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Abstract: Aerobic exercise improves executive function—which tends to decline with age—and dual-
task training with aerobic exercise improves the global cognitive function. However, home-based
older adults could not follow these programs due to social isolation during the coronavirus disease
2019 pandemic. Therefore, we conducted a single-blind randomized controlled trial with 88 healthy
older adults without dementia or sarcopenia who were randomly assigned into the Nordic walking
(aerobic exercise), dance (dual-task training with aerobic exercise), or control group. The participants
in both exercise intervention groups trained for 30 min, three times per week, for 4 weeks. All
groups consumed amino acid-containing foods three times per week. We found that both exercise
intervention groups showed improvements in executive function, while the dance group showed
additional improvement in global cognitive function. The dance group showed a higher maximum
gait speed, greater improvement in imitation ability, and improved executive function and cognitive
function than the Nordic walking group. The intervention programs did not significantly affect
the muscle mass or muscle output than the control group; however, both programs improved the
participant neurological functions such as the heel lift, with dance training being the most effective
intervention. In conclusion, dance training effectively improves cognitive function.

Keywords: aerobic exercise; cognitive function; COVID-19; dancing; Nordic walking; older adults;
physical function; body composition

1. Introduction

The proportion of the world’s population aged ≥ 60 years is increasing swiftly and is
predicted to increase from 12% to 22% between 2015 and 2050, with the number already
being >30% in Japan [1]. As life expectancy increases, the risk of age-related conditions
such as chronic diseases may also increase [2]. Even with normal aging, changes occur in
the neural basis of cognition, particularly affecting the prefrontal cortex, a region primar-
ily involved in executive functions and attention, memory, and work [3,4]. This effect is
greater in individuals with mild cognitive impairment (MCI) [5]. The prognosis of MCI is
associated with a higher risk of developing Alzheimer’s disease (AD) [6] and other forms
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of dementia [7]. In Japan, dementia has been the most common reason for requiring care
since 2016 [8]. Therefore, maintaining and improving the cognitive function is important in
preventing dementia and the need for further care [9,10] and is important for successful
aging [2]. Physical exercise is an effective way to improve cognitive function; it increases the
functional capacity, cardiorespiratory function, muscle mass, and modulates neurotrophin
activity in the brain [11]. For example, exercise increases the production of brain-derived
neurotrophic factors, resulting in the generation of new neurons and the improvement in
connectivity between the existing neurons [12,13]. Exercise-induced neuroplasticity also
improved the brain volume, memory, and executive function in randomized controlled
trials (RCTs) conducted among healthy older participants at risk of AD [14–18]. Addi-
tionally, aerobic exercise is strongly recommended (grade B evidence), especially in the
Japanese medical guidelines, for preventing dementia [19]. It can also facilitate the reversal
of hippocampal volume loss [20] and improve the executive function in older adults [21],
increase the neural activity in the lateral frontal and parietal regions [22], and increase
the prefrontal and temporal gray matter volume [22,23]. Furthermore, dual-task training
with aerobic exercise improves the executive function and general cognitive function in
older adults with and without cognitive impairment [24,25]. In a recent study, the authors
observed improvements in attention and executive function and overall cognitive function
as a result of physical exercise. Interestingly, they found that the relative telomere length
increased in these participants compared to the control group after 6 months [26]. Thus, it
is suggested that an exercise program that can efficiently improve age-related executive
function and overall cognitive function may be a useful strategy for slowing down aging
in general.

However, the semi-state-of-emergency measures enacted against the coronavirus
disease 2019 (COVID-19) by the Japanese government prevents the cognitive and physical
health of older adults; this is a consequence of the stringent distancing, quarantine, and
isolation rules, which mainly affect older adults who have a high mortality rate due to the
virus where age-related comorbidities can further increase the risk of death [27]. A previous
review highlighted the importance of prescribing home-based exercise as a form of physical
activity to older adults during COVID-19 [28]. Without effective strategies to maintain
physical activity, there may be a detrimental impact on the public health infrastructure.
Despite the urgent need for such strategies, the optimal program for improving cognitive
function through physical exercise remains to be established. However, we can develop a
program to prevent secondary problems consequent to the stringent measures against the
COVID-19 pandemic. By selecting and delivering a self-directed home physical exercise
program that is effective at improving cognitive function in healthy older individuals, we
can develop a program to reduce the secondary problems associated with the measures
imposed due to the COVID-19 pandemic.

Nordic walking (NW) is a form of aerobic exercise that engages the whole body
through a physical activity program for older adults [29]. It is a recommended physical
activity for this population because it does not aggravate shoulder and arm pain, or leg
disabilities [30]. Therefore, based on previous studies, NW can improve executive function
and gait in older adults, rendering it an at home physical-activity program feasible for
healthy older adults during the COVID-19 pandemic.

Dance is also a form of aerobic exercise with physical benefits such as improved gait
and balance [31], proposed for frail and sick older adults [32–34]. A recent integrative
review reported functional and structural improvements in neuroplasticity in healthy older
adults after dance training [35]. Dance is a dual-task activity that combines the cogni-
tive, motor, and affective tasks through multiple components such as spatial awareness,
movement coordination, balance, endurance, and interaction [36]. However, most studies
using dance programs have been conducted outside Japan and vary from national and
contemporary dances to ballroom and line dances.

Choreography refers to the sequence of steps and movements integrated to a dance.
Learning choreography requires a memory mechanism that is gradually incorporated such
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as when learning movements using DVD images of the dancers [37–40]. This process
directly involves the observation of the behavior of exemplary dancers and the imitation of
their movements [41,42]. Although many previous studies have reported broad cognitive
improvements [43], there are no specific reports on the learning effects of dance imitation.
We believe that the imitation ability deserves attention in older adults because it is report-
edly related to MCI and dementia [44] and can influence the ability to learn new motor
programs in the future.

However, exercise intervention in older adults should be accompanied by nutritional
intervention. In young adults, the maintenance of muscle mass involves a balance between
muscle protein synthesis and degradation, whereas in older adults, muscle protein synthesis
in response to dietary protein intake is impaired [45]. Therefore, muscle wasting may occur
in older adults in response to exercise loads of 5.2 metabolic equivalents for NW and
moderate- or higher-loads for dance, depending on the program. Thus, muscle protein
degradation exceeds the synthesis, leading to decreased muscle mass [46]. Furthermore,
the COVID-19 pandemic has restricted older adults’ access to food, leading to muscle mass
loss caused by a potentially poor-diet quality [47].

Therefore, we conducted a three-group RCT using two exercise programs: outdoor
NW, which can reliably provide aerobic exercise of a certain intensity (5.2 METs), and an
indoor dance program, a dual-task exercise involving aerobic exercise. We evaluated the
effect of physical activity on the cognitive and physical function in older adults during the
COVID-19 pandemic.

2. Materials and Methods
2.1. Trial Design and Setting

This RCT was registered at the University Hospital Medical Information Network
Clinical Trial Registry (UMIN000038740). Before enrollment, written informed consent for
participation was obtained from each participant, and all study procedures adhered to
the tenets of the Declaration of Helsinki. The study protocol was approved by the Ethics
Committee of RIKEN in Saitama (approval number: Wako3 2019-28(3)). The CONSORT
checklist for this study was included as a Supplementary Material (Table S1).

We conducted a single-blind RCT with three parallel groups: a NW training group
(walking group), an original dance program training group (dance group), and a protein-
only group (control group). All groups received protein supplementation, but the control
group received no exercise intervention. Randomization was performed using dynamic
allocation according to the dates when the participants provided their informed consent.
Research personnel who assessed the cognitive and physical functions were blinded to the
group assignments. The program recruiters were blinded to the background or psycho-
logical profiles of the participants, and they did not have specific psychological aims. The
Consolidated Standards of Reporting Trials statement [48] was used as the framework. The
trial design is presented in Figure 1.

2.2. Participants

Due to the COVID-19 pandemic, the participants were recruited via the online bulletin
boards of the Tokyo and Kanagawa Prefectures, from 10 October 2020 to 10 November
2020. Native-Japanese speakers with no history of dementia or diseases known to affect
the central nervous system, heart, or respiratory system were included in the study if they
were healthy community-dwelling adults aged ≥ 60 years without COVID-19 during the
study. The exclusion criteria were vision or hearing impairments, regardless of corrective
lenses or hearing aids. No previous experience with NW or dancing was necessary. In
total, 90 participants were registered and provided informed consent. The Mini-Mental
State Examination (MMSE-J) [49] was used to assess the degree of cognitive functioning;
participants with an MMSE-J score < 24 points were excluded. A physical therapist screened
all of the participants’ lower extremity joints for deformities, pain complaints, and range of
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motion to determine whether continued exercise was possible. Two patients were excluded
because they did not adhere to the study schedule (Table 1).

Figure 1. Consolidated Standards of Reporting Trials (CONSORT) diagram.

2.3. Sample Size

There was no pre-determined sample size for this pilot study as no previous studies
have conducted an intervention test for the cognitive and physical function levels with
three groups. Furthermore, given the COVID-19 pandemic, this study enrolled individuals
who wanted to participate.

2.4. Overview of the Interventions

All interventions were conducted at the participants’ homes. Each program was
performed 3 days per week for 4 weeks, according to the participant’s schedule. The
participants spread out their training days throughout the week. The participants were
required to record notes on their training and protein intake on scheduled days. On the final
day of the study, they were asked to submit these notes. To be included in the analysis, they
had to attend at least nine out of the 12 sessions. Cognitive and physical functioning was
measured before the initiation (pre-test) and after completion (post-test) of the program.
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Table 1. The participant characteristics at baseline.

Criterion

Walking Group Dance Group Control Group

(n = 29) (n = 30) (n = 29)

Mean (SD) Range Mean (SD) Range Mean (SD) Range ANOVA p-Value

Age, years 67.93 (5.81) 60–80 67.20 (5.39) 60–82 68.31 (5.87) 61–79 0.7997

Sex (female: male) 7:22 13:17 6:23

MMSE total score 28.17 (1.28) 25–30 28.60 (1.33) 26–30 27.83 (1.65) 25–30 0.3674

Education, years 15.93 (1.65) 12–20 15.37 (1.56) 12–18 15.45 (1.48) 10–18 0.2428

Number of family members 2.41 (0.91) 1–4 2.17 (0.83) 1–4 2.00 (0.76) 1–4 0.1707

IADL (13 categories) 11.97 (0.98) 10–13 12.10 (0.88) 10–13 11.90 (0.77) 10–13 0.7666

Calf circumference (cm) 35.84 (3.01) 30.00–43.25 36.01 (2.83) 29.80–42.50 35.28 (2.08) 31.50–40.25 0.4260

Work status (No job:Work part-time:Work full-time) 16:5:8 15:7:8 15:6:8

Exercise habits (No or Light:Moderate:Heavy) 15:6:8 22:3:5 13:7:9

Lifestyle diseases (None:With) 16:13 21:9 19:10

Diabetes (None:With) 27:2 28:2 29:0

Weight loss 29:0 28:2 29:0

A felling of fatigue 28:1 27:3 27:2

Hip Arthroplasty (None:One-Leg:Both-Legs) 29:0:0 30:0:0 28:1:0

Knee Injury (None:OA of One-Leg:OA of
Both-Legs:ACL of One-Leg:ACL of Both-Legs) 17:6:3:3:0 15:8:6:1:0 13:13:2:1:0

Cognitive Function Measures

MoCA total score 26.76 (1.68) 23–30 26.63 (1.83) 22–30 27.00 (1.79) 21–30 0.6036

Visuospatial/Executive 4.10 (0.86) 2–5 4.03 (0.93) 2–5 4.28 (0.92) 2–5 0.5736

Naming 2.97 (0.19) 2–3 3.00 (0.00) 3 2.97 (0.19) 2–3 0.5979

Attention 5.86 (0.44) 4–6 5.63 (0.61) 4–6 5.83 (0.38) 5–6 0.1613

Language 1.79 (0.90) 0–3 2.03 (1.13) 0–7 1.79 (0.82) 0–3 0.5415

Abstraction 1.72 (0.53) 0–2 1.70 (0.47) 1–2 1.66 (0.48) 1–2 0.8641
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Table 1. Cont.

Criterion

Walking Group Dance Group Control Group

(n = 29) (n = 30) (n = 29)

Mean (SD) Range Mean (SD) Range Mean (SD) Range ANOVA p-Value

Delayed Recall 4.41 (0.82) 2–5 4.53 (0.63) 3–5 4.48 (0.69) 3–5 0.8142

Orientation 5.90 (0.31) 5–6 5.87 (0.35) 5–6 5.97(0.19) 5–6 0.4102

FAB total score 15.79 (1.37) 13–18 16.13 (1.55) 11–18 16.14 (1.46) 13–18 0.3696

Similarities (conceptualization) 2.21 (0.73) 0–3 2.30 (0.70) 0–3 2.31 (0.60) 1–3 0.8154

Lexical Fluency (mental flexibility) 2.76 (0.51) 1–3 2.83 (0.38) 2–3 2.69 (0.60) 1–3 0.5526

Motor Series (programming) 2.69 (0.47) 2–3 2.83 (0.53) 1–3 2.79 (0.41) 2–3 0.4916

Conflicting Instructions (sensitivity to interference) 2.72 (0.65) 1–3 2.77 (0.50) 1–3 2.79 (0.49) 1–3 0.8913

Go–No-Go (inhibitory control) 2.41 (0.78) 0–3 2.40 (0.81) 0–3 2.59 (0.82) 0–3 0.6183

Prehension Behavior (environmental autonomy) 3.00 (0.00) 3 3.00 (0.00) 3 2.97 (0.19) 2–3 0.3658

Mood State Measures

GDS score 1.31 (1.75) 0–8 2.50 (2.00) 0–7 2.24 (2.49) 0–9 0.0976

WHO-QOL score 106.66 (10.60) 83–124 96.70 (9.75) 80–119 101.41 (11.38) 73–123 0.0756

Imitation

Imitation gesture total score 1.66 (2.51) 0–10 1.30 (1.95) 0–6 2.03 (2.76) 0–10 0.5530

Gait Ability Measures

Fast gait speed 10 m (s) 5.22 (1.07) 3.46–9.11 5.19 (0.72) 3.47–6.36 5.03 (0.79) 3.09–6.54 0.4188

Step (cm) 88.69 (13.83) 62.40–139.80 88.57 (13.13) 71.30–123.20 87.93 (10.06) 66.10–109.00 0.9690

RMS 1.17 (0.33) 0.37–1.78 1.27 (0.40) 0.42–1.93 1.32 (0.46) 0.49–2.21 0.3414

Walking cycles 0.05 (0.05) 0.00–0.26 0.04 (0.03) 0.00–0.14 0.05 (0.03) 0.01–0.13 0.5262

Physical Function Measures

Hand grip dominant average (kg) 29.42 (9.08) 15.15–53.60 26.54 (9.24) 6.50–40.05 26.84 (8.26) 9.70–42.00 0.3987

Toe strength max average (kg) 15.37 (5.62) 3.10–26.80 15.92 (6.14) 4.20–28.90 17.21 (5.14) 8.60–29.10 0.2143

Feet side-by-side (s) 10.00 (0.00) 10 10.00 (0.00) 10 10.00 (0.00) 10
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Table 1. Cont.

