

Introduction

Proteins are a class of macromolecules that play some of the most
important roles in nature. Proteins have functions as catalysts, in
signaling and in structural roles. A protein consists of one chain (or
multiple chains) of amino acid residues that fold into a more or less
rigid structure that has a biological function. A protein that functions
as a catalyst will have a certain place, called the binding site, where
other molecules will dock as the protein performs its function. The
binding site is usually an indentation or cave in the structure of the
protein. A ligand is a molecule that docks with another molecule, such
as a protein, to perform some function, see figure 1.

One way to combat a disease is to find a ligand that will dock
with a protein important for that disease, and disrupt its normal
function. In general one will have a chemical library of molecules that
are available for manufacturing. Using computers for predicting the
activity of very large libraries of molecules to identify the most
promising leads for further laboratory experiments is called virtual
screening. Simulating the docking between the protein and each ligand
on a computer in order search for promising ligands in a library of
available molecules requires a lot of computing time and available
protein structures.

Instead one may rely on the idea that similar structure leads to
similar properties, and predict the properties of a molecule by
studying the properties of similar molecules. Hence, if one has
identified a ligand that binds to a given target, for example from
another medical drug, or observed in nature, one may find other
candidate ligands by looking for ligands in a chemical library or
database that are similar to the known binder. This similarity- and
ligand-based approach to virtual screening works well for the right

formalizations of how to represent molecules and quantify their
similarity [25]. Due to the size of chemical databases such as
PubChem [4] and ChemDB [6], the similarity-baed approach to
virtual screening also needs efficient methods for screening a database
of molecular representations for molecules that are sufficiently similar
to a query molecule. In this paper we review such screening methods
for molecules represented as fingerprints or SMILES strings.

Representing molecules

It is not immediately obvious how to measure the similarity

between two molecules. However, some quite simple measures have
proven to be surprisingly good when used for virtual screening
[14,22]. For example one might compute a bit-string encoding
representative information about the molecules and use the similarity
between the bit-strings as a measure of the similarity between the
molecules. Such a bit-string for a molecule is denoted a fingerprint.

There are many ways to compute the actual fingerprints [5]. One
general approach is to select a set of features, each of which a
molecule may or may not have. Each feature will then correspond to
one bit in the fingerprint, and that bit will be set or not, according to
whether the given molecule has the feature [26]. Fingerprints of this
form will often be quite long, and with many bits set to zero. To use
space more efficiently they can be hashed compressed into shorter
fingerprints [1,2,15]. One might also represent a molecule by a
counting vector of integers, where each integer counts how many

CSBJ

Abstract: Developing new medical drugs is expensive. Among the first steps is a screening process, in which molecules in existing
chemical libraries are tested for activity against a given target. This requires a lot of resources and manpower. Therefore it has
become common to perform a virtual screening, where computers are used for predicting the activity of very large libraries of
molecules, to identify the most promising leads for further laboratory experiments. Since computer simulations generally require
fewer resources than physical experimentation this can lower the cost of medical and biological research significantly. In this paper
we review practically fast algorithms for screening databases of molecules in order to find molecules that are sufficiently similar to a
query molecule.

Methods for Similarity-based Virtual Screening

Thomas G. Kristensen a,#, Jesper Nielsen a,†, Christian N. S. Pedersen a,*

Volume No: 5, Issue: 6, February 2013, e201302009, http://dx.doi.org/10.5936/csbj.201302009

aBioinformatics Research Center, Aarhus University, C. F. Møllers Allé 8, DK-

8000 Aarhus C, Denmark
#Now employed by Trifork Gmbh
†Now employed by Google Inc

* Corresponding author.

E-mail address: cstorm@birc.au.dk (Christian N. S. Pedersen)

1

Figure 1. A ligand docking to a protein. Another ligand may dock with the
same protein, if it is sufficiently similar.

times a certain feature occurs in the molecular. A counting vector
allows for a more detailed description of the molecule as a multi-set
of features, where a binary fingerprint as introduced above simply
describes the molecule as a set of features. However, as counting
vectors can easily be converted into binary vectors, for example as
illustrated in figure 2, algorithms for handling binary vectors such as
the ones reviewed in this paper are also applicable for counting
vectors.

