
 

  

 

 

 

 

 
 
 
 
 
 

 
Introduction 
 

Proteins are a class of macromolecules that play some of the most 
important roles in nature. Proteins have functions as catalysts, in 
signaling and in structural roles. A protein consists of one chain (or 
multiple chains) of amino acid residues that fold into a more or less 
rigid structure that has a biological function. A protein that functions 
as a catalyst will have a certain place, called the binding site, where 
other molecules will dock as the protein performs its function. The 
binding site is usually an indentation or cave in the structure of the 
protein. A ligand is a molecule that docks with another molecule, such 
as a protein, to perform some function, see figure 1. 

One way to combat a disease is to find a ligand that will dock 
with a protein important for that disease, and disrupt its normal 
function. In general one will have a chemical library of molecules that 
are available for manufacturing. Using computers for predicting the 
activity of very large libraries of molecules to identify the most 
promising leads for further laboratory experiments is called virtual 
screening. Simulating the docking between the protein and each ligand 
on a computer in order search for promising ligands in a library of 
available molecules requires a lot of computing time and available 
protein structures.  

Instead one may rely on the idea that similar structure leads to 
similar properties, and predict the properties of a molecule by 
studying the properties of similar molecules. Hence, if one has 
identified a ligand that binds to a given target, for example from 
another medical drug, or observed in nature, one may find other 
candidate ligands by looking for ligands in a chemical library or 
database that are similar to the known binder. This similarity- and 
ligand-based approach to virtual screening works well  for  the  right 

 
 
 
 
 
 

 
 

 
  

 

formalizations of how to represent molecules and quantify their 
similarity [25].  Due to the size of chemical databases such as 
PubChem [4] and ChemDB [6], the similarity-baed approach to 
virtual screening also needs efficient methods for screening a database 
of molecular representations for molecules that are sufficiently similar 
to a query molecule. In this paper we review such screening methods 
for molecules represented as fingerprints or SMILES strings. 

 

 
 
 

 
Representing molecules 

 
It is not immediately obvious how to measure the similarity 

between two molecules. However, some quite simple measures have 
proven to be surprisingly good when used for virtual screening 
[14,22]. For example one might compute a bit-string encoding 
representative information about the molecules and use the similarity 
between the bit-strings as a measure of the similarity between the 
molecules. Such a bit-string for a molecule is denoted a fingerprint.  

There are many ways to compute the actual fingerprints [5]. One 
general approach is to select a set of features, each of which a 
molecule may or may not have. Each feature will then correspond to 
one bit in the fingerprint, and that bit will be set or not, according to 
whether the given molecule has the feature [26]. Fingerprints of this 
form will often be quite long, and with many bits set to zero. To use 
space more efficiently they can be hashed compressed into shorter 
fingerprints [1,2,15]. One might also represent a molecule by a 
counting vector of integers, where each integer counts how many 
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Figure 1. A ligand docking to a protein. Another ligand may dock with the 
same protein, if it is sufficiently similar. 
 



times a certain feature occurs in the molecular. A counting vector 
allows for a more detailed description of the molecule as a multi-set 
of features, where a binary fingerprint as introduced above simply 
describes the molecule as a set of features. However, as counting 
vectors can easily be converted into binary vectors, for example as 
illustrated in figure 2, algorithms for handling binary vectors such as 
the ones reviewed in this paper are also applicable for counting 
vectors. 

 

 
 
 
 

 
The Simplified Molecular Input Line Entry Specification 

(SMILES) [23] is a standard way to encode the two dimensional 
structure of a molecule in a one dimensional string that has a 
canonical form such that every molecule can be represented by a 
unique SMILES. The SMILES string is generated by writing a 
sequence of letters, one for each atom type, marking branches with 
parentheses and rings with numerical indexes. As an example, consider 
the visualization of 3-cyanoanisole in figure 3, which can be 
represented by the SMILES string "COc(c1)cccc1C\# N". The 
main path of the molecule is the string "COcccccC\# N", the hash 
mark symbolizing a triple bond. (c1) marks the branch containing just 
one carbon atom, and the number "1" here and later in the path 
defines the bond between the two carbon atoms.  

Any string of length n ≥ q will have exactly n-q+1 substrings of 
length q. In [21], a substring, of length q, of a SMILES string is 
called a LINGO. Thus the SMILES string of a ligand can be viewed 
as a multi-set of LINGOs, which in [21] is called the LINGO profile 
of the molecule.  

 

 
 
 
 
 
 

Similarity between molecules 
 
There are of course several ways to quantify the similarity between 

two sets (or multi-sets) of features, but the Tanimoto coefficient has 
proven very useful [24,26]. If A and B are sets, or multi-sets, of 
features, then the Tanimoto coefficient, ST (A, B), is: 
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If A and B are given as two bit-strings, then the Tanimoto 
coefficient becomes:  
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where   and   are bitwise logical 'and' and logical 'or' respectively, 
and |A| is the number of bits set to one in the bit-string A. See 
figure 4 for an example.  
 