Criterion

Walking Group Dance Group Control Group

(n = 29) (n = 30) (n = 29)

Mean (SD) Range Mean (SD) Range Mean (SD) Range ANOVA p-Value

Semi-Tandem stance (s) 10.00 (0.00) 10 10.00 (0.00) 10 10.00 (0.00) 10

Tandem stance (s) 10.00 (0.00) 10 10.00 (0.00) 10 10.00 (0.00) 10

One-leg stand max average (s) 75.23 (40.89) 10.59–120.00 84.84 (40.88) 3.50–120.00 82.75 (44.94) 7.00–120.00 0.4981

FTSST (s) 9.22 (2.93) 5.50–18.10 8.65 (2.51) 4.20–14.92 8.65 (2.57) 4.80–14.90 0.4112

Shoulder Flexion Active dominant (◦) 158.10 (12.85) 115–175 163.00 (8.05) 145–180 160.00 (9.16) 145–180 0.1834

Heel up (◦) 37.40 (4.77) 26.57–50.19 38.65 (6.01) 12.43–45.00 39.03 (3.58) 29.36–46.02 0.4199

Toe up (◦) 13.54 (4.95) 3.81–25.64 13.88 (4.15) 1.91–20.56 14.52 (3.88) 4.16–21.16 0.6824

Body Composition Measures

Body height (cm) 166.13 (7.35) 153.00–179.50 162.77 (9.00) 146.40–179.00 164.09 (7.93) 148.00–177.00 0.3427

Body weight (kg) 63.9 (12.90) 42.30–96.00 60.62 (12.73) 40.00–92.20 60.80 (10.07) 41.80–78.70 0.3255

Body muscle mass (kg) 45.80 (8.29) 34.10–68.90 43.25 (8.91) 28.90–59.60 44.22 (7.10) 32.20–58.20 0.4622

Fat mass (kg) 15.29 (6.36) 3.70–35.2 14.73 (6.89) 3.90–28.9 13.86 (5.07) 4.50–24.60 0.3764

Body ECW/TBW 0.38 (0.01) 0.37–0.39 0.38 (0.00) 0.38–0.39 0.38 (0.01) 0.37–0.40 0.5532

Phase Angle 5.23 (0.62) 3.74–6.46 5.12 (0.52) 4.23–6.16 5.12 (0.60) 3.70–7.05 0.7242

Protein (kg) 9.52 (1.75) 7.10–14.30 8.98 (1.87) 6.00–12.3 9.20 (1.50) 6.70–12.40 0.4733

BMI (kg/m2) 23.05 (3.68) 15.80–31.80 22.74 (3.48) 16.40–29.80 22.49 (3.06) 17.20–28.90 0.5277

SMI (kg/m2) 7.33 (1.02) 5.80–10.10 7.05 (1.10) 5.40–9.00 7.13 (0.86) 5.20–8.70 0.4733

Values are presented as means (SDs) unless stated otherwise. SD, standard deviation; ANOVA, analysis of variance; MMSE, Mini-Mental State Examination; IADL, Instrumental
Activities of Daily Living; Weight Loss, weight loss of 5% or more over the previous 2 years; A Felling of Fatigue, GDS-15 sub-item “Do you feel that you are full of vitality?”;
OA, osteoarthritis; ACL, anterior cruciate ligament injury; MoCA, Montreal Cognitive Assessment; FAB, Frontal Assessment Battery at Bedside; GDS, Geriatric Depression Scale;
WHOQOL-26, World Health Organization Quality of Life Scale-26; RMS, root mean square; FTSST, Five Times Sit-to-Stand Test; ECW/TBW, ratio of extracellular water/total body water;
BMI, body mass index; SMI, skeletal muscle mass index.
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2.5. Nordic Walking Training (Walking Group)

NW involves walking while holding Nordic ski poles in both hands, allowing older
adults who have an unsteady gait to walk with a stable posture. NW has two approaches:
an aggressive style, where the upper body leans forward, and a defensive style, where the
body is upright [50]. The defensive style was developed in Japan and is also called the
Japanese style. In particular, the poles are held straight, with elbows bent at 90◦, and placed
on the ground in front of the feet. This study used the defensive style because it is more
reliable for older adults with orthopedic problems of the spine, hip, and knee.

The NW group underwent a 60-min training session in pole height adjustment and
NW techniques for effective walking. After the participants had reliably mastered the
walking technique using the poles, they began training at home. NW was performed at
the participant’s pace, three times per week for 4 weeks and they were not instructed to
increase the intensity of their walking. Training comprised of 30 min outdoor walking,
with an initial warm-up and a final cool-down indoor session (demonstrated on a DVD,
each lasting 15 min combined). The total training duration was 45 min. A tutorial DVD
was also prepared for cases where a participant might have forgotten how to perform NW.
Participants could take breaks as needed during training.

Participants recorded their training progress on a weekly basis. Fidelity checks were
completed during the post-test to ensure that proper procedures and protocols were fol-
lowed including video recording.

2.6. Dance Program Training (Dance Group)

The dance program used in this study was designed by a researcher who was knowl-
edgeable in cognitive and physical functioning and professional dancers with >30 years
of experience in choreographing large-scale dance works. Among the 90 participants in
our study, 35.56% had dance experience. Of those, 10% had participated in the disco boom
that occurred approximately 40 years ago, and 1.11% were part of their high-school dance
club. Moreover, as adults, 10%, 2.22%, and 1.11% started ballroom, jazz, and hula dancing,
respectively, while 10% started aerobic dance at the gym for health reasons. Only 1.11%
of the participants had practiced ballet since childhood. Therefore, we choreographed
dance routines using well-known nostalgic songs (released between 1952 and 1983) that
would be highly relatable to the participants and have a reminiscence effect [51]. Each
soundtrack consisted of four connected songs. The speed of the music was chosen to
be suitable for aerobic exercise [52], with songs ranging from 120 to 125 beats per min.
Moreover, given the relationship between the shoulder joint flexion angle and cognitive
function [46], participants were required to perform a lot of shoulder elevation as part of
the upper limb large movements. Various steps using the lower extremities were used to
increase the cognitive load as a dual-task exercise [43]. As these steps involved shifting the
center-of-gravity, we expected a fall-prevention effect.

The dance program was prepared by professional dancers and recorded on DVDs.
The dance routine on each of the four DVDs (one per week during the 4-week intervention
period) was 30 min long. To familiarize themselves with dance training, the dance program
group received a 60-min personal training session on dance techniques using a DVD, after
which they started training at home. The dance program training was conducted three
times per week at the participants’ pace for 4 weeks. The training was conducted indoors,
each combining 30 min of the dance with an initial warm-up and final cool-down session
lasting 15 min combined, for a total training duration of 45 min, similar to NW training.
Although the dance routines could be performed in a sitting position, a standing position
was encouraged to improve balance. The participants could take breaks as needed during
training. They recorded their training progress every week. Fidelity checks were completed
during the post-test to ensure that proper procedures and protocols were followed including
video recording.
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2.7. Control Group

The protein-only group served as the control group and did not undergo any training
intervention. These participants were requested to continue their usual routine as much
as possible during the 4-week intervention period and to consume the provided protein
supplement (details below). They were told that they could participate in the dance
program after the study completion.

2.8. Protein Intake

In this study, participants from all three groups received protein supplementation three
times per week for the 4-week intervention period. Given the reduced ability to synthesize
muscle with age [45,53] and reports of intervention trials where muscle wasting occurred
upon exercise [46], protein intake becomes essential when older adults perform exercise.
Therefore, a protein supplement containing approximately 8.0 g of protein (branched chain
amino acids) in a baked cake was provided to all participants. The main ingredients were
sesame seeds and dried tofu. The amino acid distribution is presented in Figure 2. To
ensure that the protein did not alter their habitual dietary intake, we requested that the
participants in the training and control groups consume it before and after training and
at 10:00 or 15:00, respectively. All participants recorded their food intake every week.
Fidelity checks were completed during the post-test to ensure that the proper procedures
and protocols were followed.

Figure 2. The amino acid analysis of the provided supplemental protein food containing approxi-
mately 8 g of amino acids.

2.9. Cognitive Function Measures

The MMSE-J was used to assess the inclusion and exclusion criteria and screen partici-
pants (cutoff score of 23). We measured the cognitive function using the Montreal Cognitive
Assessment (MoCA) [54] and Frontal Assessment Battery at bedside (FAB) [55] before the
intervention (Table 1). The questionnaires were provided at an in-person interview.

The MoCA is a 30-item cognitive screening tool with high sensitivity and specificity
for detecting MCI within the normal range of the MMSE. Specifically, one point is added to
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account for individuals with an educational history of ≤12 years. The total score ranges
from 0 to 30 points, with a cutoff of 26, as scores ≤ 26 points indicate global cognitive
dysfunction. In this study, the MoCA was used to measure the global cognitive function.

The FAB test provides a score ranging from 0 to 18 points and assesses the executive
function. The FAB includes six neurophysiological tasks: similarities (conceptualization),
lexical fluency (mental flexibility), motor series (programming), conflicting instructions
(sensitivity to interference), go–no-go (inhibitory control), and prehension behavior (envi-
ronmental autonomy). A lower FAB score indicates a greater degree of executive dysfunction.

2.10. Imitation Ability Measures

Dance training focuses on perfecting movements using executive functions and be-
havioral imitation [41,42]. Therefore, the dance training intervention group was directly
trained in imitation ability. A simple hand gesture imitation test can assess visuomotor
deficits in individuals with AD with high sensitivity and assess difficulties in those with
MCI [56,57]. For the imitation test, we gave imitation commands with the upper limb from
the meaningless gesture item of the Standard Performance Test for Apraxia [58] during an
in-person interview.

For this test, the examiner sat facing the participant, instructed them to imitate the
hand gestures, which were carefully observed. The one-handed imitation tasks were:
(1) Luria’s chin hand test (horizontal), which was imitated with the right and left hands;
(2) the fox imitation task (forming a ring with fingers I, III, and IV), which was also imitated
with both hands; and (3) forming a ring with fingers I and V, transfer from left to right
and then, transfer from right to left. In each case, the examiner presented the gesture until
the participant could imitate it, and the maximum observation time for a response was
10 s. The two-handed imitation tasks were (1) intertwining rings with fingers I and II of
both hands; (2) crossing both palms, extending fingers II–V upward, and intertwining
both fingers I; and (3) simultaneously tapping the desk with one hand in the form of a
rock and the other hand in the form of a paper, then, simultaneously exchanging hand
shapes and tapping the desk. This was performed three times in a row, switching once
every 2 s. The examiner presented the gesture until the participant could imitate it, and the
maximum observation time for a response was 15 s. Finally, the continuous one-handed
movements were the Luria flexion ring and extension fist task, which required forming
a ring with fingers I and II in front of the chest, followed by three repetitions of forming
a fist simultaneously with upper limb extension. In each case, the examiner presented a
gesture until the participant could imitate it; the maximum observation time for a response
was 20 s. One point was added for appropriate correction after an error in all of the tasks,
and two points for incomplete imitation. Thus, for perfect imitation ability, the score was 0,
whereas, for maximum imperfect ability, the score was 22 points.

2.11. Gait Ability Measures

NW is a physical activity recommended for older adults and positively impacts the
gait parameters [30]. Therefore, the participants in the NW intervention group were
directly trained in walking ability. A faster gait speed is associated with maximal locomotor
efficiency while the maximum gait speed is associated with better cognitive function than
normal gait speed [59]. Therefore, to assess gait ability, we requested that the participants
walk 10 m at a maximum speed (the 10-m walk test) on an indoor flat floor with no
nearby obstacles.

For this test, the central 10 m comprised the test distance with a 1-m flying zone at
both ends for acceleration and deceleration. Thus, participants were given a flying start
and finish and were instructed to walk the distance back and forth at an even speed and
turn at the end mark. At the start of the test, participants were instructed as follows: “Walk
as fast as possible, be safe, and do not run.” All participants wore their own comfortable
clothing and shoes during the tests. Gait ability was measured using the AYUMI EYE
gait analysis device (Waseda Elderly Health Association Co., Ltd., Tokyo, Japan), which
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measures the walking speed and analyzes gait using a single-point acceleration sensor.
The device weighed 18.5 g (including the battery), was 62.4 × 30.9 × 11.8 mm in size, and
was attached using a rubber belt to align with the third lumbar vertebra of the spine when
the participant was in a standing posture. An iOS application (Apple Corp., Cuppertino,
CA, USA) designed for the module received the gait-related parameters including the
walking speed, stride length, root mean square (RMS), and gait cycle variability from
the device.

The walking speed (m/s) was calculated using the time taken to cover 10 m, and
the stride length (cm) was determined by the distance covered divided by the number of
steps. RMS (1/m) represents the degree of left-right swaying during walking, and thus,
the smaller the value, the better the balance. This was obtained by dividing the left and
right acceleration by the square of the walking speed. The variability of the gait cycle
is represented by the standard deviation of the time taken for one gait cycle (s). One
gait cycle in this device refers to the time from left heel contact to right heel contact and
back to left heel contact. A smaller variance of the gait cycle results in a more stable gait
rhythm. We measured the walking speed in both directions and used the faster direction
for the analysis.

2.12. Mood State Measures

Several psychological measures were assessed before and after the intervention. We
used the Geriatric Depression Scale (GDS-15) [60] and the World Health Organization Qual-
ity of Life-26 (WHOQOL-26) questionnaire [61] to assess the quality of life (QOL) (Table 1).

The GDS-15 Japanese version [62] is a 15-item questionnaire that interviewers can use
to assess the symptoms of depression in older adults. The responses are provided in a
“yes or no” format to be easily understood by older people who have impaired cognitive
function. The total score ranges from 0 to 15 points, with a cutoff of 5 points. A higher score
reflects more depressive symptoms.

The WHOQOL-26 is a self-administered questionnaire that assesses the QOL compris-
ing 26 items in five domains: the physical, psychological, social, environmental, and overall
QOL. The participants rated each item on a 5-point scale (i.e., very poor, poor, undecided,
good, and very good). The mean score for each domain was calculated, with a higher score
indicating a better QOL.

