G = G1 ∪ · · · ∪ Gs has a product-form stationary distribution of the form

π(x) = 1

Z

∏

Si∈S
fi (xi ), (13)

where if Si is in S j ∩ Sk we choose fi := f j
i arbitrary, such that the stationary dis-

tribution on Γ is generalized balanced with {(Ri ,Ri )i∈{1,··· ,s}}, if (13) is summable.
Remark 12 By the completeness of the results for complexbalancedCRN(i.e. Poisson-
product form implies complex balance Cappelletti and Wiuf (2016)) it is clear we can
not say more about complex balanced CRNs. The same holds for a similar reason for
autocatalytic CRNs since we generalise the underlying proof principle of (Hoessly
and Mazza 2019), cf. Example 4. However, we offer a framework that can combine
autocatalytic, complex balanced or other CRNs, as long as the stationary distributions
are of product form and agree on the species in common. Note that it is easy to
find small CRNs beyond complex balance with product form stationary distribution,
and we cover only some. In particular there are both reversible, weakly reversible or
non-weakly reversible CRN with product-form stationary distributions which can be
combined in the framework we developed (cf. § 5).

Remark 13 As another example consider

S0 → S1 � S2 � S3

which is not essential, hence there is no reaction-disjoint decomposition into G =
G1∪G2 such that both are essential. Hence Theorem 1 still applies (e.g. by choosing G1
the reactions between S0, S1, S2 and G1 the reactions between S2, S3) while Theorem
3 does not.

Remark 14 [Summability] Note that for summability of (7), (11) or (12) it is necessary
that the stationary distributions on the projections are summable. In easy cases with
infinite state space summability can possibly be checked by the ratio test, see Remark
16 for an example.

4.4 Decomposing CRNs and applications of Theorem 3

Even though we don’t focus on characterising the existence of decompositions with a
view towards Theorems 1, 2 ,3, we remark on several issues.

Two reaction-disjoint CRNs, which are given by their reactions R1,R2, have a
union with reaction set R = R1 ∪ R2 if and only if R can be decomposed as R =
R1 ∪R2 (i.e., with the sameR1,R2) by a reaction disjoint decomposition. Hence for
a given set of reactionsR, there are 2|R| − 1 such bipartitions of the reactions, which
grows exponentially with |R|. Correspondingly, brute-force algorithms can be given,
e.g., for CRNs consisting of a complex balanced and an autocatalytic part. Therefore if
stationary distributions for more classes of CRNs (even beyond product-form but as in
Theorem 2) are known, this can be incorporated in a similar way for essential CRNs.
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Similarly decompositions along Proposition 1 can be checked. Note that as gluing
over reactions is more general, some CRNs might be decomposable in that sense into
essential CRNs where it is not possible for reaction-disjoint CRNs. Feasible strategies
to cope with such situations are considerably more difficult than reaction-disjoint
decompositions, but might be developed at a later point (see Remark 15). We further
note that characterisations of when such decompositions exist are mostly unknown,
and even in the essential case we currently only have characterisations for CRNs with
stationary distributions given by Poisson product-form functions by (Cappelletti and
Wiuf 2016).

Remark 15 While the above if and only if statement still holds for CRNs where we
glue over reactions, the number of possible decompositions of a CRN G (cf. Definition
2) where we allow gluing over reactions is uncountable, which is not very practical.
We henceforth mostly focus on decomposing along reaction-disjoint unions.

5 Applications and examples

We will next go through some examples in order to explain and illustrate the use of
the theory developed. We mostly focus on mass-action kinetics in examples 1, 2, 3,
4 and 5, and consider Example 1 with general kinetics in Example 6. We conclude
that many such weakly reversible CRNs of arbitrary deficiency have product-form
stationary distribution independent of the rate and independent of the kinetics. While
we only used the theory for CRNs, it applies to other stochastic networks and CTMCs
as well. Furthermore recall that irreducible components of conservative CRNs are
finite, hence the limiting distribution is the unique stationary distribution (cf. Remark
1).

5.1 Examples withmass-action kinetics

Example 1 As a first example consider the following CRN which is reversible and of
deficiency two for an application of Theorem 3.