The Simplified Molecular Input Line Entry Specification

(SMILES) [23] is a standard way to encode the two dimensional
structure of a molecule in a one dimensional string that has a
canonical form such that every molecule can be represented by a
unique SMILES. The SMILES string is generated by writing a
sequence of letters, one for each atom type, marking branches with
parentheses and rings with numerical indexes. As an example, consider
the visualization of 3-cyanoanisole in figure 3, which can be
represented by the SMILES string "COc(c1)cccc1C\# N". The
main path of the molecule is the string "COcccccC\# N", the hash
mark symbolizing a triple bond. (c1) marks the branch containing just
one carbon atom, and the number "1" here and later in the path
defines the bond between the two carbon atoms.

Any string of length n ≥ q will have exactly n-q+1 substrings of
length q. In [21], a substring, of length q, of a SMILES string is
called a LINGO. Thus the SMILES string of a ligand can be viewed
as a multi-set of LINGOs, which in [21] is called the LINGO profile
of the molecule.

Similarity between molecules

There are of course several ways to quantify the similarity between

two sets (or multi-sets) of features, but the Tanimoto coefficient has
proven very useful [24,26]. If A and B are sets, or multi-sets, of
features, then the Tanimoto coefficient, ST (A, B), is:

 ()
| |

| |

If A and B are given as two bit-strings, then the Tanimoto
coefficient becomes:

 ()
| |

| |

where and are bitwise logical 'and' and logical 'or' respectively,
and |A| is the number of bits set to one in the bit-string A. See
figure 4 for an example.

The Tanimoto coefficient as defined above quantifies the

similarity between two bit-strings as a number in the interval [0;1],
where 0 says that the two bit-strings have no one-bits in common,
and 1 says that the two bit-strings are equal. The coefficient is only
defined if there is at least one bit set to one in the two bit-strings (i.e.
one feature is shared), which is a very reasonable assumption for
molecular fingerprints.

Recall, that the LINGO profile of a molecule is the multi-set of
LINGOs in its SMILES string. The similarity between two ligands
can thus be measured as the Tanimoto coefficient between their
LINGO profiles. This measure is called the LINGOsim between the
ligands [21].

One of the major motivations for quantifying molecular similarity
is to identify molecules for medical drugs. The problem can be
formalized as: We are given a database of representations (for example
fingerprints or SMILES) of synthesizable molecules, a query molecule
A, and a minimal similarity SMIN. The task is then to find all
molecules B in the database where ST (A, B) ≥ SMIN. This query can of
course be performed by a naive screening of the database, where we
examine every fingerprint A in the database to compute ST (A, B).
However, due to the typical size of the database, this is not a desirable
approach. In the following sections, we review how to perform such
queries more efficiently in practice. We first consider the problem for
molecules represented as bit-strings (fingerprints), and secondly, for
molecules represented as SMILES.

Searching for molecules with similar fingerprints

Given a database of N fingerprints of length n, a query fingerprint

A (also of length n), and a minimal similarity SMIN. We want to find
all molecules B in the database where ST (A, B) ≥ SMIN. In [19] it is

observed that since |A B| ≤ min(|A|, |B|) and |A B| ≥
max(|A|, |B|), then we can upper-bound the similarity between A
and B by

 ()
| |

| |

 (| | | |)

 (| | | |)
 ()

Figure 2. An illustration of converting a counting vector into a binary
vector.

Figure 3. Illustration of a possible SMILES string for 3-cyanoanisole. The
primary backbone is highlighted with thick lines. c1 indicates the two
points where the ring is merged.

Figure 4. The notation used for bit-strings.

Similarity-based Virtual Screening

2

Volume No: 5, Issue: 6, February 2013, e201302009 Computational and Structural Biotechnology Journal | www.csbj.org

Such an upper-bound can be used to make queries faster than a
simple linear search by sorting the fingerprints B in the database into
bins depending on their counts of one-bits |B|. When a query is
performed we can compute which bins has a COUNT-MAX (A, B)
≥ SMIN and only examine the fingerprints in those bins, i.e. only
compute ST (A, B) for the fingerprints B in those bins.