 
 
 

 
The Tanimoto coefficient as defined above quantifies the 

similarity between two bit-strings as a number in the interval [0;1], 
where 0 says that the two bit-strings  have no one-bits in common, 
and 1 says that the two bit-strings are equal. The coefficient is only 
defined if there is at least one bit set to one in the two bit-strings (i.e. 
one feature is shared), which is a very reasonable assumption for 
molecular fingerprints.  

Recall, that the LINGO profile of a molecule is the multi-set of 
LINGOs in its SMILES string. The similarity between two ligands 
can thus be measured as the Tanimoto coefficient between their 
LINGO profiles. This measure is called the LINGOsim between the 
ligands [21].  

One of the major motivations for quantifying molecular similarity 
is to identify molecules for medical drugs. The problem can be 
formalized as: We are given a database of representations (for example 
fingerprints or SMILES) of synthesizable molecules, a query molecule 
A, and a minimal similarity SMIN. The task is then to find all 
molecules B in the database where ST (A, B) ≥ SMIN. This query can of 
course be performed by a naive screening of the database, where we 
examine every fingerprint A in the database to compute ST (A, B). 
However, due to the typical size of the database, this is not a desirable 
approach. In the following sections, we review how to perform such 
queries more efficiently in practice. We first consider the problem for 
molecules represented as bit-strings (fingerprints), and secondly, for 
molecules represented as SMILES. 

 
Searching for molecules with similar fingerprints 

 
Given a database of N fingerprints of length n, a query fingerprint 

A (also of length n), and a minimal similarity SMIN. We want to find 
all molecules B in the database where ST (A, B) ≥ SMIN. In [19] it is 

observed that since |A   B| ≤ min(|A|, |B|) and |A   B| ≥ 
max(|A|, |B|), then we can upper-bound the similarity between A 
and B by 
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Figure 2. An illustration of converting a counting vector into a binary 
vector. 
 

Figure 3. Illustration of a possible SMILES string for 3-cyanoanisole. The 
primary backbone is highlighted with thick lines. c1 indicates the two 
points where the ring is merged. 
 

Figure 4. The notation used for bit-strings. 
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Such an upper-bound can be used to make queries faster than a 
simple linear search by sorting the fingerprints B in the database into 
bins depending on their counts of one-bits |B|. When a query is 
performed we can compute which bins has a COUNT-MAX (A, B) 
≥ SMIN and only examine the fingerprints in those bins, i.e. only 
compute ST (A, B) for the fingerprints B in those bins. 

In a later paper [3], it is suggested to use a filter based on XOR 
signatures to improve this pruning even further. The idea is to first 
split the fingerprints into k equal-sized fragments such that               

A = A1 A2···Ak and B = B1 B2···Bk and then compute XOR-

signatures, a and b of A and B, as a = A1 ⊕ A2 ⊕···⊕ Ak , and b = 

B1 ⊕ B2 ⊕···⊕ Bk . Since |A   B| = (|A| + |B| - |A⊕B|) / 2 

and |A   B| = (|A| + |B| + |A⊕B|) / 2 and we can lower-
bound the size of the XOR of the fingerprints by the size of the 

XOR of the signatures, i.e. |A ⊕ B| ≥ |a ⊕ b|, then we can bound 
the similarity as 
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Since the XOR signatures a and b are shorter than the original 

fingerprints A and B, we can compute a ⊕b faster than A⊕B. This is 
used as a filter, where the fingerprints B in the database DB are still 
stored in bins depending on |B|, but the signature of each fingerprint 
is stored with it, and the final ST (A, B) is only computed for 
fingerprints where XOR-MAX (A, B) ≥ SMIN. 

In [16] it is suggested to store the database DB as a trie [7] . The 
key observation is that by walking down the trie one can bound the 
similarity between the query fingerprint B and any fingerprint B in a 
leaf below the current node in the trie. Consider a node at a level d in 
a trie. Let AHEAD be the first d bits of the query fingerprint A, and 

ATAIL be the remaining n−d bits. Similarly for an arbitrary database 
fingerprint B below the node. We may now observe that 

 

|   |  |           |  |     |   
 

|   |  |           |  |     |    
 

and hence 
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Thus, like above, we need only visit the children of the current 

node if TRIE-MAX (A, B) ≥ SMIN. A trie easily takes up a lot of 
memory, so in [17] the trie is compressed by collapsing long runs of 
zero-bits into one node. This works well, because molecular 
fingerprints tend to be sparse. 