2.13. Physical Function Measures

Using the Short Physical Performance Battery as a reference [63], we conducted a
standing balance test and the Five Times Sit-to-Stand Test (FTSST). For the standing balance
test, the participants performed side-by-side, semi-tandem, and tandem balance tests, each
for 10 s. For the FTSST, the participants sat with their backs against a straight-backed chair,
folded their arms in front of their chest, and performed five chair stands as quickly as
possible. A stopwatch was used to measure the time from the starting cue to when the
participants’ buttocks touched the seat after the fifth rise [64].

Grip strength (kg) was measured using a digital dynamometer (Takei D T.K.K.5401,
Takei Scientific Instruments, Tokyo, Japan). Two maximum force trials were performed
with each hand and the highest measurement was used for the analysis.

Toe grip strength (kg) was measured using a digital toe-grip dynamometer (Takei D
T.K.K.3362, Takei Scientific Instruments). The participants sat on a chair barefoot with their
hips and knees flexed at approximately 90◦. The ankles were fixed in a neutral position
using a strap. The first phalanges were placed at the grip bar, and a heel stopper was
adjusted to fit the heel. Then, they gripped the bar with the maximum contraction of the
toe flexors. Two maximum force trials were performed with each foot, and the highest
measurement was used for the analysis.

The single-leg stance test was performed on a flat surface, and the elapsed time was
measured using a stopwatch. The participants balanced on one leg at a time, without shoes,
and with their eyes open for 120 s. They could alternate between the two legs, resting as
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needed. If they lost their balance and stood on both feet before the 120 s had elapsed, the
time of single-leg stance was recorded. Two trials were performed on each side, and the
best time was used for the analysis.

The dance program included choreography requiring shoulder flexion as a major
movement in the upper extremity. Therefore, to assess the improvement in upper limb
elevation, the active range of motion of shoulder flexion of the dominant upper limb was
performed. A 300-mm University of Tokyo type stainless steel goniometer (Frigz Medico
Japan Co. Ltd., Chiba, Japan) was used for this measurement, during which the participant
was in a sitting position while one physiotherapist checked the joint position, and another
physiotherapist measured the participant’s active flexion angle.

Balance function for postural maintenance can be achieved through an ankle strategy,
a hip strategy, or a combination of both [65], but the correlation between the ankle muscle
strength and postural control becomes affected with age [66]. The functional capacity of
the ankle plantar flexors is important for balance tasks [67]; in contrast, the functional
capacity of the ankle dorsiflexors is related to the tendency to fall [68]. Therefore, to
assess the neuromuscular function and the performance of the ankle joint in older adults,
we measured the angle of the heel lift and toe lift to determine the ankle plantar flexor
function and ankle dorsiflexor function, respectively. For the heel lift test, the participants
stood barefoot against a wall with their hands outstretched at shoulder height for balance,
elbows slightly bent, and feet hip-width apart. At the start signal, they raised their heels
as high as possible for 5 s with their knees fully extended. The maximum height at which
the participant’s heels were raised from the ground was measured using a ruler (b). The
distance from the participant’s first metatarsophalangeal joint to the heel was also measured
(a), and the angle of the heel lift was calculated using θ = Atan(b/a).

For the toe lift test, which was performed after the heel raise test, the participants
positioned themselves in the same way as the heel raise test, placing their feet flat on the
floor. They were instructed to raise their toes as high as possible while keeping only the
heel of their feet on the floor for 5 s at the start signal. The highest toe raise from the ground
was measured using a ruler (c). The angle of the toe raise was calculated as θ = Atan(c/a).

2.14. Body Composition Measures

Dual-energy X-ray absorptiometry is a well-established conventional method for
assessing body composition [69,70]. More recently, bioelectrical impedance analysis (BIA)
has been used because of its similarity to dual-energy X-ray absorptiometry [46,71]. BIA
can record reliable and noninvasive measurements by passing a weak electric current
through the body. Given the ease of measuring different body types, it has been used in
large epidemiological studies nationwide and in clinical settings [72]. We used the InBody
S10 (Biospace Co., Ltd., Seoul, Korea) device for BIA to measure the basic body composition
parameters: muscle mass (kg), fat mass (kg), body mass index (kg/m2), and the skeletal
muscle mass index (SMI) (kg/m2).

In older adults, muscle degradation exceeds muscle synthesis, making it difficult to
increase muscle mass and improve other body composition indices. However, even in the
absence of an increase in muscle mass, changes in muscle quality due to muscle overhydra-
tion can be confirmed using extracellular water/total body water analysis (ECW/TBW).
The phase angle (PhA) is the resistance (reactance, Xc) measured when an alternating
current passes through the cell membrane and is expressed as an angle. As the condition
of the cell membranes is assessed based on the conductivity of the tissue, higher PhA
values indicate better nutrition and health [73]. Recent studies have reported that PhA is
associated with muscle quality, inflammatory and oxidative stress biomarkers, physical
function in older adults, and survival [74–77]. Therefore, ECW/TBW and PhA can be used
to identify changes in muscle quality, even when there is no gain in muscle mass. For the
whole-body PhA, the BIA-measured impedance (Z) and Xc of the right arm, trunk, and
right leg at 50 kHz were summed and calculated as PhA: θ = Arcsin(Xc/Z). Measure-
ments were performed with the participant sitting in a chair; eight electrodes were attached
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(one on the thumb and middle finger of each hand, and one on both sides of each ankle),
moistened using an electrolyte-wetting agent, and electrode holders were connected using
the four-electrode method.

2.15. Other, Frailty, and Sarcopenia Measures

Background information such as age, sex, education (< or >12 years), height (cm),
weight (kg), work status, income style, number of family members, exercise habits, and
distance from the nearest railway station to home was collected in an interview. Med-
ical history data (i.e., diabetes, heart failure, hypertension, angina pectoris, myocardial
infarction, stroke, Parkinson’s disease, chronic lung disease, depression, dementia, atrial
fibrillation, hearing and visual impairment, prosthesis, arthritis, and limb surgery) was
also assessed in an interview.

To assess the activities of daily living (ADL), the Barthel index [78] and Instrumental
Activities of Daily Living scale (IADL) were used. For the IADL, we used the Tokyo
Metropolitan Institute of Gerontology Index of Independence in Daily Living [79] to assess
higher-order life functions, given that the participants were healthy community-dwelling
older adults. This index evaluates the IADL and the subscales of intellectual activity and
social role.

In this study, we used the unintentional weight loss of ≥5% over the past 2 years and
a response of “No” to the GDS-15 sub-item “Do you feel that you are full of vitality?” [80].

The inability to perform the FTSST, grip strength, and calf circumference (cm) were
used as indicators of sarcopenia [81]. We also used the SMI (kg/m2), which is a measure of
muscle mass and sarcopenia [82].

2.16. Statistical Analyses

All participants were included in the study based on an intention-to-treat analysis.
Baseline equivalence between the three groups was examined using the analysis of variance.
To identify differences between the three groups, the change in scores (post-intervention
minus pre-intervention) was calculated for the following variables: cognitive function, gait,
imitation, mood state, physical function, and body composition.

For the missing data, we employed multiple imputation, which is a single assignment
method repeated m (>1) times to avoid bias due to missing data. The estimates calculated
for each pseudo-complete data are integrated as missing values. The inductive model
included the age, sex, pre-intervention score, post-intervention score, and score changes
as characteristic variables. Using the Multivariate Imputation by Chained Equations
algorithm [83], we performed a multiple assignment method by chaining equations. The
number of pseudo-complete data, m, was set to 500 to ensure accurate estimation and
testing [84].

An analysis of covariance with permutation tests (ANCOVA) was performed for each
change in score between the three groups because it is applicable for analyzing small
sample sizes and can correct for false positives. The respective baseline scores for cognitive
function, imitation ability, and psychological measures were used together with the sex and
age as covariates. Additionally, for the physical function and body composition measures
at the baseline, sex, age, height, and weight were included as covariates because these
measures affect the body size. All ANCOVAs were subjected to permutation tests using the
“aovp” function of the lmPerm package [85]. The permutation test is significant when the
sample size is limited [86], making it suitable for testing the effects of intervention trials
with small sample sizes [87–89]. We subsequently adjusted all p-values using Storey’s false
discovery rate correction method (Table 2) [90]. If the f-ratio value between the adjusted
mean scores of the three groups was significant, the Scheffé test was used as a post-test
to determine the difference between each pair of groups. Furthermore, the effect size (η2)
was calculated as the sum of squares between the groups and the sum of squares from the
ANCOVA permutation test using eta squared [91].
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Table 2. Comparison of the changes in scores between the three groups following the 4-week intervention.

Criterion

Walking Group Dance Group Control Group

F Value
ANCOVA

Permutation
p-Value

Adjusted by
FDR

p-Value

Effect
Size
(η2)

Post hoc Scheffé Test

(n = 27) (n = 30) (n = 29) Walking vs. Control
p-Value
(95% CI)

Dance vs. Control
p-Value
(95% CI)

Walking vs. Dance
p-Value
(95% CI)Mean SD Mean SD Mean SD

Cognitive Function Measures

MoCA total score 0.7037 1.9178 2.0667 1.8557 −0.2414 2.1983 9.681 0.0000 0.0000 * 0.19 0.1233
(2.4910–−0.2350)

0.0000
(1.2007–3.4154) *

0.0135
(−2.4910–−0.2350) *

Visuospatial/
Executive −0.0741 0.8738 0.5333 0.9371 −0.2069 1.1765 4.518 0.0074 0.0280 * 0.10 0.8413

(−0.4302–0.6958)
0.0050

(0.1920–1.2885) *
0.0296

(−1.1659–−0.0489) *

Naming 0.0370 0.1925 0.0000 0.0000 −0.0690 0.3714 3.088 0.0819 0.1455 0.07

Attention −0.1852 0.8338 0.3000 0.5350 −0.2069 0.6750 2.875 0.0740 0.1398 0.07

Language 0.7037 0.9121 0.4333 1.1943 0.2069 0.7736 3.456 0.0040 0.0170 * 0.08 0.0271
(0.0458–0.9478) *

0.4411
(−0.2128–0.6656)

0.3262
(−0.1770–0.7178)

Abstraction 0.0370 0.6493 0.2000 0.4842 0.1379 0.4411 1.599 0.1965 0.2784 0.04

Delayed Recall 0.1852 1.0014 0.3667 0.6687 0.2414 0.9124 1.903 0.0856 0.1455 0.05

Orientation 0.0000 0.3922 0.0667 0.3651 −0.3103 0.6603 3.521 0.0138 0.0427 * 0.08 0.0256
(0.0309–0.5897) *

0.0038
(0.1049–0.6491) *

0.8356
(−0.3438–0.2105)

FAB total score 0.2963 1.0309 0.7333 1.5522 −0.5862 1.6801 7.211 0.0004 0.0034 * 0.15 0.0369
(0.0432–−1.7218) *

0.0006
(0.5022–−2.1369) *

0.4282
(−1.2600–0.3955)

Similarities
(conceptualization) 0.0741 0.6156 0.0000 0.8305 0.0000 0.4629 0.001 1.0000 1.0000 0.00

Lexical Fluency
(mental flexibility) 0.0741 0.6752 0.1333 0.3457 0.0345 0.6805 1.450 0.1604 0.2371 0.03

Motor Series
(programming) −0.2963 0.8689 0.0333 0.7184 −0.2759 0.8822 3.175 0.0414 0.1005 0.07

Conflicting
Instructions

(sensitivity to
interference)

0.1481 0.6624 0.2000 0.5509 0.0690 0.5299 1.353 0.4661 0.6052 0.03

Go–No-Go
(inhibitory control) 0.2963 0.9929 0.3667 0.8503 −0.4138 1.1807 4.672 0.0128 0.0427 * 0.10 0.0060

(0.1736–1.2466) *
0.0017

(0.2580–1.3029) *
0.9471

(−0.6025–0.4618)

Prehension Behavior
(environmental

autonomy)
0.0000 0.0000 0.0000 0.0000 0.0000 0.2673 0.996 0.8945 0.9811 0.02

Mood State Measures

GDS score −0.1481 1.5116 −1.0000 1.7019 −0.5862 1.5004 0.625 0.6154 0.7215 0.02

WHO-QOL score 0.0370 5.9387 2.4667 8.5772 −1.8966 4.9594 2.849 0.0282 0.0799 † 0.07 0.5388
(−2.3865–6.2537)

0.0402
(0.1564–8.570) *

0.3724
(−6.7149–1.8556)
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Table 2. Cont.

Criterion

Walking Group Dance Group Control Group

F Value
ANCOVA

Permutation
p-Value

Adjusted by
FDR

p-Value

Effect
Size
(η2)

Post hoc Scheffé Test

(n = 27) (n = 30) (n = 29) Walking vs. Control
p-Value
(95% CI)

Dance vs. Control
p-Value
(95% CI)

Walking vs. Dance
p-Value
(95% CI)Mean SD Mean SD Mean SD

Imitation

Imitation gesture
total score 1.5556 2.4859 −0.6333 2.0424 0.5517 2.8609 2.849 0.0000 0.0000 * 0.23 0.1834

(−0.3412–2.3489)
0.0847

(−2.4948–0.1247)
0.0005

(0.8547–3.5231) *

Gait

Fast gait speed 10 m (s) −0.0200 0.7200 −0.5450 0.5807 −0.3066 0.5805 4.760 0.0036 0.0170 * 0.11 0.1820
(−0.0958–0.6637)

0.2798
(0.6082–0.1313)

0.0038
(0.1457–0.8991) *

Step (cm) −2.0704 12.5372 −1.9967 10.5704 −1.0483 13.2590 0.075 1.0000 1.0000 0.00

RMS (1/m) −0.0304 0.2789 −0.2048 0.3577 −0.2384 0.4310 0.198 0.1257 0.1943 0.04

Walking cycles −0.0128 0.0459 0.0125 0.0403 0.0106 0.0389 2.902 0.0322 0.0842 † 0.07 0.0132
(−0.0426–−0.0041) *

0.9658
(−0.0168–0.0207)

0.0059
(−0.0444–−0.0062) *

Motor Function Measures

Hand grip dominant
average (kg) 0.5574 4.5520 1.8067 6.7980 0.6069 3.2131 1.951 0.0511 0.1086 0.06

Toe strength max
average (kg) 2.7600 3.1700 2.1700 3.9100 1.9500 2.9300 0.446 0.4904 0.6052 0.01

One-leg stand max
average (s) 19.6600 29.2000 9.0700 22.8000 3.4400 14.0200 6.935 0.0006 0.0041 * 0.08 0.0186

(2.2494–30.1941) *
0.5892

(−7.9775–19.2341)
0.1690

(−3.2662–24.4531)

FTSST (s) −0.0226 0.7199 −2.5300 2.1900 −1.6200 2.0700 3.100 0.0568 0.1136 0.07

Shoulder Flexion
Active dominant (◦) 5.7407 12.3805 5.0000 8.9056 1.5517 7.0841 1.662 0.1214 0.1943 0.04

Heel Lift (◦) 1.6825 2.9691 2.1503 5.3196 −0.5263 2.2597 5.904 0.0000 0.0000 * 0.13 0.0083
(0.4832–3.9343) *

0.0008
(0.9963–4.3569) *

0.7930
(−2.1795–1.2438)

Toe Lift (◦) 1.3790 3.9333 2.7775 3.7821 0.4742 4.0792 2.805 0.0490 0.1086 0.07

Body Composition Measures

Body weight (kg) −0.0667 1.1774 0.1533 0.7592 0.1069 0.8242 0.457 0.9263 0.9842 0.01

Body muscle
mass (kg) −0.5370 1.2013 −0.1833 0.7391 −0.2276 0.9640 1.065 0.2898 0.3941 0.03

Fat mass (kg) 0.4630 1.2564 0.3067 0.8354 0.3414 0.8060 0.565 0.8916 0.9811 0.01

Body ECW/TBW −0.0005 0.0025 −0.0007 0.0028 0.0010 0.0025 4.658 0.0010 0.0057 * 0.11 0.0859
(−0.0032–0.0001)

0.0356
(−0.0034–−0.0001) *

0.9498
(−0.0015–0.0019)

Phase Angle (◦) −0.0700 0.2000 −0.0700 0.3300 −0.1000 0.2800 0.565 0.4984 0.6052 0.01

Values are presented as means (SDs) unless stated otherwise. SD, standard deviation; ANCOVA, analysis of covariance; FDR, Storey’s false discovery rate; 95% CI, 95% confidence
interval; MoCA, Montreal Cognitive Assessment; FAB, Frontal Assessment Battery at Bedside; GDS, Geriatric Depression Scale; WHOQOL-26, World Health Organization Quality of Life
Scale-26; RMS, root mean square; FTSST, Five Times Sit-to-Stand Test; ECW/TBW, ratio of extracellular water/total body water. * p < 0.05, † 0.05 ≤ p > 0.10.
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Statistical significance was set at a two-sided p < 0.05, and all analyses were performed
using R version 4.0.3 (R Foundation for Statistical Computing, Vienna, Austria).