In a later paper [3], it is suggested to use a filter based on XOR
signatures to improve this pruning even further. The idea is to first
split the fingerprints into k equal-sized fragments such that

A = A1 A2···Ak and B = B1 B2···Bk and then compute XOR-

signatures, a and b of A and B, as a = A1 ⊕ A2 ⊕···⊕ Ak , and b =

B1 ⊕ B2 ⊕···⊕ Bk . Since |A B| = (|A| + |B| - |A⊕B|) / 2

and |A B| = (|A| + |B| + |A⊕B|) / 2 and we can lower-
bound the size of the XOR of the fingerprints by the size of the

XOR of the signatures, i.e. |A ⊕ B| ≥ |a ⊕ b|, then we can bound
the similarity as

 ()
| | | | | |

| | | | | |

| | | | | |

| | | | | |

 ()

Since the XOR signatures a and b are shorter than the original

fingerprints A and B, we can compute a ⊕b faster than A⊕B. This is
used as a filter, where the fingerprints B in the database DB are still
stored in bins depending on |B|, but the signature of each fingerprint
is stored with it, and the final ST (A, B) is only computed for
fingerprints where XOR-MAX (A, B) ≥ SMIN.

In [16] it is suggested to store the database DB as a trie [7] . The
key observation is that by walking down the trie one can bound the
similarity between the query fingerprint B and any fingerprint B in a
leaf below the current node in the trie. Consider a node at a level d in
a trie. Let AHEAD be the first d bits of the query fingerprint A, and

ATAIL be the remaining n−d bits. Similarly for an arbitrary database
fingerprint B below the node. We may now observe that

| | | | | |

| | | | | |

and hence

 ()
| |

| |

| | | |

| | | |

 ()

Thus, like above, we need only visit the children of the current

node if TRIE-MAX (A, B) ≥ SMIN. A trie easily takes up a lot of
memory, so in [17] the trie is compressed by collapsing long runs of
zero-bits into one node. This works well, because molecular
fingerprints tend to be sparse.

In [11], we present the kD-grid, which is a data structure for
supporting fast queries in practice building upon the ideas outlined
above in the sense that it corresponds to the approaches in [17] and
[19] for certain choices of the parameter k.

In the kD-grid, we split all fingerprints into k equal-sized

fragments such that A = A1 A2···Ak and B = B1 B2···Bk, and all
database fingerprints B in the database DB are placed into bins in a k
dimensional grid, based on the bit counts of the fragments |Bj|.
Figure 5 illustrates how a fingerprint is stored in a 3D-grid. Like
above, we can compute bounds on the similarity between a query
fingerprint A and the database fingerprints in any of these bins

 ()
| |

| |

∑ {| | | |}

∑ {| | | |}

 ()

In practice we implement the grid as a tree with k levels and leaves
of degree n/k, but with branches without leaf fingerprints pruned, see
figure 6. When looking up a query, we walk down the tree and can
compute bounds on all sub-branches. Assume we are visiting a node at
level l in the tree. The bound is then

 ()
∑ {| | | |} ∑ | |

∑ {| | | |} ∑ | |

Note that if we set k = 1 this corresponds to the approach of [19]
and if we set k = n this becomes the trie of [17].

Figure 5. An example of a fingerprint being stored in a 3D-grid.

Figure 6. An example of four fingerprints being stored in a tree
representing a 4D-grid.

Similarity-based Virtual Screening

3

Volume No: 5, Issue: 6, February 2013, e201302009 Computational and Structural Biotechnology Journal | www.csbj.org

Naively one would store the fingerprints in each bin in a simple
list, but one can do better. In [12] we present two alternative data
structures for representing the bins. The first is the singlebit tree. The
fingerprints for a given bin will be stored in the leaves of a tree, while
the internal nodes each store the index of a bit. Fingerprints with the
indexed bit clear will be stored in the left sub-tree of the given node,
and fingerprints with the indexed bit set will be stored in the right
sub-tree, see figure 7. Thus it is similar to a trie, except the bits in the
bitstring can be examined in any arbitrary order, instead of left-to-
right, as they are in a trie. Also, since we know what bucket the
singlebit tree is sitting in we have information about the number of set
bits for all fingerprints in the entire tree, which allows us to derive
tighter bounds than those of [17]. Let Mij be the count of positions

where A has an i-bit and B has a j-bit. For example M10 is the number
of positions where A has a one and B has a zero. Walking down a
singlebit tree we will obtain partial knowledge of Mij, as we compare

the bits in the nodes of the tree with those in A. Let the number of
positions we have knowledge about, and where A has an i-bit and B
has a j-bit, be mij and the unknown difference mij and Mij be uij, i.e. Mij
= mij + uij. Now we can bound the Tanimoto coefficient by