In [11], we present the kD-grid, which is a data structure for 
supporting fast queries in practice building upon the ideas outlined 
above in the sense that it corresponds to the approaches in [17] and 
[19] for certain choices of the parameter k.  

In the kD-grid, we split all fingerprints into k equal-sized 

fragments such that A = A1 A2···Ak and B = B1 B2···Bk, and all 
database fingerprints B in the database DB are placed into bins in a k 
dimensional grid, based on the bit counts of the fragments |Bj|. 
Figure 5 illustrates how a fingerprint is stored in a 3D-grid. Like 
above, we can compute bounds on the similarity between a query 
fingerprint A and the database fingerprints in any of these bins 
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In practice we implement the grid as a tree with k levels and leaves 
of degree n/k, but with branches without leaf fingerprints pruned, see 
figure 6. When looking up a query, we walk down the tree and can 
compute bounds on all sub-branches. Assume we are visiting a node at 
level l in the tree. The bound is then 
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Note that if we set k = 1 this corresponds to the approach of [19] 
and if we set k = n this becomes the trie of [17]. 

 

 
 
 

 

Figure 5. An example of a fingerprint being stored in a 3D-grid. 

Figure 6. An example of four fingerprints being stored in a tree 
representing a 4D-grid. 
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Naively one would store the fingerprints in each bin in a simple 
list, but one can do better. In [12] we present two alternative data 
structures for representing the bins. The first is the singlebit tree. The 
fingerprints for a given bin will be stored in the leaves of a tree, while 
the internal nodes each store the index of a bit. Fingerprints with the 
indexed bit clear will be stored in the left sub-tree of the given node, 
and fingerprints with the indexed bit set will be stored in the right 
sub-tree, see figure 7. Thus it is similar to a trie, except the bits in the 
bitstring can be examined in any arbitrary order, instead of left-to-
right, as they are in a trie. Also, since we know what bucket the 
singlebit tree is sitting in we have information about the number of set 
bits for all fingerprints in the entire tree, which allows us to derive 
tighter bounds than those of [17]. Let Mij be the count of positions 

where A has an i-bit and B has a j-bit. For example M10 is the number 
of positions where A has a one and B has a zero. Walking down a 
singlebit tree we will obtain partial knowledge of Mij, as we compare 

the bits in the nodes of the tree with those in A. Let the number of 
positions we have knowledge about, and where A has an i-bit and B 
has a j-bit, be mij and the unknown difference mij and Mij be uij, i.e. Mij  
= mij + uij. Now we can bound the Tanimoto coefficient by 
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and only visit subtrees where the leaves may be sufficiently similar to 
the query fingerprint. 

 

 
 
 
 
 

 
Improving upon this we also suggested the multibit tree. The 

multibit tree is similar to the singlebit tree, but stores several bits in 
each internal node instead of only one. This means that we can no 
longer split the children of a node based on whether they have a one 
or a zero, thus the semantics needs to change somewhat. For each 
node in the tree store a list of bit positions, along with a Boolean 
value. These bits we call the match bits. The match bits of a node are 
exactly those bits for which all the children of the node have the same 
value and that is not a match bit further up the tree see figure 8. 
Walking down a multibit tree we again gain partial knowledge about 
the leaves of the tree and exactly the same bound as that of the 
singlebit tree may be used. 

How best to build the singlebit and multibit trees are not obvious. 
The algorithm we used in our implementation is to split the dataset 
recursively into smaller and smaller subsets. For each set of 
fingerprints we choose the bit that splits the tree into two subsets that 
are maximally close to having the same size. The set is then split into 
two subsets based on whether that bit is set or not for each 

fingerprint. The reasoning is to attempt to obtain a tree that is as well 
balanced as possible. Theoretically it is not clear that this is the right 
way to build the trees, but in practice the methods perform well, as 
illustrated by the experimental results reported in figure 9. The 
SymDex method [20] is a recent method that is reported to perform 
even better.  
 

 
 
 
 
 

 
Searching for molecules using LINGOsim 

 
The LINGOsim [21] similarity measure is attractive because it 

only relies on the SMILES description of the molecule, and it has 
proven to be competitive with more computationally expensive 
methods for predicting ligand properties, despite its simplicity [8]. An 
efficient method for computing the LINGOsim, using a finete state 
machine, is presented in [8]. Given a query SMILES string A and a 
database, they suggest building a finite state machine from A to be 
able to quickly compare it against any other SMILES string.  
 

 
 
 
 
 
 
 

 
 
 
 
 

Figure 7. Example of a singlebit tree. The black squares denote the bits on 
which the data is split; while the gray squares denote bits we have 
information about from further up the tree. 
 

Figure 8. Example of a multibit tree. The black squares denote the match 
bits, while the gray squares denote bits that are match bits further up the 
tree.  
 