3. Results
3.1. Background Characteristics

Among the final 88 participants (mean age, 67.81 years; SD, 5.64; range, 60–82 years),
no one had ADL issues, 29.55% were women, and 47.73% had full- or part-time jobs. The
IADL score was 100%. Moreover, 94.31% had a perfect score for intellectual ADL, while
5.68% did not read the newspaper. For social ADL, 31.82% had a perfect score; the rest had
a low score because they refrained from social activities due to COVID-19. Furthermore,
56.82% of the participants had no exercise habits, while 18.18% performed regular exercise
and 25.00% had exercise habits including competition. Participants had a mean education
history of 15.58 years (SD, 1.5663). Their MMSE-J scores were above the cutoff of 23 points,
with a mean score of 28.20 (SD, 1.45; range, 25.00–30.00) points. The mean MoCA score was
26.80 (SD, 1.76; range, 21.00–30.00) points, which was also above the cutoff of 25 points.

All participants could perform the three standing balance tests (side-by-side, semi-
tandem, and tandem) for 10 s and the FTSST. Regarding frailty, 2.27% of the participants
mentioned unintentional weight loss of ≥5% over the past 2 years. For the GDS-15 sub-item,
“Do you feel that you are full of vitality?”, 25% answered “no.” Therefore, no participants
were classified as frail for more than two items, as per the Study of Osteoporotic Fractures
Index [92] and 27.27% of participants were classified as pre-frail (classified as frail for
one item).

The mean calf circumference among women was 34.27 cm (SD, 2.12; range, 29.80–37.60 cm),
which is above the Asian Working Group for Sarcopenia (AWGS) cutoff of 33 cm for
sarcopenia. Even for men, the mean calf circumference exceeded the AWGS cutoff of 34 cm,
with a mean of 36.32 cm (SD, 2.65; range, 30–43.25 cm). The mean maximum grip strength
(20.72 kg) in women exceeded the AWGS cutoff of 18 kg for sarcopenia (SD, 3.29; range,
14.40–26.85 kg). Similarly, the mean maximum grip strength for men (31.18 kg) exceeded
the AWGS cutoff of 28 kg (SD, 8.31; range, 6.60–55.2 kg). The mean SMI for women was
6.03 kg/m2 (SD, 0.40; range, 5.2–6.7 kg/m2), which is above the AWGS cutoff for sarcopenia
(5.8 kg/m2). Men also exceeded the AWGS sarcopenia cutoff of 7.0 kg/m2, with a mean
of 7.65 kg/m2 (SD, 0.76; range, 5.8–10.1 kg/m2). One participant had a hip prosthesis
and five had an anterior cruciate ligament (ACL) injury, all of whom were >10 years post-
treatment and had a good prognosis. Upon physical examination, 43.18% of participants
had osteoarthritis of the knee (27 in one leg and 11 in both legs).

After informed consent was obtained, 29, 30, and 29 participants were randomly
assigned to the walking, dance, and control groups, respectively. Their baseline measure-
ments are shown in Table 1.

During the 4-week period (12 training sessions), 86 out of the 88 participants completed
all tests and measurements and at least 11 training sessions. However, two individuals
from the walking group discontinued participation; one underwent surgery and the other
refused participation. Therefore, data from 27, 30, and 29 participants in the walking, dance,
and control groups, respectively, were included in our analysis (Figure 1).

3.2. Cognitive Function

The pre-intervention cognitive function scores are presented in Table 1, and the changes
in scores for the MoCA and FAB are presented in Table 2.

We found significant differences in the MoCA total score between the three groups.
The dance group had a significantly larger change in the mean MoCA total score than
the control (p = 0.0000; 95% confidence interval [CI] = 1.2007–3.4154) and walking groups
(p = 0.0135; 95% CI = −2.4910–−0.2350), whereas there was no difference in the mean
score between the walking and control groups (p = 0.1233; 95% CI = −0.1921–2.0823).
Furthermore, there was a significant difference in the total FAB score between the three
groups. Compared to the control group, the dance (p = 0.0006; 95% CI = 0.5022–2.1369) and
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walking groups (p = 0.0369; 95% CI = 0.0432–1.7218) had a significantly larger mean change
in the FAB total score, whereas the difference in the mean score between the walking and
dance groups was not significant (p = 0.4282; 95% CI = −1.2696–0.3955).

We observed significant differences between the groups for the visuospatial/executive
MoCA sub-score, where the dance group had a significantly larger mean score change
than the control (p = 0.0050; 95% CI = 0.1920–1.2885) and walking groups (p = 0.0296;
95% CI = −1.1659–−0.0490), but there was no difference between the walking and control
groups (p = 0.8413; 95% CI = −0.4302–0.6958). Moreover, for the language sub-score, a signif-
icant difference was found between the three groups with the walking group having a signif-
icantly larger mean score change than the control group (p = 0.0271; 95% CI = 0.0458–0.9478),
but the difference between the dance and control groups (p = 0.4411; 95% CI = −0.2128–0.6656)
or between the walking and dance groups (p = 0.3262; 95% CI = −0.1770–0.7178) was not
significant. Additionally, for the orientation sub-score, there was a significant difference in
the improvement between the three groups; compared to the control group, the walking
(p = 0.0256; 95% CI = 0.0309–0.5897) and dance groups (p = 0.0038; 95% CI = 0.1049–0.6491)
had a significantly larger mean score change, whereas there was no difference between the
walking and dance groups (p = 0.8356; 95% CI = −0.3438–0.2105). Finally, there were no
significant differences in the naming, attention, abstraction, or delayed recall sub-scores of
MoCA between the three groups.

In the FAB test, we observed significant differences between the three groups for
the go–no-go (inhibitory control) sub-score. Compared to the control group, the walking
(p = 0.0060; 95% CI = 0.1736–1.2466) and dance groups (p = 0.0017; 95% CI = 0.2580–1.3029)
showed a significantly larger mean score change, but there was no difference between the
walking and dance groups (p = 0.9471; 95% CI = −0.6025–0.4618). However, there were
no significant differences between the three groups in any of the other FAB sub-scores
including similarities (conceptualization), lexical fluency (mental flexibility), motor series
(programming), conflicting instructions (sensitivity to interference), or prehension behavior
(environmental autonomy).

3.3. Mood State

There was no significant difference in the WHOQOL-26 or GDS-15 scores between the
three groups before and after intervention (Table 2).

3.4. Imitation Ability

We found significant differences in the total score of the gesture-based imitation task
between the three groups before and after intervention (Table 2). There were significantly
fewer errors in the total score of imitation in the dance group compared to the walking
group (p = 0.0005; 95% CI = 0.85467–3.5231), whereas there was no difference between the
dance and control groups (p = 0.0847; 95% CI = −2.4948–0.1247) or between the walking
and control groups (p = 0.1834, 95% CI = −0.3412–2.3489).

3.5. Gait Ability

We observed significant differences in the maximum gait speed over 10 m between the
three groups before and after intervention (Table 2). The dance group presented a signifi-
cantly faster gait speed compared to the walking group (p = 0.0038; 95% CI = 0.1457–0.8991),
whereas no significant differences were found between the walking and control groups
(p = 0.1820; 95% CI = −0.0958–0.6637) or between the dance and control groups (p = 0.2798;
95% CI = −0.6082–0.1313).

There were no significant differences in the stride length, RMS, or gait cycle between
the three groups.

3.6. Physical Function

For the angle of the heel lift (calf raise test), there was a significant difference between the
three groups. Compared to the control group, the walking (p = 0.0083; 95% CI = 0.4832–3.9343)
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and dance groups (p = 0.0008; 95% CI = 0.9963–4.3569) had a significantly larger angle, but
the difference between these groups was not significant (p = 0.7930, 95% CI = −2.1795–1.2438).
Moreover, for the single-leg stance test, the walking group showed a significantly increased
time compared to the control group (p = 0.0186; 95% CI = 2.2494–30.1941). However, there
was no difference between the dance and control groups (p = 0.5892; 95% CI = −7.9775–19.2341)
and between the walking and dance groups (p = 0.1690; 95% CI = −3.2662–24.4531) in the
single-leg stance test.

Concerning muscle strength, there was no significant difference between the three
groups in the dominant hand grip strength, toe strength, FTSST, angle of active flexion of
the dominant shoulder in the upper limb, or the toe raise test.

3.7. Body Composition

Regarding the body composition parameters, there was a significant difference between
the groups in the ECW/TBW, with the dance group having a significantly smaller mean change
in the ECW/TBW compared to the control group (p = 0.0356; 95% CI = −0.0034–−0.0001)
(Figure 3). However, no significant differences were found between the walking and
control groups (p = 0.0859; 95% CI = −0.0032–0.0002) or between the walking and dance
groups (p = 0.9498; 95% CI = −0.0015–0.0019). Furthermore, there were no significant
differences between the three groups in weight, muscle mass, fat mass, or PhA.

Figure 3. Comparison of the muscle quality by phase angle and extracellular water/total body water
analysis based on the amount of change in the three groups. There was a significant difference
between the dance and control groups in ECW/TBW at the red line. * p < 0.05.

4. Discussion

We investigated the effects of two different exercise programs, NW and an original
dance program, performed three times per week for 4 weeks, on the cognitive and physical
functions of healthy older adults during the COVID-19 pandemic.
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4.1. Cognitive Function

The total scores for the MoCA and FAB cognitive function measures were improved
after performing both exercise interventions. Particularly, the dance program improved
the total MMSE-J score, the primary outcome measure of global cognitive function, com-
pared to both the walking and control groups. Furthermore, walking and dance exercises
improved the total FAB score for executive function compared to no exercise. Specifically,
the go–no-go (inhibitory control) FAB sub-score was improved due to walking and dance
compared to no intervention. The effects of the two types of exercises on improvement
were different, where both NW and dance improved the executive function, but only dance
improved the general cognitive function. Walking did not affect the total MoCA score or
the visuospatial/executive sub-score, whereas dance improved these compared to both
the walking and no intervention. Walking led to an improvement in the language sub-
score, while for the orientation sub-score, both walking and dance led to an improvement
compared to no intervention.

Interestingly, the dance group showed a larger improvement in cognitive function
than the other two groups. This group demonstrated an improvement in the total MoCA
score. This improvement was significantly larger than that observed after NW. Although
we used an original dance program in this study, it improved the global cognitive function,
similar to a recent meta-analysis [93].

Older adults at a high risk of falling cannot maintain a conversation while walking,
as evidenced by the “stops-walking-when-talking” phenomenon [94]. When performing
two or more tasks simultaneously, cognitive resources are divided to accommodate for the
processing needs. However, older adults become overloaded with information processing,
making it difficult to perform simultaneous tasks due to a lack of resources [95]. Dance
improves dual-task performance in older adults with variability in gait and cognitive
tasks. It is a concurrent dual-task training where the steps and movements are memorized,
planned, and cognitively processed while performing aerobic exercise [43]. Thus, this
activity improves the global cognitive function, and this effect is specific to dance.

The total FAB score, which assessed the executive function, a cognitive domain vulner-
able to age-related changes in brain function and structure, was improved after NW and
dance training. A recent meta-analysis reported that aerobic exercise, among other types
of physical exercises, improved executive function in healthy older adults [96]. Therefore,
our results may also be attributed to the effects of aerobic exercise. Regarding the effects
of dance, some previous studies have reported improvements in executive function and
neuroplasticity [35], while others have found little or no significant difference [93]. In
particular, a previous study reported that ballroom dancing did not improve executive
function compared to walking intervention [97]. However, these studies included healthy
older adults who had no cognitive impairment. There are two reasons for the discrepancy
between our results and those of the above-mentioned studies. First, we could not measure
the participants’ physical activity because of the COVID-19 pandemic, although our dance
program was created with an aerobic effect in mind. Hence, it is possible that the exercise
load was greater than in previous studies. Even the speed of the music we used for the
whole dance routine was approximately 120 beats/min, which is faster than the sponta-
neous motor tempo [98] and is probably at the speed of the dance forms that were used in
one of the studies reviewed by Nascimento [35]. Hence, we probably achieved an aerobic
effect. Second, similar to previous studies [35,93,96,97], our participants were healthy older
adults with no ADL, IADL, or cognitive function issues. However, this study commenced
in November 2020 during the ongoing COVID-19 pandemic, just before the peak of the
third wave [99]. The level of physical activity of older adults decreased in the 3 months
before (January 2020) and during (April 2020) the first wave of the COVID-19 pandemic in
Japan [100]. Therefore, there may have been room for improvement due to the inherent
cognitive decline related to social restrictions.