S1
κ1�
κ2

S2
κ5�
κ6

S3, 2S1
κ3�
κ4

S1 + S2, 2S3
κ7�
κ8

S2 + S3

We first decompose G = G1 ∪ G2 into two essential CRNs:

G1 : S1 κ1�
κ2

S2, 2S1
κ3�
κ4

S1 + S2, G2 : S2 κ5�
κ6

S3, 2S3
κ7�
κ8

S2 + S3

Then we analyse the stationary distributions of G1,G2 separately in order to apply
Theorem 3 at the end.

Similar to the example of Remark 4, G1 is only for some values detailed balanced.
It has a stationary distribution of the form (see Remark 16)

π(x1, x2) = 1

Z
f1(x1) f

2
2 (x2), (14)
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on irreducible components Γ 1
N = {x ∈ Z

2≥0|
∑2

i=1 xi = N },
where f1, f 22 have the following form for d1 > 0

f1(x1) = dx11
x1!

x1∏

l=1

κ2 + κ4(l − 1)

κ1 + κ3(l − 1)
, f 22 (x2) = dx21

x2! .

Note that x1 + x2 is constant on the irreducible components Γ 1
i , so also dx1+x2

1 is a
constant along irreducible components.

Next consider G2 with stationary distribution (again with d2 > 0)

π(x2, x3) = 1

Z
f 22 (x2) f3(x3);

f 22 (x2) = dx22
x2! , f3(x3) = dx32

x3!
x3∏

l=1

κ6 + κ8(l − 1)

κ5 + κ7(l − 1)
.

Now we look at G = G1 ∪G2 in order to apply Theorem 3. We choose d1 = d2 = 1 so
that the product-functions agree. Then the stationary distribution of G is as follows,

π(x1, x2, x3) = 1

Z
f1(x1) f

2
2 (x2) f3(x3),

where the product form functions are

f1(x1) = 1

x1!
x1∏

l=1

κ2 + κ4(l − 1)

κ1 + κ3(l − 1)
, f2(x2) = 1

x2! , f3(x3) = 1

x3!
x3∏

l=1

κ6 + κ8(l − 1)

κ5 + κ7(l − 1).

We further note that the summability in this example is trivial as the irreducible com-
ponents are finite.

Remark 16 For G1 of Example 1 observe the following

– On an irreducible component with a product-form stationary distribution and a
conservation relation, we will mostly factor out a constant d > 0 in the product-
form functions (i.e. as done in examples 1 – 4 ). In particular, for a RN like G1
from example 1, x1 + x2 is constant on the irreducible components Γ 1

i , hence
changing a parametrisation of the product-form functions f1(x1) and f2(x2) to
dx1 f1(x1) and dx2 f2(x2) gives the same stationary distribution. This follows as
the corresponding overall change dx1+x2 is the same along points of the irreducible
component and can be factored out, making all those stationary distributions the
same for different d > 0.

– G1 is reaction vector balanced independently of the rates. We can verify that (14)
is reaction vector balance (and hence the stationary distribution) for G by checking
the following

π(x1 + 1, x2 − 1)(x1 + 1)(κ1 + κ3x1) = π(x1, x2)x2(κ2 + κ4x1)

π(x1 − 1, x2 + 1)(x2 + 1)(κ2 + κ4(x1 − 1)) = π(x1, x2)x1(κ1 + κ3(x1 − 1))
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– For κ3 = ακ1, κ4 = ακ2 with α > 0, G1 is detailed (hence complex) balanced,
and we can factorize out in f1 from (14) to obtain

f1(x1) = dx11
x1!

(κ1

κ2

)x1 , f 22 (x2) = dx21
x2! .

To transform this into a standard form, we can choose d1 = κ2.
– We can join G1 with the following essential CRN G2

∅ κ+�
κ−

S2

with stationary distribution π(x2) = 1
Z f 22 (x2), with f 22 (x2) = c

x2
2
x2! and where

c2 = κ+
κ− is a point of complex balance. Then choosing d1 = c2 makes the product-

form functions f 12 , f 22 equal. Therefore if the following is summable, it is the
stationary distribution

π(x1, x2) = 1

Z
f1(x1) f

2
2 (x2),

where we have to check that the following sum is finite

∑

(x1,x2)∈Z2≥0

cx12
x1!

x1∏

l=1

κ1 + κ3(l − 1)

κ2 + κ4(l − 1)

cx22
x2! = exp(c2)

∑

x1∈Z1≥0

cx12
x1!

x1∏

l=1

κ1 + κ3(l − 1)

κ2 + κ4(l − 1)
.