 ()

 {| | | | }

 {| | | | }

and only visit subtrees where the leaves may be sufficiently similar to
the query fingerprint.

Improving upon this we also suggested the multibit tree. The

multibit tree is similar to the singlebit tree, but stores several bits in
each internal node instead of only one. This means that we can no
longer split the children of a node based on whether they have a one
or a zero, thus the semantics needs to change somewhat. For each
node in the tree store a list of bit positions, along with a Boolean
value. These bits we call the match bits. The match bits of a node are
exactly those bits for which all the children of the node have the same
value and that is not a match bit further up the tree see figure 8.
Walking down a multibit tree we again gain partial knowledge about
the leaves of the tree and exactly the same bound as that of the
singlebit tree may be used.

How best to build the singlebit and multibit trees are not obvious.
The algorithm we used in our implementation is to split the dataset
recursively into smaller and smaller subsets. For each set of
fingerprints we choose the bit that splits the tree into two subsets that
are maximally close to having the same size. The set is then split into
two subsets based on whether that bit is set or not for each

fingerprint. The reasoning is to attempt to obtain a tree that is as well
balanced as possible. Theoretically it is not clear that this is the right
way to build the trees, but in practice the methods perform well, as
illustrated by the experimental results reported in figure 9. The
SymDex method [20] is a recent method that is reported to perform
even better.

Searching for molecules using LINGOsim

The LINGOsim [21] similarity measure is attractive because it

only relies on the SMILES description of the molecule, and it has
proven to be competitive with more computationally expensive
methods for predicting ligand properties, despite its simplicity [8]. An
efficient method for computing the LINGOsim, using a finete state
machine, is presented in [8]. Given a query SMILES string A and a
database, they suggest building a finite state machine from A to be
able to quickly compare it against any other SMILES string.

Figure 7. Example of a singlebit tree. The black squares denote the bits on
which the data is split; while the gray squares denote bits we have
information about from further up the tree.

Figure 8. Example of a multibit tree. The black squares denote the match
bits, while the gray squares denote bits that are match bits further up the
tree.

Figure 9. The result of an experiment that compares the running time
versus database size for our algorithms, the previous best algorithm (XOR-
signature filtering [3]), and a naive linear search. Fingerprints were
generated using the CDK fingerprint generator [18] with a standard
fingerprint size of 1024. We have performed tests on data set, containing
from 100,000 to 2,000,000 fingerprints in 100,000 increments. For each
data set size, the entire data structure was created. Next, the first 100
fingerprints in the database are used for queries. Each experiment is
performed 100 times, and the average query time is presented as the
speed-up compared to the naive linear search. All experiments are
performed with a SMIN of 0.9. For each kD-grid, the k (1, 2, 3, or 4) that
gave the best results was chosen.

Similarity-based Virtual Screening

4

Volume No: 5, Issue: 6, February 2013, e201302009 Computational and Structural Biotechnology Journal | www.csbj.org

Recall, that the LINGO profile of a molecule is the multi-set of
LINGOs in its SMILES string, and that the LINGOsim similarity
between two ligands is the Tanimoto coefficient between their
LINGO profiles. The algorithm described in [8] starts by building a
trie from all length q substrings of A. This trie is then converted into
a finite state machine, where states correspond to length q strings, and
substrings in A are accepting states. By running this state machine on
another SMILES string B, the size of the intersection of A and B can

found efficiently, and since | | | | | | | |, we can
also find the size of the union of A and B efficiently. With the sizes
of the intersection and union in hand, the LINGOsim is
straightforward to obtain.