We also observed an improvement in the visuospatial/executive sub-score of the
MoCA after dance training. A recent meta-analysis also found that visuospatial skills were
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improved with dance, and this has been observed for neural mechanisms [101], in line
with our results. In another study comparing dance and fitness training, both improved
visuospatial skills [40]. In our study, the task content of the visuospatial/executive sub-
score was related to executive functions including alternating Trail Making and Clock
Drawing tests, and the NW group did not show any improvements in these. The correct
posture for NW requires looking and moving forward, which may have contributed to the
lack of spatial cognition training.

We observed an improvement in the language sub-score of the MoCA after NW
training, but not dance training. In a previous meta-analysis, dance was found to be more
effective for improving language fluency than Tai Chi or yoga [102]. Therefore, a high
exercise load may be important for improving the effect of physical activity on language.
Here, our dance program prioritized the constant learning of new choreography, and thus
may not have been as effective as NW, which constantly added exercise load.

We also observed improvements in the MoCA orientation sub-score after NW and
dance training. Orientation includes multiple dimensions of cognitive function and is
susceptible to MCI and dementia. In a large-cohort prospective study conducted among
older adults, the Six-item Cognitive Impairment Test score, which includes many items
related to orientation, was significantly worse in the physically inactive group than in the
moderately- or highly-active group [103]. Therefore, in our study, NW and dance training
improved this parameter due to physical activity. In addition, social engagement can also
contribute to cognitive improvement [104,105]. However, all the participants in this study
(including the control group) were requested to keep a daily training and protein intake
diary (three times per week after training). Therefore, we believe that social engagement
did not differ among groups and that the orientation improvement was attributed to the
physical activity.

Furthermore, we observed an improvement in the go–no-go (inhibitory control) sub-
score of the FAB after both NW and dance training. The inhibitory control task elicits false
alarm motor responses following the inhibition of inappropriate responses [55]. Response
inhibition is necessary for high-level executive control by moving the body appropriately
to precisely-timed music. Music training has domain-independent transfer effects [106]
and may enhance inhibitory control abilities [107]. However, we found no significant
difference between the participants in the dance and NW groups that trained with and
without music, respectively. A recent meta-analysis investigating the effects of exercise
interventions on subdomains of executive function in older adults reported that exercise
improved inhibitory control [108]. Therefore, NW and dance training improved inhibitory
control due to exercise training.

Moreover, in a previous study, an in-person exercise intervention improved executive
function in 4 weeks [109]. Our study suggests that an individualized NW and dance
program for the same period can also be effective.

4.2. Mood State

The exercise interventions did not significantly affect the QOL or the GDS. However,
there was a trend in the dance group to improve the mood state measures (WHOQOL-
26 index) in healthy older adults. Physical activity in older adults is related to well-
being, and aerobic training is the most beneficial [110], leading to both short- and long-
term improvements [111]. In previous studies, older adults could assemble and perform
exercise interventions, but the present study was conducted in a situation where individuals
performed the interventions at home during the COVID-19 pandemic. Our results show
that QOL can be improved by exercise intervention without social involvement. A recent
meta-analysis reported loneliness and depression due to limited access to physical activity
during the COVID-19 pandemic [112]. Therefore, although our participants were healthy
older adults, the impact of being under social restrictions may have reduced their QOL,
providing more room for improvement. In addition, a previous study that focused on
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dance to address social isolation during the COVID-19 pandemic [113] demonstrated that
dance is efficient with respect to improving QOL.

4.3. Imitation Ability

The results of the dance-training intervention, which directly trained imitation ability,
indicate that dance improved the imitation ability compared to walking. The imitation ges-
ture total score was significantly improved in the dance group compared to the NW group.

Dementia leads to difficulties in mimicking the commands and gestures required for
motor therapy and programs [114,115]. In AD, visuospatial dysfunction is assessed by the
ability to imitate hand positions, and performance in the hand imitation test can identify
patients with mild AD [57,116]. The hand imitation test is also used as a screening test to
investigate the severity of the disease [117]. Previous studies on dance interventions in
older adults have not validated or reported changes in imitation ability, a direct training
component of dance. However, dance interventions have increased visuospatial functional
tasks [97] and the brain cortex related to imitation [42]. Here, the dance group demonstrated
significantly improved imitation scores and visuospatial/executive skills required for
imitation. The NW group did not require visuospatial/executive skills and had significantly
worse imitation scores. Thus, the effects of the different interventions on cognitive function
are reflected in these results. The hippocampus is important for visuospatial cognition.
Interestingly, a previous study comparing 18 months of dance and repetitive motion
intervention, very similar to the current study, found that both groups had an increased
hippocampal volume, and there was an increase in the hippocampal subfield area in
the dance group [39]. Dance has an advantage concerning cognitive improvement, as
there are no studies reporting that dual-task training is inferior to single-task training for
cognitive transmission. Even in the absence of aerobic exercise, juggling, which requires
visuospatial function and sensory movement, has been shown to increase hippocampal
volume in older adults [118]. In this study, the original dance program required learning
new choreography and would have been less strenuous. However, it still produced an
aerobic effect comparable to NW and an improvement in cognitive function, which is
vulnerable in older adults because of the mimetic training effect.

4.4. Gait Ability

Dance training improved gait parameters more than NW training despite the greater
direct gait training aspect of NW. Specifically, dance training led to a larger improvement at
the maximum walking speed over 10 m compared to the NW training. In previous studies,
normal walking speed, measured as the gait parameter, was improved in the NW [119] and
dance groups [31]. Walking speed is related to executive function in older adults [120,121],
and the maximum walking speed is more strongly correlated with cognitive function than
normal walking speed [59]. Therefore, as the participants in this study were healthy older
adults, we assessed the maximum walking speed over 10 m instead of the normal walking
speed as the gait parameter. Moreover, although NW training requires the correct walking
technique, the participants were not trained to walk fast. Interestingly, the NW group
showed significant improvement in the walking cycles related to the timing discrepancy
between the left and right balance. Moreover, the duration of standing on a single leg was
significantly longer in the NW group. Although many previous studies have reported
improvements in balance after dance intervention [31,39,122–124], our results did not show
that such changes occurred after dance training. In the NW and dance groups, the angle of
the heel lift was significantly improved, but there was no change in the toe lift. The heel lift
reflects the plantar flexion of the ankle joint in the standing position, and the plantar flexors
required for this movement constitute one of the major postural muscles [125], which are
also important for propulsion during running [126]. Plantar flexors are associated with
balance and walking speed in older adults [67]. NW training did not improve propulsion
ability (walking speed), but it improved balance (duration of standing on a single leg).
Conversely, dance training did not improve balance, but it improved propulsion ability.
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Conventionally, NW includes a significantly greater strength training element than normal
walking [127] and is more effective for extensor muscles such as the gluteus maximus
and hamstrings, which are important for propulsion. In this study, the stride length for
NW training might have been too small to improve the propulsion ability. Additionally,
although the dance program included many steps requiring center-of-gravity shifts, it did
not lead to an improvement in balance because the participants did not execute the change
in center-of-gravity as required. Similarly, the shoulder flexion angle did not improve in
either the NW group, which required repetitive shoulder elevation, or the dance group,
which required a large amount of shoulder elevation.

There were no significant differences in muscle strength concerning changes in the
grip (upper limbs) or toe strength (lower limbs). Therefore, the month-long aerobic exercise
intervention program did not change the muscle output, but may have changed the per-
formance of neurological bodily functions such as the heel lift, with dance training being
particularly efficient in eliciting these changes.

4.5. Body Composition

Dance training led to a reduction in ECW/TBW compared to NW and no intervention.
However, there was no change in the muscle composition in the NW or dance group
compared to the control group.

In our previous study, we found that older adults with dementia living in nursing
homes had reduced limb measurements, SMI, and total body protein levels. Furthermore,
muscle deterioration increased, and muscle synthesis decreased in response to exercise
load [46]. In this work, the mean sarcopenia assessment index was above the cutoff value
for healthy older adults. However, given the poor-dietary quality of this population
while practicing social distancing [47], we aimed to avoid a decrease in muscle composition
because of exercise load owing to a reduced myosin-synthesis response. Thus, we instructed
all participants to consume supplemental food equivalent to 8 g of amino acids three times
per week for the duration of the intervention (4 weeks), referring to previous studies [128].
Given that there were no participants who did not consume supplemental amino acids in
this study, the effect of amino acid intake is unknown. However, it should be noted that the
index related to muscle composition did not deteriorate in the exercise intervention groups.
Furthermore, we investigated the relationship between the PhA and ECW/TBW to assess
the muscle quality [129]. PhA, which represents muscle mass and cell nutritional status,
showed no significant difference between the exercise groups, but it decreased in the control
group. Conversely, the ECW/TBW, which reflects changes in whole-body water balance,
was improved more in the dance than in the NW group and deteriorated in the control
group. Although we hypothesized that there would be more positive effects on the muscles
of the NW participants due to the strength training component, surprisingly, we found
that muscle quality was improved in the dance group, which requires more left-to-right
movements and complex center-of-gravity shifts compared to the back-and-forth repetitive
movements required for NW.

This study was an intervention trial conducted during the COVID-19 pandemic, when
the state-of-emergency declaration was temporarily lifted. Older adults were at high
risk of contracting COVID-19 and had been adversely affected by social distancing and
physical activity restrictions. To maintain or improve the health of older adults at home,
we developed an exercise program and delivered it in a way that even older people could
perform, despite the digital limitations. All included participants could participate and
implement the program until the end of the intervention period. Importantly, the ability to
improve the cognitive and neurological physical functions, after only 4 weeks of training,
provided an important proposition. In addition, we validated the different types of exercise
programs such as indoor versus outdoor, providing a choice to older adults. In Japan,
where there is no dance culture, offering dance programs based on music familiar to older
adults could be a cooperative tool. Dance is a physical activity that requires a variety of
cognitive functions [130].
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4.6. Limitations

This study had several limitations. First, the intervention period was only 4 weeks,
rather than the more common 12- or 16-week exercise intervention. This was the period
we set aside for post-evaluation measurements to ensure that we were unaffected by any
emergency declarations. Nevertheless, considering the continuation of the COVID-19
pandemic and the inability of indoor dance programs to become affected by the state-of-
emergency declarations, longer interventions with follow-up assessments are necessary
in the future. Second, this study did not provide feedback on the performance accuracy
during the exercise program. A normal exercise program would have a teacher or facilitator
intervening to point out any errors and guide accuracy during training. As the participants
underwent the exercise program on their own and may not have performed the physical
movements as required by the program, they may not have improved certain parameters
such as arm raising. We should create a system that can provide feedback on the accuracy
of the execution of the exercise. Third, we did not determine the exercise load, which is
essential for exercise intervention studies. We could not measure the amount of exercise
performed by the participants because it was imperative to prevent the spread of infection.
Finally, there was no index to measure the imitation ability for the whole body; thus only
the imitation ability of the upper limbs was assessed.

5. Conclusions

This study was designed to investigate the effects of a NW and dance intervention
on the cognitive and physical functions of healthy older adults following social distancing
at home during the COVID-19 pandemic. The participants did not have dementia or sar-
copenia. For 1 month, the participants underwent an at-home exercise program. Cognitive
function assessment showed that both programs improved the executive function due to
aerobic exercise compared to the control group. In addition, the dual tasks of learning
choreography and aerobic exercise performed by the dance group had a beneficial effect
on the global cognitive function. Given that the imitation ability has been associated with
cognitive decline [131] and dementia [114,115], the positive effects of dance on primary
imitation training are an important component of successful aging. Furthermore, the partic-
ipants in the dance group showed greater improvement than those in the NW group who
received direct gait training in the maximum gait speed, reflecting the cognitive function
well [59]. The muscle mass or muscle output from either intervention groups were not
significantly different from those of the control group. However, our results suggest that
neurologically, exercise may alter the performance of physical function and improve the
angle of heel lift. The fact that dance was accepted by older adults, with neither culture
nor the opportunity to experience it in Japan, might make it a powerful tool for creating
physical activities that can improve cognitive and physical functions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijerph19106202/s1, Table S1: CONSORT’2010’checklist.

Author Contributions: Conceptualization, A.M. and T.O.; Methodology, A.M., T.O. and K.K.; Soft-
ware, A.M.; Validation, T.O., K.K. and A.H.; Formal Analysis, A.M.; Investigation, A.M., H.M. and
K.S.; Resources, A.M.; Data Curation, A.M.; Writing—Original Draft Preparation, A.M.; Writing—Review
& Editing, A.M., T.O., H.M., K.S., K.K. and A.H.; Visualization, A.M.; Supervision, A.H.; Project
Administration, A.H.; Funding Acquisition, A.M. and A.H. All authors have read and agreed to the
published version of the manuscript.

Funding: This study was funded by Avex Entertainment, Inc. The funder was not involved in the
study design, collection, analysis, interpretation of data, the writing of this article, or the decision to
submit it for publication.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Ethics Committee of RIKEN (protocol number Wako3
2019-28(3)); date of approval: 29 November 2019.

https://www.mdpi.com/article/10.3390/ijerph19106202/s1
https://www.mdpi.com/article/10.3390/ijerph19106202/s1


Int. J. Environ. Res. Public Health 2022, 19, 6202 24 of 29

Informed Consent Statement: The participants provided written informed consent to participate in
the study.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors without undue reservation.

Acknowledgments: We would like to thank Y. Hoyamatsu, S. Himeno, K. Shimizu, J. Harajiri, N. Ohi,
Y. Matsuyama, M. Higashi, and N. Yamamura for their support and M. Tsuno in managing the study
and participants. We thank TRF (Chiharu, Etsu, and Sam) for creating the dance program. We also
thank K. Fujiharu for arranging the amino acid-containing foods and K. Uragami and K. Nishino
from the Japanese Society for the Prevention of Dementia for their advice. Finally, we would like to
thank all the participants who participated in this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. World Health Organization. Ageing and Health. Available online: https://www.who.int/news-room/fact-sheets/detail/ageing-

and-health (accessed on 11 April 2022).
2. Rowe, J.W.; Kahn, R.L. Successful Aging. Gerontologist 1997, 37, 433–440. [CrossRef]
3. Braver, T.S.; Barch, D.M. A theory of cognitive control, aging cognition, and neuromodulation. Neurosci. Biobehav. Rev. 2002, 26,

809–817. [CrossRef]
4. Hedden, T.; Gabrieli, J.D.E. Insights into the ageing mind: A view from cognitive neuroscience. Nat. Rev. Neurosci. 2004, 5, 87–96.