Therefore it is easy to see, e.g. by the ratio test for series, that the series converges
for all positive rate parameters.

Example 2 Consider the CRN of (Hoessly and Mazza 2019, Example 4.4).

S1 S2

S1 + S2 2S2

2S1 2S3

S1 + S3

α1
1,2

α1
2,1
α2
1,2

κ1

κ2κ3

Then G1, given by reactions between S1 and S2, is autocatalytic and G2, given by
reactions between S1 and S3, is complex balanced . Hence G1,G2 are essential, and we
may apply Theorem 3 after deriving the stationary distributions ofG1 andG2, giving an
easy way to compute the stationary distribution of (Hoessly andMazza 2019, Example
4.4).
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This shows how to systematically decompose some examples of CRNs into smaller
parts where the stationary distribution is known and of product-form. As another
example consider the following CRN where we glue along two species.

Example 3 Let G1 be the following essential CRN

S1 � S2 � S3 � S4,

S1 + S2 → 2S2, S2 + S3 → 2S2, 2S4 � S3 + S4

We can choose the parameters to obtain an autocatalytic CRN according to (Hoessly
andMazza 2019) on S1, S2, S3, and join it with theCRNon S3, S4 (whichwasExample
1) with stationary distribution of the form

π(x1, x2, x3, x4) = 1

Z
f 11 (x1) f2(x2) f

1
3 (x3) f4(x4)

with f 11 (x1), f 13 (x3) of Poisson product-form.
Consider asG2 the following complex balanced (henceweakly reversible, essential)

CRN:

3S3 � 3S5

2S1 2S3

S1 + S3

with stationary distributions of the form

π(x1, x3, x5) = 1

Z
f 21 (x1) f

2
3 (x3) f5(x5)

f 21 (x1) = (c1d2)x1

x1! , f 23 (x3) = (c3d2)x3

x3! , f5(x5) = (c5d2)x5

x5!
with (c1, c3, c5) a point of complex balance. Then, if the rates of G1,G2 are such that
the product-form functions f 11 , f 13 and f 21 , f 23 can be chosen to be the same, we can
give the stationary distribution of G = G1 ∪ G2.

Example 4 Now we consider autocatalytic CRNs (Hoessly and Mazza 2019). Inter-
acting particle systems of that form are used in inclusion processes from statistical
physics and the modelling of ants and swarms (Grosskinsky et al. 2011; Hoessly and
Mazza 2019; Khaluf et al. 2017). Consider a CRN G1 on 2 species CRN with the
reactions

S1
α1
2,1�

α1
1,2

S2
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together with reactions in any of the following form

S2 + (m − 1)S1
αm
2,1→ mS1, (15)

where m ≥ 1. Note that such CRNs are essential. Then obtaining the stationary
distributions for suchCRNs on two species and assembling them leads to the stationary
distributions of autocatalytic CRNs from (Hoessly and Mazza 2019), which can also
be obtained via the decomposition into joins with Theorem 3.

Example 5 While ergodic conservative CRNs with product-form stationary distribu-
tions have a degree of freedom to choose the product-form function, that is not the
case for other ergodic CRNs. As an example consider

S1
κ1�
κ2

S2
κ−�
κ+

∅, 2S1
κ3�
κ4

S1 + S2, S1
κ6�
κ7

S3
κ−,2�
κ+,2

∅, 2S1
κ8�
κ9

S1 + S3,

which can be decomposed into two CRNs along Example 1 and Remark 16. Then,
application of Theorem 1 requires that the parameters match in some sense and further
summability also has to be taken care of.