Figure 9. The result of an experiment that compares the running time 
versus database size for our algorithms, the previous best algorithm (XOR-
signature filtering [3]), and a naive linear search. Fingerprints were 
generated using the CDK fingerprint generator [18] with a standard 
fingerprint size of 1024. We have performed tests on data set, containing 
from 100,000 to 2,000,000 fingerprints in 100,000 increments. For each 
data set size, the entire data structure was created. Next, the first 100 
fingerprints in the database are used for queries. Each experiment is 
performed 100 times, and the average query time is presented as the 
speed-up compared to the naive linear search. All experiments are 
performed with a SMIN of 0.9. For each kD-grid, the k (1, 2, 3, or 4) that 
gave the best results was chosen.  
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Recall, that the LINGO profile of a molecule is the multi-set of 
LINGOs in its SMILES string, and that the LINGOsim similarity 
between two ligands is the Tanimoto coefficient between their 
LINGO profiles. The algorithm described in [8] starts by building a 
trie from all length q substrings of A. This trie is then converted into 
a finite state machine, where states correspond to length q strings, and 
substrings in A are accepting states. By running this state machine on 
another SMILES string B, the size of the intersection of A and B can 

found efficiently, and since | |  | |  |   |  |   |, we can 
also find the size of the union of A and B efficiently. With the sizes 
of the intersection and union in hand, the LINGOsim is 
straightforward to obtain. 

A parallel algorithm is suggested in [9]. Their first observation is 
that since a character in a computer normally uses eight bits, and it is 
shown in both [21] and [8] that the optimal length of LINGOs is q 
= 4, then a LINGO can be stored in a 32-bit computer word. For 
each molecule they explicitly store a sorted list of all LINGOs in the 
SMILES string of the molecule, along with a count of how many 
times each LINGO occur in the molecule. This allows the 
intersection size of LINGOs between two molecules to be computed 
by iterating over the two LINGO lists simultaneously, similar to the 
merge of a merge-sort. As above the intersection size is enough to 
compute the LINGOsim. Parallelization is achieved by processing 
several molecules at the same time and the paper presents 
implementations for both CPUs and GPUs. They name their 
algorithm SIML for Single-Instruction Multiple-LINGO. 
 

 
 
 
 
 
 
 

In [13], we suggest using an inverted index to compute the 
LINGO intersection size between a query SMILES string A and the 
entire database quickly. First a preprocessing step is necessary, where 
each LINGO in the database is given an integer number, such that the 
first occurrence of a given LINGO in a SMILES string is given a 
unique id, the second occurrence another one, and so on. This step 
reduces the problem from multi-sets of LINGOs to ordinary sets of 
ids. Next we store the database in an inverted index [10], that is, 
instead of storing a list of LINGOs or ids for each database SMILES 
string, we store a list of SMILES strings for each LINGO id. See 

figure 10. Inverted index algorithms also have been applied to speed 
up fingerprint similarity searches [16]. 

Now we can compute the LINGO intersection size for the entire 
database the following way: Create a counter for each database 
SMILES string. For each LINGO in the query A increase the counter 
of all database SMILES strings found on the list of that LINGO. 
When all LINGOs have been processed the counters contain the 
LINGO intersection sizes, from which the LINGOsims can be 
computed. This is fast because we only need to visit relevant LINGOs 
in the database, as opposed to the above methods that always query 
the entire database. Like above we can parallelize this by processing 
several molecules at the same time. 

For benchmarking we use a method similar to that of [9], 
computing the LINGOsim similarity of all pairs of fingerprints in the 
database. We compare our implementation against SIML [9] and the 
commercial OpenEye implementation. The details of the experiment 
are described in [13] and the results are summarized in figure 11. 

 

 
 
 
 

 
Conclusions 

 
In this paper, we have reviewed computationally efficient methods 

for solving the problem of identifying all molecules stored in database 
that have a certain similarity to a query molecule. We have considered 
to problem when molecules were represented by bit-strings, and when 
molecules were represented by SMILES string. In both cases, the 
similarity measure used has been the Tanimoto coefficient. The 
growing size of chemical databases implies a growing need for 
solutions to this problem that are efficient in practice.  

An area for improvement that we have not considered in details is 
memory usage. Our data structures consume a lot of memory. To 
store very large molecule databases it might be relevant to create an 
I/O efficient implementation that stores the data structures on disk in 
way that can be processed efficiently without reading the entire 
structure into memory.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. From SMILES strings to inverted index. (a) SMILES string simpli- 
fied for LINGOsim. (b) LINGOs of example SMILES string. (c) The LINGOs 
are given ids, with multiple occurrences given unique ids. (d) A reference 
to the SMILES string S is stored for all the ids of the LINGOs in S. 
 

Figure 11. Comparison of our implementation against that of OpenEye 
and SIML [9], for one and four CPU cores. 
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