[CrossRef] [PubMed]
5. Parikh, P.K.; Troyer, A.K.; Maione, A.M.; Murphy, K.J. The impact of memory change on daily life in normal aging and mild

cognitive impairment. Gerontologist 2016, 56, 877–885. [CrossRef] [PubMed]
6. Jack, C.R.; Knopman, D.S.; Jagust, W.J.; Shaw, L.M.; Aisen, P.S.; Weiner, M.W.; Petersen, R.C.; Trojanowski, J.Q. Hypothetical

model of dynamic biomarkers of the Alzheimer’s Pathological Cascade. Lancet Neurol. 2010, 9, 119–128. [CrossRef]
7. Mosconi, L.; Tsui, W.H.; Herholz, K.; Pupi, A.; Drzezga, A.; Lucignani, G.; Reiman, E.M.; Holthoff, V.; Kalbe, E.; Sorbi, S.; et al.

Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer’s disease, and other dementias.
J. Nucl. Med. 2008, 49, 390–398. [CrossRef]

8. Ministry of Health, Labour and Welfare. The Situation of Users of Nursing Care Insurance Facilities. Available online: https:
//www.mhlw.go.jp/toukei/saikin/hw/kaigo/service16/dl/kekka-gaiyou_05.pdf (accessed on 14 April 2022).

9. Heyn, P.; Abreu, B.C.; Ottenbacher, K.J. The effects of exercise training on elderly persons with cognitive impairment and
dementia: A meta-analysis. Arch. Phys. Med. Rehabil. 2004, 85, 1694–1704. [CrossRef]

10. Larson, E.B.; Wang, L.; Bowen, J.D.; McCormick, W.C.; Teri, L.; Crane, P.; Kukull, W. Exercise is associated with reduced risk for
incident dementia among persons 65 years of age and older. Ann. Intern. Med. 2006, 144, 73–81. [CrossRef]

11. Hötting, K.; Röder, B. Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci. Biobehav. Rev. 2013, 37,
2243–2257. [CrossRef]

12. Coelho, F.G.D.M.; Gobbi, S.; Andreatto, C.A.A.; Corazza, D.I.; Pedroso, R.V.; Santos-Galduróz, R.F. Physical exercise modulates
peripheral levels of brain-derived neurotrophic factor (BDNF): A systematic review of experimental studies in the elderly. Arch.
Gerontol. Geriatr. 2013, 56, 10–15. [CrossRef]

13. Neeper, S.A.; Gómez-Pinilla, F.; Choi, J.; Cotman, C.W. Physical activity increases mRNA for brain-derived neurotrophic factor
and nerve growth factor in rat brain. Brain Res. 1996, 726, 49–56. [CrossRef]

14. Bae, S.; Lee, S.; Harada, K.; Makino, K.; Chiba, I.; Katayama, O.; Shinkai, Y.; Park, H.; Shimada, H. Engagement in lifestyle
activities is associated with increased alzheimer’s disease-associated cortical thickness and cognitive performance in older adults.
J. Clin. Med. 2020, 9, 1424. [CrossRef]

15. Cheng, S.T. Cognitive Reserve and the Prevention of Dementia: The role of physical and cognitive activities. Curr. Psychiatry Rep.
2016, 18, 85. [CrossRef]

16. Colcombe, S.J.; Erickson, K.I.; Scalf, P.E.; Kim, J.S.; Prakash, R.; McAuley, E.; Elavsky, S.; Marquez, D.X.; Hu, L.; Kramer, A.F.
Aerobic exercise training increases brain volume in aging humans. J. Gerontol. A Biol. Sci. Med. Sci. 2006, 61, 1166–1170. [CrossRef]

17. Gaitán, J.M.; Boots, E.A.; Dougherty, R.J.; Oh, J.M.; Ma, Y.; Edwards, D.F.; Christian, B.T.; Cook, D.B.; Okonkwo, O.C. Brain
glucose metabolism, cognition, and cardiorespiratory fitness following exercise training in adults at risk for Alzheimer’s disease.
Brain Plast. 2019, 5, 83–95. [CrossRef]

18. Nascimento, C.M.; Pereira, J.R.; de Andrade, L.P.; Garuffi, M.; Talib, L.L.; Forlenza, O.V.; Cancela, J.M.; Cominetti, M.R.; Stella, F.
Physical exercise in MCI elderly promotes reduction of pro-inflammatory cytokines and improvements on cognition and BDNF
peripheral levels. Curr. Alzheimer Res. 2014, 11, 799–805. [CrossRef]

19. The Japanese Neurological Association. Dementia Disease Clinical Practice Guidelines; Igaku-Shoin Ltd.: Tokyo, Japan, 2017;
Available online: https://www.igaku-shoin.co.jp/book/detail/91798 (accessed on 14 April 2022).

https://www.who.int/news-room/fact-sheets/detail/ageing-and-health
https://www.who.int/news-room/fact-sheets/detail/ageing-and-health
http://doi.org/10.1093/geront/37.4.433
http://doi.org/10.1016/S0149-7634(02)00067-2
http://doi.org/10.1038/nrn1323
http://www.ncbi.nlm.nih.gov/pubmed/14735112
http://doi.org/10.1093/geront/gnv030
http://www.ncbi.nlm.nih.gov/pubmed/26035897
http://doi.org/10.1016/S1474-4422(09)70299-6
http://doi.org/10.2967/jnumed.107.045385
https://www.mhlw.go.jp/toukei/saikin/hw/kaigo/service16/dl/kekka-gaiyou_05.pdf
https://www.mhlw.go.jp/toukei/saikin/hw/kaigo/service16/dl/kekka-gaiyou_05.pdf
http://doi.org/10.1016/j.apmr.2004.03.019
http://doi.org/10.7326/0003-4819-144-2-200601170-00004
http://doi.org/10.1016/j.neubiorev.2013.04.005
http://doi.org/10.1016/j.archger.2012.06.003
http://doi.org/10.1016/0006-8993(96)00273-9
http://doi.org/10.3390/jcm9051424
http://doi.org/10.1007/s11920-016-0721-2
http://doi.org/10.1093/gerona/61.11.1166
http://doi.org/10.3233/BPL-190093
http://doi.org/10.2174/156720501108140910122849
https://www.igaku-shoin.co.jp/book/detail/91798


Int. J. Environ. Res. Public Health 2022, 19, 6202 25 of 29

20. Erickson, K.I.; Voss, M.W.; Prakash, R.S.; Basak, C.; Szabo, A.; Chaddock, L.; Kim, J.S.; Heo, S.; Alves, H.; White, S.M.; et al.
Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. USA 2011, 108, 3017–3022.
[CrossRef]

21. Candela, F.; Zucchetti, G.; Magistro, D.; Rabaglietti, E. The Effects of a physical activity program and a cognitive training program
on the long-term memory and selective attention of older adults: A comparative study. Act. Adapt. Aging 2015, 39, 77–91.
[CrossRef]

22. Hillman, C.H.; Erickson, K.I.; Kramer, A.F. Be smart, exercise your heart: Exercise effects on brain and cognition. Nat. Rev.
Neurosci. 2008, 9, 58–65. [CrossRef]

23. Weinstein, A.M.; Voss, M.W.; Prakash, R.S.; Chaddock, L.; Szabo, A.; White, S.M.; Wojcicki, T.R.; Mailey, E.; McAuley, E.;
Kramer, A.F.; et al. The association between aerobic fitness and executive function is mediated by prefrontal cortex volume. Brain
Behav. Immun. 2012, 26, 811–819. [CrossRef]

24. Gheysen, F.; Poppe, L.; Desmet, A.; Swinnen, S.; Cardon, G.; De Bourdeaudhuij, I.; Chastin, S.; Fias, W. Physical activity to
improve cognition in older adults: Can physical activity programs enriched with cognitive challenges enhance the effects?
A systematic review and meta-analysis. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 63. [CrossRef]

25. Law, L.L.F.; Barnett, F.; Yau, M.K.; Gray, M.A. Effects of combined cognitive and exercise interventions on cognition in older
adults with and without cognitive impairment: A systematic review. Ageing Res. Rev. 2014, 15, 61–75. [CrossRef]

26. Sánchez-González, J.L.; Sánchez-Rodríguez, J.L.; Martín-Vallejo, J.; Martel-Martel, A.; González-Sarmiento, R. Effects of physical
exercise on cognition and telomere length in healthy older women. Brain Sci. 2021, 11, 1417. [CrossRef] [PubMed]

27. Noor, F.M.; Islam, M.M. Prevalence and associated risk factors of mortality among COVID-19 patients: A meta-analysis.
J. Commun. Health. 2020, 45, 1270–1282. [CrossRef]

28. Ghram, A.; Briki, W.; Mansoor, H.; Al-Mohannadi, A.S.; Lavie, C.J.; Chamari, K. Home-based exercise can be beneficial for
counteracting sedentary behavior and physical inactivity during the COVID-19 pandemic in older adults. Postgrad. Med. 2021,
133, 469–480. [CrossRef]

29. Turk, Z.; Vidensek, S.; Micetic Turk, D. Nordic walking: A new form of physical activity in the elderly. Acta Med. Croat. 2007, 61,
33–36.

30. Figueiredo, S.; Finch, L.; Mai, J.; Ahmed, S.; Huang, A.; Mayo, N.E. Nordic walking for geriatric rehabilitation: A randomized
pilot trial. Disabil. Rehabil. 2013, 35, 968–975. [CrossRef]

31. Kshtriya, S.; Barnstaple, R.; Rabinovich, D.B.; DeSouza, J.F.X. Dance and Aging: A critical review of findings in neuroscience.
Am. J. Dance Ther. 2015, 37, 81–112. [CrossRef]

32. Machacova, K.; Vankova, H.; Volicer, L.; Veleta, P.; Holmerova, I. Dance as prevention of late life functional decline among nursing
home residents. J. Appl. Gerontol. 2017, 36, 1453–1470. [CrossRef] [PubMed]

33. Sharp, K.; Hewitt, J. Dance as an Intervention for People with Parkinson’s disease: A systematic review and meta-analysis.
Neurosci. Biobehav. Rev. 2014, 47, 445–456. [CrossRef]

34. Vankova, H.; Holmerova, I.; Machacova, K.; Volicer, L.; Veleta, P.; Celko, A.M. The effect of dance on depressive symptoms in
nursing home residents. J. Am. Med. Dir. Assoc. 2014, 15, 582–587. [CrossRef] [PubMed]

35. Nascimento, M.M. Dance, aging, and neuroplasticity: An integrative review. Neurocase 2021, 27, 372–381. [CrossRef] [PubMed]
36. Murillo-Garcia, A.; Villafaina, S.; Collado-Mateo, D.; Leon-Llamas, J.L.; Gusi, N. Effect of dance therapies on motor-cognitive

dual-task performance in middle-aged and older adults: A systematic review and meta-analysis. Disabil. Rehabil. 2021, 43,
3147–3158. [CrossRef] [PubMed]

37. Kattenstroth, J.C.; Kalisch, T.; Holt, S.; Tegenthoff, M.; Dinse, H.R. Six months of dance intervention enhances postural, senso-
rimotor, and cognitive performance in elderly without affecting cardio-respiratory functions. Front. Aging Neurosci. 2013, 5, 5.
[CrossRef]

38. Müller, P.; Rehfeld, K.; Schmicker, M.; Hökelmann, A.; Dordevic, M.; Lessmann, V.; Brigadski, T.; Kaufmann, J.; Müller, N.G.
Evolution of neuroplasticity in response to physical activity in old age: The case for dancing. Front. Aging Neurosci. 2017, 9, 56.
[CrossRef]

39. Rehfeld, K.; Müller, P.; Aye, N.; Schmicker, M.; Dordevic, M.; Kaufmann, J.; Hökelmann, A.; Müller, N.G. Dancing or fitness sport?
the effects of two training programs on hippocampal plasticity and balance abilities in healthy seniors. Front. Hum. Neurosci.
2017, 11, 305. [CrossRef]

40. Rehfeld, K.; Lüders, A.; Hökelmann, A.; Lessmann, V.; Kaufmann, J.; Brigadski, T.; Müller, P.; Müller, N.G. Dance training is
superior to repetitive physical exercise in inducing brain plasticity in the elderly. PLoS ONE 2018, 13, e0196636. [CrossRef]

41. Giacosa, C.; Karpati, F.J.; Foster, N.E.V.; Penhune, V.B.; Hyde, K.L. Dance and music training have different effects on white matter
diffusivity in sensorimotor pathways. NeuroImage 2016, 135, 273–286. [CrossRef]

42. Rektorova, I.; Klobusiakova, P.; Balazova, Z.; Kropacova, S.; Sejnoha Minsterova, A.; Grmela, R.; Skotakova, A.; Rektor, I. Brain
structure changes in nondemented seniors after six-month dance-exercise intervention. Acta Neurol. Scand. 2020, 141, 90–97.
[CrossRef]

43. Hamacher, D.; Hamacher, D.; Rehfeld, K.; Hökelmann, A.; Schega, L. The effect of a six-month dancing program on motor-
cognitive dual-task performance in older adults. J. Aging Phys. Act. 2015, 23, 647–652. [CrossRef]

44. Park, J.E. Apraxia: Review and update. J. Clin. Neurol. 2017, 13, 317–324. [CrossRef]

http://doi.org/10.1073/pnas.1015950108
http://doi.org/10.1080/01924788.2014.977191
http://doi.org/10.1038/nrn2298
http://doi.org/10.1016/j.bbi.2011.11.008
http://doi.org/10.1186/s12966-018-0697-x
http://doi.org/10.1016/j.arr.2014.02.008
http://doi.org/10.3390/brainsci11111417
http://www.ncbi.nlm.nih.gov/pubmed/34827416
http://doi.org/10.1007/s10900-020-00920-x
http://doi.org/10.1080/00325481.2020.1860394
http://doi.org/10.3109/09638288.2012.717580
http://doi.org/10.1007/s10465-015-9196-7
http://doi.org/10.1177/0733464815602111
http://www.ncbi.nlm.nih.gov/pubmed/26320145
http://doi.org/10.1016/j.neubiorev.2014.09.009
http://doi.org/10.1016/j.jamda.2014.04.013
http://www.ncbi.nlm.nih.gov/pubmed/24913212
http://doi.org/10.1080/13554794.2021.1966047
http://www.ncbi.nlm.nih.gov/pubmed/34387540
http://doi.org/10.1080/09638288.2020.1735537
http://www.ncbi.nlm.nih.gov/pubmed/32180477
http://doi.org/10.3389/fnagi.2013.00005
http://doi.org/10.3389/fnagi.2017.00056
http://doi.org/10.3389/fnhum.2017.00305
http://doi.org/10.1371/journal.pone.0196636
http://doi.org/10.1016/j.neuroimage.2016.04.048
http://doi.org/10.1111/ane.13181
http://doi.org/10.1123/japa.2014-0067
http://doi.org/10.3988/jcn.2017.13.4.317


Int. J. Environ. Res. Public Health 2022, 19, 6202 26 of 29

45. Breen, L.; Phillips, S.M. Skeletal muscle protein metabolism in the elderly: Interventions to counteract the “anabolic resistance” of
ageing. Nutr. Metab. 2011, 8, 68. [CrossRef]

46. Miyazaki, A.; Okuyama, T.; Mori, H.; Sato, K.; Ichiki, M.; Nouchi, R. Drum communication program intervention in older adults
with cognitive impairment and dementia at nursing home: Preliminary evidence from pilot randomized controlled trial. Front.
Aging Neurosci. 2020, 12, 142. [CrossRef]

47. Kirwan, R.; McCullough, D.; Butler, T.; Perez De Heredia, F.; Davies, I.G.; Stewart, C. Sarcopenia during COVID-19 lockdown
restrictions: Long-term health effects of short-term muscle loss. GeroScience 2020, 42, 1547–1578. [CrossRef]

48. Schulz, K.F.; Altman, D.G.; Moher, D. Withdrawn: CONSORT 2010 statement: Updated guidelines for reporting parallel group
randomised trials. Int. J. Surg. 2010, 8, 604–612. [CrossRef]

49. Sugishita, M.; Koshizuka, Y.; Sudou, S.; Sugishita, K.; Hemmi, I.; Karasawa, S.; Ihara, M.; Asada, T.; Mihara, B. The Validity and
reliability of the japanese version of the Mini-Mental State Examination MMSE-J with the original procedure of the attention and
calculation task. Jpn. J. Cogn. Neurosci. 2018, 20, 91–110.