5.2 Examples withmore general kinetics

We recall the setting of more general intensity functions from (Anderson et al. 2010)
which are given as

λν→ν′(x) = κν→ν′
∏

Si∈S

νi−1∏

j=0

θi (xi − j) (16)

where the κν→ν′ are positive reaction rates and θi : Z → R≥0 are such that θi (x) = 0
if and only if x ≤ 0 (we use the convention that

∏−1
j=0 a j = 1 for any {a j }). Typical

kinetics used in mathematical biology are, e.g.,

x �→ xm

km + xm
, x �→ km1

km2 + xm
,

called Hill-type I/II in (Thomas et al. 2012), where m is an integer and k, k1, k2 are
positive constants. The first specialises to stochastic Michaelis-Menten kinetics for
m = 1 (Anderson et al. 2010).

Example 6 Consider again Example 1, i.e.,

S1
κ1�
κ2

S2, 2S1
κ3�
κ4

S1 + S2

but with general kinetics θ1, θ2. The irreducible components are as in Example 1, and
the stationary distribution can again be given via the reaction vector balance equations
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of Remark 16, giving

π(x1, x2) = 1

Z
f1(x1) f

2
2 (x2), (17)

where f1, f 22 have the following form

f1(x1) = dx11∏x1
l=1 θ1(l)

x1∏

l=1

κ2 + κ4θ1(l − 1)

κ1 + κ3θ1(l − 1)
, f 22 (x2) = dx21∏x2

l=1 θ2(l)
.

Hence from Example 6 (also see Example 1) it is easy to see that we can assemble
arbitrary CRNs of this form with product form stationary distribution independently
of the rates via Theorem 3. This then gives the following.

Corollary 2 Independent of the kinetics (but with θ2 fixed), any CRN that is a disjoint
union of CRNs of the form

S2 � Si , 2Si � S2 + Si

for i �= 2 has product-form stationary distribution independent of the rates.

Remark 17 [Compatibility with complex balance in S2] Let G1 be a RN obtained from
Corollary 2 and G2 be a weakly reversible, deficiency zero CRN that is conservative
with kinetic functions as θ2 for species S2 such that the only species in common
between G1,G2 is S2. Then, by (Anderson et al. 2010, Theorem 6.1), Corollary 2 and
Theorem 3 the CRN G1∪G2 has product form stationary distribution with the product-

form function in S2 given by f2(x) = cx2∏x
l=1 θ2(l)

, where c = (c2, · · · ) ∈ R
S2
>0 is a point

of complex balance for G2.

Remark 18 Note that we usually can’t join RNs with different kinetics via match-
ing product-form functions. For example, complex balanced CRNs with Mass-action
kinetics and stochastic Michaelis-Menten kinetics have different product- form func-
tions that are not compatible(see (Anderson et al. 2010, Theorem 6.1)).

6 Conclusion

While results on the stationary distribution of CRNs are of interest to describe the
longterm behavior, analytical results are typically hard to obtain. We developed a
framework to connect exact results on the stationary distribution of smaller CRNs to
bigger ones and vice versa. This was done via joins of stochastic reaction networks,
where the results apply if the form of the stationary distribution either has product-
form or factorises in a more general way. As only few assumptions are used, the
same results can be applied to other models of applied probability with discrete state
space like inhomogeneous particle systems (Grosskinsky et al. 2011; Liggett 2012) or
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Queues. Furthermore it could be interesting to generalise such results to models with
a continuous state space.

We analysed some examples with stochastic mass-action as well as general kinet-
ics, where interestingly many weakly reversible CRNs of arbitrary deficiency have
product-form stationary distribution independent of the rate. Furthermore we note
that as more stationary distributions of CRNs (even beyond product-form, but as in
Theorem 2) are known, this can be used with the theory developed. In this spirit, some
examples use results on complex balanced CRNs (Anderson et al. 2010) or autocat-
alytic CRNs (Hoessly andMazza 2019) on two species. It would be further interesting
to characterise reaction rates for specific reaction networks leading to product-form
stationary distribution, extending the results on Poisson-product form by (Cappelletti
and Wiuf 2016). Already for weakly reversible CRNs or autocatalytic CRNs this is
currently not known, where we note that some partial results are in (Hoessly and
Pascual-Escudero 2020).
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