A parallel algorithm is suggested in [9]. Their first observation is
that since a character in a computer normally uses eight bits, and it is
shown in both [21] and [8] that the optimal length of LINGOs is q
= 4, then a LINGO can be stored in a 32-bit computer word. For
each molecule they explicitly store a sorted list of all LINGOs in the
SMILES string of the molecule, along with a count of how many
times each LINGO occur in the molecule. This allows the
intersection size of LINGOs between two molecules to be computed
by iterating over the two LINGO lists simultaneously, similar to the
merge of a merge-sort. As above the intersection size is enough to
compute the LINGOsim. Parallelization is achieved by processing
several molecules at the same time and the paper presents
implementations for both CPUs and GPUs. They name their
algorithm SIML for Single-Instruction Multiple-LINGO.

In [13], we suggest using an inverted index to compute the
LINGO intersection size between a query SMILES string A and the
entire database quickly. First a preprocessing step is necessary, where
each LINGO in the database is given an integer number, such that the
first occurrence of a given LINGO in a SMILES string is given a
unique id, the second occurrence another one, and so on. This step
reduces the problem from multi-sets of LINGOs to ordinary sets of
ids. Next we store the database in an inverted index [10], that is,
instead of storing a list of LINGOs or ids for each database SMILES
string, we store a list of SMILES strings for each LINGO id. See

figure 10. Inverted index algorithms also have been applied to speed
up fingerprint similarity searches [16].

Now we can compute the LINGO intersection size for the entire
database the following way: Create a counter for each database
SMILES string. For each LINGO in the query A increase the counter
of all database SMILES strings found on the list of that LINGO.
When all LINGOs have been processed the counters contain the
LINGO intersection sizes, from which the LINGOsims can be
computed. This is fast because we only need to visit relevant LINGOs
in the database, as opposed to the above methods that always query
the entire database. Like above we can parallelize this by processing
several molecules at the same time.

For benchmarking we use a method similar to that of [9],
computing the LINGOsim similarity of all pairs of fingerprints in the
database. We compare our implementation against SIML [9] and the
commercial OpenEye implementation. The details of the experiment
are described in [13] and the results are summarized in figure 11.

Conclusions

In this paper, we have reviewed computationally efficient methods

for solving the problem of identifying all molecules stored in database
that have a certain similarity to a query molecule. We have considered
to problem when molecules were represented by bit-strings, and when
molecules were represented by SMILES string. In both cases, the
similarity measure used has been the Tanimoto coefficient. The
growing size of chemical databases implies a growing need for
solutions to this problem that are efficient in practice.

An area for improvement that we have not considered in details is
memory usage. Our data structures consume a lot of memory. To
store very large molecule databases it might be relevant to create an
I/O efficient implementation that stores the data structures on disk in
way that can be processed efficiently without reading the entire
structure into memory.

Figure 10. From SMILES strings to inverted index. (a) SMILES string simpli-
fied for LINGOsim. (b) LINGOs of example SMILES string. (c) The LINGOs
are given ids, with multiple occurrences given unique ids. (d) A reference
to the SMILES string S is stored for all the ids of the LINGOs in S.

Figure 11. Comparison of our implementation against that of OpenEye
and SIML [9], for one and four CPU cores.

Similarity-based Virtual Screening

5

Volume No: 5, Issue: 6, February 2013, e201302009 Computational and Structural Biotechnology Journal | www.csbj.org

Keywords:
Algorithms, Virtual Screening, Fingerprints, SMILES, LINGOsim

Competing Interests:
The authors have declared that no competing interests exist.

© 2013 Kristensen et al.
Licensee: Computational and Structural Biotechnology Journal.
This is an open-access article distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original
author and source are properly cited.

What is the advantage to you of publishing in Computational and
Structural Biotechnology Journal (CSBJ) ?

 Easy 5 step online submission system & online manuscript tracking
 Fastest turnaround time with thorough peer review
 Inclusion in scholarly databases
 Low Article Processing Charges
 Author Copyright
 Open access, available to anyone in the world to download for free

WWW.CSBJ.ORG

Similarity-based Virtual Screening

6

Volume No: 5, Issue: 6, February 2013, e201302009 Computational and Structural Biotechnology Journal | www.csbj.org

http://www.csbj.org/