50. Takeshima, N.; Islam, M.M.; Rogers, M.E.; Rogers, N.L.; Sengoku, N.; Koizumi, D.; Kitabayashi, Y.; Imai, A.; Naruse, A. Effects of
nordic walking compared to conventional walking and band-based resistance exercise on fitness in older adults. J. Sports Sci. Med.
2013, 12, 422.

51. Istvandity, L. Combining music and reminiscence therapy interventions for wellbeing in elderly populations: A systematic review.
Complement. Ther. Clin. Pract. 2017, 28, 18–25. [CrossRef]

52. Karageorghis, C.I.; Jones, L.; Low, D.C. Relationship between exercise heart rate and music tempo preference. Res. Q. Exer. Sport.
2006, 77, 240–250. [CrossRef]

53. Farshidfar, F.; Shulgina, V.; Myrie, S.B. Nutritional supplementations and administration considerations for sarcopenia in older
adults. Nutr. Aging 2015, 3, 147–170. [CrossRef]

54. Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.R.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The
Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53,
695–699. [CrossRef] [PubMed]

55. Dubois, B.; Slachevsky, A.; Litvan, I.; Pillon, B. The FAB: A frontal assessment battery at bedside. Neurology 2000, 55, 1621–1626.
[CrossRef] [PubMed]

56. Li, X.; Jia, S.; Zhou, Z.; Hou, C.; Zheng, W.; Rong, P.; Jiao, J. The gesture imitation in Alzheimer’s disease dementia and amnestic
mild cognitive impairment. J. Alzheimers Dis. 2016, 53, 1577–1584. [CrossRef] [PubMed]

57. Yamaguchi, H.; Maki, Y.; Yamagami, T. Yamaguchi fox-pigeon imitation test: A rapid test for dementia. Dem. Geriatr. Cogn. Disord.
2010, 29, 254–258. [CrossRef]

58. Japan Society for Higher Brain Dysfunction. Standard Performance Test for Apraxia (SPTA); Shinkoh Igaku Shuppansha Co., Ltd.:
Tokyo, Japan, 1999; Available online: http://shinkoh-igaku.jp/cgi-bin/order_inspection/spta/ordermail.cgi (accessed on
14 April 2022).

59. Chiaramonte, R.; Cioni, M. Critical spatiotemporal gait parameters for individuals with dementia: A systematic review and
meta-analysis. Hong Kong Physiother. J. 2021, 41, 1–14. [CrossRef]

60. Brink, T.L.; Yesavage, J.A.; Lum, O.; Heersema, P.H.; Adey, M.; Rose, T.L. Screening tests for geriatric depression. Clin. Gerontol.
1982, 1, 37–43. [CrossRef]

61. The Whoqol Group. The World Health Organization Quality of Life Assessment (WHOQOL): Development and general
psychometric properties. Soc. Sci. Med. 1998, 46, 1569–1585. [CrossRef]

62. Sugishita, K.; Sugishita, M.; Hemmi, I.; Asada, T.; Tanigawa, T. A Validity and reliability study of the Japanese Version of the
Geriatric Depression Scale 15 (GDS-15-J). Clin. Gerontol. 2017, 40, 233–240. [CrossRef]

63. Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B.; Short, A. A Short
physical performance battery assessing lower extremity function: Association with self-reported disability and prediction of
mortality and nursing home admission. J. Gerontol. 1994, 49, M85–M94. [CrossRef]

64. Wallmann, H.W.; Evans, N.S.; Day, C.; Neelly, K.R. Interrater reliability of the five-times-sit-to-stand test. Home Health Care Manag.
Pract. 2013, 25, 13–17. [CrossRef]

65. Horak, F.B.; Nashner, L.M. Central programming of postural movements: Adaptation to altered support-surface configurations.
J. Neurophysiol. 1986, 55, 1369–1381. [CrossRef]

66. Svoboda, Z.; Bizovska, L.; Gonosova, Z.; Linduska, P.; Kovacikova, Z.; Vuillerme, N. Effect of aging on the association between
ankle muscle strength and the control of bipedal stance. PLoS ONE 2019, 14, e0223434. [CrossRef]

67. Tavakkoli Oskouei, S.; Malliaras, P.; Jansons, P.; Hill, K.; Soh, S.E.; Jaberzadeh, S.; Perraton, L. Is ankle plantar flexor strength
associated with balance and walking speed in healthy people? A systematic review and meta-analysis. Phys. Ther. 2021,
101, pzab018. [CrossRef]

68. Kemoun, G.; Thoumie, P.; Boisson, D.; Guieu, J.D. Ankle Dorsiflexion Delay Can Predict Falls in the Elderly. J. Rehabil. Med. 2002,
34, 278–283. [CrossRef]

69. Buckinx, F.; Reginster, J.Y.; Dardenne, N.; Croisiser, J.L.; Kaux, J.F.; Beaudart, C.; Slomian, J.; Bruyère, O. Concordance between
muscle mass assessed by bioelectrical impedance analysis and by dual energy x-ray absorptiometry: A cross-sectional study.
BMC Musculoskelet. Disord. 2015, 16, 60. [CrossRef]

http://doi.org/10.1186/1743-7075-8-68
http://doi.org/10.3389/fnagi.2020.00142
http://doi.org/10.1007/s11357-020-00272-3
http://doi.org/10.1016/j.ijsu.2010.09.006
http://doi.org/10.1016/j.ctcp.2017.03.003
http://doi.org/10.1080/02701367.2006.10599357
http://doi.org/10.3233/NUA-150057
http://doi.org/10.1111/j.1532-5415.2005.53221.x
http://www.ncbi.nlm.nih.gov/pubmed/15817019
http://doi.org/10.1212/WNL.55.11.1621
http://www.ncbi.nlm.nih.gov/pubmed/11113214
http://doi.org/10.3233/JAD-160218
http://www.ncbi.nlm.nih.gov/pubmed/27540963
http://doi.org/10.1159/000289819
http://shinkoh-igaku.jp/cgi-bin/order_inspection/spta/ordermail.cgi
http://doi.org/10.1142/S101370252130001X
http://doi.org/10.1300/J018v01n01_06
http://doi.org/10.1016/S0277-9536(98)00009-4
http://doi.org/10.1080/07317115.2016.1199452
http://doi.org/10.1093/geronj/49.2.M85
http://doi.org/10.1177/1084822312453047
http://doi.org/10.1152/jn.1986.55.6.1369
http://doi.org/10.1371/journal.pone.0223434
http://doi.org/10.1093/ptj/pzab018
http://doi.org/10.1080/165019702760390374
http://doi.org/10.1186/s12891-015-0510-9


Int. J. Environ. Res. Public Health 2022, 19, 6202 27 of 29

70. Mazess, R.B.; Barden, H.S.; Bisek, J.P.; Hanson, J. Dual-Energy X-Ray Absorptiometry for Total-Body and Regional Bone-Mineral
and Soft-Tissue Composition. Am. J. Clin. Nutr. 1990, 51, 1106–1112. [CrossRef]

71. Leelahagul, P.; Putadechakum, S.; Tanphaichitr, V. The effects of soluble dietary fibre from the thai herb, sweet basil seed, on
human body composition. Asia Pac. J. Clin. Nutr. 1992, 1, 169–174.

72. Roubenoff, R. Applications of bioelectrical impedance analysis for body composition to epidemiologic studies. Am. J. Clin. Nutr.
1996, 64, 459S–462S. [CrossRef]

73. Foster, K.R.; Lukaski, H.C. Whole-body impedance–What does it measure? Am. J. Clin. Nutr. 1996, 64, 388S–396S. [CrossRef]
74. Hui, D.; Dev, R.; Pimental, L.; Park, M.; Cerana, M.A.; Liu, D.; Bruera, E. Association between multi-frequency phase angle and

survival in patients with advanced cancer. J. Pain Symptom Manag. 2017, 53, 571–577. [CrossRef]
75. Matias, C.N.; Nunes, C.L.; Francisco, S.; Tomeleri, C.M.; Cyrino, E.S.; Sardinha, L.B.; Silva, A.M. Phase angle predicts physical

function in older adults. Arch. Gerontol. Geriatr. 2020, 90, 104151. [CrossRef]
76. Nunes, J.P.; Ribeiro, A.S.; Silva, A.M.; Schoenfeld, B.J.; Dos Santos, L.; Cunha, P.M.; Nascimento, M.A.; Tomeleri, C.M.;

Nabuco, H.C.G.; Antunes, M.; et al. Improvements in phase angle are related with muscle quality index after resistance
training in older women. J. Aging Phys. Act. 2019, 27, 515–520. [CrossRef]

77. Tomeleri, C.M.; Cavaglieri, C.R.; De Souza, M.F.; Cavalcante, E.F.; Antunes, M.; Nabbuco, H.C.G.; Venturini, D.; Barbosa, D.S.;
Silva, A.M.; Cyrino, E.S. Phase angle is related with inflammatory and oxidative stress biomarkers in older women. Exp. Gerontol.
2018, 102, 12–18. [CrossRef]

78. Collin, C.; Wade, D.T.; Davies, S.; Horne, V. The Barthel ADL Index: A reliability study. Int. Disabil. Stud. 1988, 10, 61–63.
[CrossRef]

79. Koyano, W.; Shibata, H.; Nakazato, K.; Haga, H.; Suyama, Y. Measurement of competence: Reliability and validity of the TMIG
Index of competence. Arch. Gerontol. Geriatr. 1991, 13, 103–116. [CrossRef]

80. Dent, E.; Kowal, P.; Hoogendijk, E.O. Frailty measurement in research and clinical practice: A review. Eur. J. Intern. Med. 2016, 31,
3–10. [CrossRef]

81. Prado, C.M.; Bell, J.J.; Gonzalez, M.C. Untangling malnutrition, physical dysfunction, sarcopenia, frailty and cachexia in ageing.
In Interdisciplinary Nutritional Management and Care for Older Adults; Springer: Cham, Switzerland, 2021; pp. 99–113. [CrossRef]

82. Baumgartner, R.N.; Koehler, K.M.; Gallagher, D.; Romero, L.; Heymsfield, S.B.; Ross, R.R.; Garry, P.J.; Lindeman, R.D. Epidemiol-
ogy of sarcopenia among the elderly in New Mexico. Am. J. Epidemiol. 1998, 147, 755–763. [CrossRef]

83. Van Buuren, S.; Groothuis-Oudshoorn, K. Mice: Multivariate imputation by chained equations in R. J. Stat. Softw. 2011, 45, 1–67.
[CrossRef]

84. White, I.R.; Royston, P.; Wood, A.M. Multiple imputation using chained equations: Issues and guidance for practice. Stat. Med.
2011, 30, 377–399. [CrossRef]

85. Wheeler, B.; Torchiano, M.; Torchiano, M. Package “lmPerm”. R Package Version. 2020. Available online: https://cran.r-project.
org/web/packages/lmPerm/lmPerm.pdf (accessed on 14 April 2022).

86. Wheeler, R.E.; Torchiano, M. Permutation tests for linear models in R. Compr. R Arch. Network 2010, 1, 3–35.
87. Kulason, K.; Nouchi, R.; Hoshikawa, Y.; Noda, M.; Okada, Y.; Kawashima, R. The beneficial effects of cognitive training with

simple calculation and reading aloud (SCRA) in the Elderly Postoperative Population: A Pilot Randomized Controlled Trial.
Front. Aging Neurosci. 2018, 10, 68. [CrossRef] [PubMed]

88. Nouchi, R.; Taki, Y.; Takeuchi, H.; Hashizume, H.; Nozawa, T.; Kambara, T.; Sekiguchi, A.; Miyauchi, C.M.; Kotozaki, Y.;
Nouchi, H.; et al. Brain training game boosts executive functions, working memory, and processing speed in the young adults: A
randomized controlled trial. PLoS ONE 2013, 8, e55518. [CrossRef] [PubMed]

89. Nouchi, R.; Kobayashi, A.; Nouchi, H.; Kawashima, R. Newly developed TV-based cognitive training games improve car driving
skills, cognitive functions, and mood in healthy older adults: Evidence from a randomized controlled trial. Front. Aging Neurosci.
2019, 11, 99. [CrossRef] [PubMed]

90. Storey, J.D. A direct approach to false discovery rates. J. R. Stat. Soc. B 2002, 64, 479–498. [CrossRef]
91. Cohen, J. Statistical Power Analysis for the Behavioral Science; Academic Press: Cambridge, MA, USA, 2013.
92. Ensrud, K.E.; Ewing, S.K.; Taylor, B.C.; Fink, H.A.; Cawthon, P.M.; Stone, K.L.; Hillier, T.A.; Cauley, J.A.; Hochberg, M.C.;

Rodondi, N.; et al. Comparison of 2 frailty indexes for prediction of falls, disability, fractures, and death in older women. Arch.
Intern. Med. 2008, 168, 382–389. [CrossRef]

93. Hewston, P.; Kennedy, C.C.; Borhan, S.; Merom, D.; Santaguida, P.; Ioannidis, G.; Marr, S.; Santesso, N.; Thabane, L.; Bray, S.; et al.
Effects of dance on cognitive function in older adults: A systematic review and meta-analysis. Age Ageing 2021, 50, 1084–1092.
[CrossRef]

94. Lundin-Olsson, L.; Nyberg, L.; Gustafson, Y. ‘Stops walking when talking’ as a predictor of falls in elderly people. Lancet 1997,
349, 617. [CrossRef]

