
https://doi.org/10.1177/11769343221142013

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial  
4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without 

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Evolutionary Bioinformatics
Volume 19: 1–15
© The Author(s) 2023
Article reuse guidelines: 
sagepub.com/journals-permissions
DOI: 10.1177/11769343221142013

Introduction
Hepatocellular carcinoma (HCC) is the most common pri-
mary malignancy of the liver. Most patients with HCC 
have a history of alcohol abuse or hepatitis B or C virus 
(HBV or HCV) infection.1,2 Despite the great advances in 
chemo- and radio-therapies these years, the prognosis of 
hepatocellular carcinoma remains poor. There is an urgent 
need to develop novel early diagnostic markers and promis-
ing personalized therapeutic targets.

The RNA modification of N6-methyladenine (m6A) is a 
type of specific RNA modification that are reversible and 
dynamic; m6A modification occurs on various RNAs, such as 
mRNAs, tRNAs, snRNAs, and long non-coding RNAs (lncR-
NAs).3 Therefore, it is a major kind of RNA modification. 
m6A-related proteins can be classified into 3 categories based on 
their functions: methyltransferases (METTL3, METTL14, 
and KIAA1429, “writers”), demethylases (ALKBH5 and FTO, 
“erasers”), and m6A-binding proteins/effectors (YTHDF1, 

YTHDF2, and YTHDF3, “readers”).4,5 Dysregulation of the 
m6A gene may play an important role in oncogenes expression, 
indicating that the m6A gene is involved in the tumorigenesis 
of HCC.6-8 Increasing evidence suggests that m6A modifica-
tion is involved in various aspects of malignant behaviors, 
including proliferation, differentiation, invasion, and metasta-
sis.9,10 Notably, the crucial role of lncRNA in HCC initiation 
and development has been widely recognized.11,12 Although 
the important role of m6A regulators in HCC has been 
reported, the interaction between m6A genes and lncRNAs 
remains unclear. This study aimed to develop a model consist-
ing of m6A-related genes and co-expressed lncRNAs to pre-
dict the prognosis of HCC.

Traditional prognostic predictors of HCC are primarily 
associated with tumor size, clinical staging, alpha-fetoprotein 
(AFP) and pathological manifestations.13-15 Although several 
studies have proposed various prognostic models based on 
differentially expressed genes (DEGs) between HCC and 
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non-cancerous samples, the sensitivity and specificity of these 
predictive models remain unsatisfactory. With the develop-
ments of gene microarray and high-throughput sequencing 
technologies, it has been confirmed that prognosis-related 
mRNA signatures are strongly associated with the overall 
survival of HCC patients. For example, the Least Absolute 
Shrinkage and Selection Operator (LASSO) is a regression 
algorithm for high-dimensional data to select the most 
prominent predictive features in the training dataset.16

The purpose of this study was to develop a novel model  
for predicting the prognosis of HCC. The Genomic Data 
Commons (GDC) data portal from The Cancer Genome 
Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) has 
been used as the training set and the TCGA-LIHC dataset as 
the validation set. A dataset from the International Cancer 
Genome Consortium (ICGC) was collected and applied for 
correlation analysis. We analyzed the differential lncRNAs 
expression between normal and cancer tissues that might co-
express with the m6A regulators—based on the m6A genes 
and co-expressed lncRNAs. The model improves the accuracy 
and efficiency of predicting HCC prognosis based on m6A 
genes and co-expression of lncRNAs.

Materials and Methods
Data source

We collected Genomic Data Commons (GDC) Data Portal 
from The Cancer Genome Atlas Liver Hepatocellular 
Carcinoma (TCGA-LIHC) as the training set (n = 370) and 
TCGA-LIHC dataset as the validation set (n = 367). From the 
International Cancer Genome Consortium (ICGC; n = 232), 
collected and used for correlation analysis. Samples with clinical 
information and expression profile data were used for analysis.

The selection of m6A regulators

Through literature review, we compiled a list of 19 m6A regu-
lators from recently published literature, including 7 writers 
(METTL3, METTL14, WTAP, RBM15, RBM15B, ZC3H13, 
KIAA1429), 10 readers (IGF2BP1, IGF2BP2, IGF2BP3, 
YTHDC1, YTHDC2, HNRNPC, HNRNPA2B1, EIF3A, 
YTHDF2, YTHDF3), and 2 erasers (FTO and ALKBH5).