95. Plummer, P.; Zukowski, L.A.; Giuliani, C.; Hall, A.M.; Zurakowski, D. Effects of physical exercise interventions on gait-related
dual-task interference in older adults: A systematic review and meta-analysis. Gerontology 2015, 62, 94–117. [CrossRef]

96. Xiong, J.; Ye, M.; Wang, L.; Zheng, G. Effects of physical exercise on executive function in cognitively healthy older adults: A
systematic review and meta-analysis of randomized controlled trials: Physical exercise for executive function. Int. J. Nurs. Stud.
2021, 114, 103810. [CrossRef]

http://doi.org/10.1093/ajcn/51.6.1106
http://doi.org/10.1093/ajcn/64.3.459S
http://doi.org/10.1093/ajcn/64.3.388S
http://doi.org/10.1016/j.jpainsymman.2016.09.016
http://doi.org/10.1016/j.archger.2020.104151
http://doi.org/10.1123/japa.2018-0259
http://doi.org/10.1016/j.exger.2017.11.019
http://doi.org/10.3109/09638288809164103
http://doi.org/10.1016/0167-4943(91)90053-S
http://doi.org/10.1016/j.ejim.2016.03.007
http://doi.org/10.1007/978-3-030-63892-4_8
http://doi.org/10.1093/oxfordjournals.aje.a009520
http://doi.org/10.18637/jss.v045.i03
http://doi.org/10.1002/sim.4067
https://cran.r-project.org/web/packages/lmPerm/lmPerm.pdf
https://cran.r-project.org/web/packages/lmPerm/lmPerm.pdf
http://doi.org/10.3389/fnagi.2018.00068
http://www.ncbi.nlm.nih.gov/pubmed/29643802
http://doi.org/10.1371/journal.pone.0055518
http://www.ncbi.nlm.nih.gov/pubmed/23405164
http://doi.org/10.3389/fnagi.2019.00099
http://www.ncbi.nlm.nih.gov/pubmed/31133842
http://doi.org/10.1111/1467-9868.00346
http://doi.org/10.1001/archinternmed.2007.113
http://doi.org/10.1093/ageing/afaa270
http://doi.org/10.1016/S0140-6736(97)24009-2
http://doi.org/10.1159/000371577
http://doi.org/10.1016/j.ijnurstu.2020.103810


Int. J. Environ. Res. Public Health 2022, 19, 6202 28 of 29

97. Merom, D.; Grunseit, A.; Eramudugolla, R.; Jefferis, B.; Mcneill, J.; Anstey, K.J. Cognitive benefits of social dancing and walking
in old age: The dancing mind randomized controlled trial. Front. Aging Neurosci. 2016, 8, 26. [CrossRef]

98. Fraisse, P. Rhythm and tempo. Psychol. Music. 1982, 1, 149–180.
99. Yamada, M.; Kimura, Y.; Ishiyama, D.; Otobe, Y.; Suzuki, M.; Koyama, S.; Kikuchi, T.; Kusumi, H.; Arai, H. The influence of the

COVID-19 pandemic on physical activity and new incidence of frailty among initially non-frail older adults in japan: A follow-up
online survey. J. Nutr. Health Aging 2021, 25, 751–756. [CrossRef]

100. Yamada, M.; Kimura, Y.; Ishiyama, D.; Otobe, Y.; Suzuki, M.; Koyama, S.; Kikuchi, T.; Kusumi, H.; Arai, H. Effect of the COVID-19
epidemic on physical activity in community-dwelling older adults in japan: A cross-sectional online survey. J. Nutr. Health Aging
2020, 24, 948–950. [CrossRef]

101. Muiños, M.; Ballesteros, S. Does dance counteract age-related cognitive and brain declines in middle-aged and older adults?
A systematic review. Neurosci. Biobehav. Rev. 2021, 121, 259–276. [CrossRef]

102. Wu, C.; Yi, Q.; Zheng, X.; Cui, S.; Chen, B.; Lu, L.; Tang, C. Effects of mind-body exercises on cognitive function in older adults:
A meta-analysis. J. Am. Geriatr. Soc. 2019, 67, 749–758. [CrossRef]

103. Etgen, T.; Sander, D.; Huntgeburth, U.; Poppert, H.; Förstl, H.; Bickel, H. Physical activity and incident cognitive impairment in
elderly persons: The INVADE study. Arch. Intern. Med. 2010, 170, 186–193. [CrossRef]

104. Dawes, P.; Cruickshanks, K.J.; Fischer, M.E.; Klein, B.E.K.; Klein, R.; Nondahl, D.M. Hearing-aid use and long-term health
outcomes: Hearing handicap, mental health, social engagement, cognitive function, physical health, and mortality. Int. J. Audiol.
2015, 54, 838–844. [CrossRef]

105. Penninkilampi, R.; Casey, A.N.; Singh, M.F.; Brodaty, H. The association between social engagement, loneliness, and risk of
dementia: A systematic review and meta-analysis. J. Alzheimers Dis. 2018, 66, 1619–1633. [CrossRef]

106. Schellenberg, E.G. Music lessons enhance IQ. Psychol. Sci. 2004, 15, 511–514. [CrossRef]
107. Moreno, S.; Farzan, F. Music training and inhibitory control: A multidimensional model. Ann. N. Y. Acad. Sci. 2015, 1337, 147–152.

[CrossRef]
108. Chen, F.T.; Etnier, J.L.; Chan, K.H.; Chiu, P.K.; Hung, T.M.; Chang, Y.K. Effects of exercise training interventions on executive

function in older adults: A systematic review and meta-analysis. Sports Med. 2020, 50, 1451–1467. [CrossRef]
109. Nouchi, R.; Taki, Y.; Takeuchi, H.; Sekiguchi, A.; Hashizume, H.; Nozawa, T.; Nouchi, H.; Kawashima, R. Four weeks of

combination exercise training improved executive functions, episodic memory, and processing speed in healthy elderly people:
Evidence from a randomized controlled trial. Age 2014, 36, 787–799. [CrossRef]

110. Netz, Y.; Wu, M.J.; Becker, B.J.; Tenenbaum, G. Physical activity and psychological well-being in advanced age: A meta-analysis
of intervention studies. Psychol. Aging 2005, 20, 272–284. [CrossRef]

111. Elavsky, S.; McAuley, E.; Motl, R.W.; Konopack, J.F.; Marquez, D.X.; Hu, L.; Jerome, G.J.; Diener, E. Physical activity enhances
long-term quality of life in older adults: Efficacy, esteem, and affective influences. Ann. Behav. Med. 2005, 30, 138–145. [CrossRef]

112. Park, M.; Anaza, E.; Shin, H.; Pack, S.M.; Chitiyo, M. Relationship between physical activity and quality of life in older adults: A
meta-analysis. J. Phys. Educ. Sport. 2020, 20, 3467–3477. [CrossRef]

113. Hansen, P.; Main, C.; Hartling, L. Dance intervention affects social connections and body appreciation among older adults in the
long term despite COVID-19 social isolation: A mixed methods pilot study. Front. Psychol. 2021, 12, 635938. [CrossRef]

114. Vuorinen, E.; Laine, M.; Rinne, J. Common Pattern of language impairment in vascular dementia and in Alzheimer disease.
Alzheimer Dis. Assoc. Disord. 2000, 14, 81–86. [CrossRef]

115. Wheaton, L.A.; Hallett, M. Ideomotor apraxia: A review. J. Neurol. Sci. 2007, 260, 1–10. [CrossRef]
116. Tabuchi, H.; Konishi, M.; Saito, N.; Kato, M.; Mimura, M. Reverse fox test for detecting visuospatial dysfunction corresponding to

parietal hypoperfusion in mild Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen. 2014, 29, 177–182. [CrossRef]
117. Rousseaux, M.; Rénier, J.; Anicet, L.; Pasquier, F.; Mackowiak-Cordoliani, M.A. Gesture comprehension, knowledge and

production in Alzheimer’s disease. Eur. J. Neurol. 2012, 19, 1037–1044. [CrossRef]
118. Boyke, J.; Driemeyer, J.; Gaser, C.; Buchel, C.; May, A.; Brain, T.I. Training-induced brain structure changes in the elderly.

J. Neurosci. 2008, 28, 7031–7035. [CrossRef] [PubMed]
119. Kocur, P.; Wiernicka, M.; Wilski, M.; Kaminska, E.; Furmaniuk, L.; Maslowska, M.F.; Lewandowski, J. Does nordic walking

improves the postural control and gait parameters of women between the age 65 and 74: A randomized trial. J. Phys. Ther. Sci.
2015, 27, 3733–3737. [CrossRef] [PubMed]

120. Beauchet, O.; Annweiler, C.; Montero-Odasso, M.; Fantino, B.; Herrmann, F.R.; Allali, G. Gait control: A specific subdomain of
executive function? J. Neuroeng. Rehabil. 2012, 9, 12. [CrossRef] [PubMed]

121. Kearney, F.C.; Harwood, R.H.; Gladman, J.R.F.; Lincoln, N.; Masud, T. The relationship between executive function and falls and
gait abnormalities in older adults: A systematic review. Dement. Geriatr. Cogn. Disord. 2013, 36, 20–35. [CrossRef]

122. Eyigor, S.; Karapolat, H.; Durmaz, B.; Ibisoglu, U.; Cakir, S. A randomized controlled trial of turkish folklore dance on the physical
performance, balance, depression and quality of life in older women. Arch. Gerontol. Geriatr. 2009, 48, 84–88. [CrossRef]

123. Keogh, J.W.; Kilding, A.; Pidgeon, P.; Ashley, L.; Gillis, D. Physical benefits of dancing for healthy older adults: A review. J. Aging
Phys. Act. 2009, 17, 479–500. [CrossRef]

124. Granacher, U.; Muehlbauer, T.; Bridenbaugh, S.A.; Wolf, M.; Roth, R.; Gschwind, Y.; Wolf, I.; Mata, R.; Kressig, R.W. Effects of a
salsa dance training on balance and strength performance in older adults. Gerontology 2012, 58, 305–312. [CrossRef]

125. Adlerton, A.K.; Moritz, U. Does calf-muscle fatigue affect standing balance? Scand. J. Med. Sci. Sports. 1996, 6, 211–215. [CrossRef]

http://doi.org/10.3389/fnagi.2016.00026
http://doi.org/10.1007/s12603-021-1634-2
http://doi.org/10.1007/s12603-020-1501-6
http://doi.org/10.1016/j.neubiorev.2020.11.028
http://doi.org/10.1111/jgs.15714
http://doi.org/10.1001/archinternmed.2009.498
http://doi.org/10.3109/14992027.2015.1059503
http://doi.org/10.3233/JAD-180439
http://doi.org/10.1111/j.0956-7976.2004.00711.x
http://doi.org/10.1111/nyas.12674
http://doi.org/10.1007/s40279-020-01292-x
http://doi.org/10.1007/s11357-013-9588-x
http://doi.org/10.1037/0882-7974.20.2.272
http://doi.org/10.1207/s15324796abm3002_6
http://doi.org/10.7752/jpes.2020.06468
http://doi.org/10.3389/fpsyg.2021.635938
http://doi.org/10.1097/00002093-200004000-00005
http://doi.org/10.1016/j.jns.2007.04.014
http://doi.org/10.1177/1533317513511291
http://doi.org/10.1111/j.1468-1331.2012.03674.x
http://doi.org/10.1523/JNEUROSCI.0742-08.2008
http://www.ncbi.nlm.nih.gov/pubmed/18614670
http://doi.org/10.1589/jpts.27.3733
http://www.ncbi.nlm.nih.gov/pubmed/26834341
http://doi.org/10.1186/1743-0003-9-12
http://www.ncbi.nlm.nih.gov/pubmed/22321772
http://doi.org/10.1159/000350031
http://doi.org/10.1016/j.archger.2007.10.008
http://doi.org/10.1123/japa.17.4.479
http://doi.org/10.1159/000334814
http://doi.org/10.1111/j.1600-0838.1996.tb00093.x


Int. J. Environ. Res. Public Health 2022, 19, 6202 29 of 29

126. Hamner, S.R.; Seth, A.; Delp, S.L. Muscle contributions to propulsion and support during running. J. Biomech. 2010, 43, 2709–2716.
[CrossRef]

127. Ossowski, Z.M.; Skrobot, W.; Aschenbrenner, P.; Cesnaitiene, V.J.; Smaruj, M. Effects of short-term nordic walking training on
sarcopenia-related parameters in women with low bone mass: A preliminary study. Clin. Interv. Aging 2016, 11, 1763–1771.
[CrossRef]

128. Yamada, M.; Arai, H.; Yoshimura, K.; Kajiwara, Y.; Sonoda, T.; Nishiguchi, S.; Aoyama, T. Nutritional Supplementation during
resistance training improved skeletal muscle mass in community-dwelling frail older adults. J. Frailty Aging 2012, 1, 64–70.
[CrossRef]

129. Lee, Y.; Kwon, O.; Shin, C.S.; Lee, S.M. Use of bioelectrical impedance analysis for the assessment of nutritional status in critically
ill patients. Clin. Nutr. Res. 2015, 4, 32–40. [CrossRef]

130. Foster, P.P. How does dancing promote brain reconditioning in the elderly? Front. Aging Neurosci. 2013, 5, 4. [CrossRef]
131. Tian, Q.; Chastan, N.; Thambisetty, M.; Resnick, S.M.; Ferrucci, L.; Studenski, S.A. Bimanual gesture imitation links to cognition

and olfaction. J. Am. Geriatr. Soc. 2019, 67, 2581–2586. [CrossRef]

http://doi.org/10.1016/j.jbiomech.2010.06.025
http://doi.org/10.2147/CIA.S118995
http://doi.org/10.14283/jfa.2012.12
http://doi.org/10.7762/cnr.2015.4.1.32
http://doi.org/10.3389/fnagi.2013.00004
http://doi.org/10.1111/jgs.16151

	Introduction 
	Materials and Methods 
	Trial Design and Setting 
	Participants 
	Sample Size 
	Overview of the Interventions 
	Nordic Walking Training (Walking Group) 
	Dance Program Training (Dance Group) 
	Control Group 
	Protein Intake 
	Cognitive Function Measures 
	Imitation Ability Measures 
	Gait Ability Measures 
	Mood State Measures 
	Physical Function Measures 
	Body Composition Measures 
	Other, Frailty, and Sarcopenia Measures 
	Statistical Analyses 

	Results 
	Background Characteristics 
	Cognitive Function 
	Mood State 
	Imitation Ability 
	Gait Ability 
	Physical Function 
	Body Composition 

	Discussion 
	Cognitive Function 
	Mood State 
	Imitation Ability 
	Gait Ability 
	Body Composition 
	Limitations 

	Conclusions 
	References