Correlation analysis by Pearson’s correlation 
analysis

According to the TCGA-LIHC-GDC dataset, we performed 
Pearson correlation analysis (|r|>0.6, P < .001) to identify 
lncRNAs that were co-expressed with the above m6a regula-
tors. Based on these co-expressed lncRNAs, we used consensus 
clustering and principal component analysis (PCA) to classify 
HCC patients into 2 clusters: Cluster1 (n = 223) and Cluster2 
(n = 147). The survival probabilities of the 2 groups were subse-
quently analyzed using the Kaplan-Meier survival estimation 

method. The survival probabilities of the 2 groups were subse-
quently analyzed using the Kaplan-Meier survival estimation 
method, and the tumor purity of HCC patients was evaluated 
with the ESTIMATE algorithm.

Identif ication of prognostic signature

The LASSO algorithm was performed to determine the 
co efficients of the 9 lncRNAs. Risk scores for each patient’s 
prognostic signature were calculated using the LASSO  
package of R language. The formula was: risk score = gene1 
expression × β1gene1 + gene2 expression × β2gene2 + gene3 
expression × β3gene3.17,18 For the present study, the formula is: 
Exp (LINC00294) × 1.7054152936917113 + Exp (SPATA13) 
 × 0.5343857464082967 + Exp (SNHG20) × −0.9134898623
900841 + Exp (AC024560.3) × 2.7394360120552985 + Exp 
(AC027601.1) × 9.081174156665293 + Exp (LINC00205) × 
−0.27010300079236227 + Exp (AC092171.4) × −4.04587198
98852875 + Exp (SNHG1) × −3.3499074391566745 + Exp 
(LINC00630) × 2.8716984583245337. The cases in both 
training and validation dataset were divided into high-risk 
and low-risk groups based on the median risk score. The dif-
ference in OS between the high-risk and low-risk groups 
was calculated using the Kaplan-Meier method with a 
2-sided log-rank test. The 5-year receiver-operating charac-
teristic (ROC) curve was constructed using the survival 
ROC package in R to analyze the predictive accuracy.

Univariate and multivariate Cox regression analyses were 
used to identify clinical risk parameters associated with survival 
to establish genome-clinicopathologic nomograms. Markers 
based on the 9-lncRNA characteristic risk scores and risk 
parameters were used to develop genome-clinicopathological 
nomograms.

Genomic-clinicopathologic nomogram

The performance of bootstrap method of calibration and 
discriminatory model was performed by 1000-iterations of 
resampling. The consistency index (C index) was calculated 
to assess discrimination, which is the ability of the model to 
distinguish between surviving and non-surviving patients. 
The nomogram calibration curve for 5-year OS was subse-
quently plotted to estimate the accuracy of the actual 
observed rate versus the predicted survival probability.

Clinical sample collection

Clinical sample collection following our previous study.19 
Samples were collected from patients who had never received 
any treatment before sampling and who had completed prior 
written informed consent, according to the approval of the Third 
Xiangya Hospital’s Research Ethics Committee. The HCC tis-
sues (n = 20) were taken from individuals diagnosed histopatho-
logically. Simultaneously, adjacent paired non-cancerous samples 
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were collected. All HCC patients had no other viral diseases, 
such as hepatitis or the Human Immunodeficiency Virus (HIV). 
Additionally, none of these individuals had any other forms of 
liver disease.20 Until they were applied in subsequent experi-
ments, all samples were kept at −80°C.

qRT-PCR

Total RNA isolation was performed using TRIzol (Invitrogen) 
according to our previously described study.19 Reverse tran-
scription of total RNA (1 μg) to cDNA was performed using 
the High-Capacity RNA-to-cDNA Reverse Transcription Kit 
(Applied Biosystems, Thermo Fisher Scientific). The expres-
sion levels of 9 lncRNAs were detected using an ABI 7500 Fast 
real-time PCR (Applied Biosystems), Using GAPDH as an 
internal reference gene, the 2−ΔΔCt technique was used to calcu-
late the relative mRNA expression. The primer sequence was 
listed in Table S1.

Statistical analyses

All statistical analysis was performed using SPSS (version 
22.0) and R (version 3.5.1; https://www.r-project.org/). 
Statis tically significant was considered when P < .05. 
Missing clinical data was removed from the list; if the value 
of any parameter was missing, the entire sample was deleted 
from the analysis.

Missing clinical data was removed from the list; if the value 
of any parameter was missing, the entire sample was deleted 
from the analysis. The OS was defined as the time interval 
from the date of diagnosis to death. Means of continuous vari-
ables were compared by t-test. Survival analysis was performed 
using the Kaplan-Meier method for the high-risk and low-risk 
groups, using the R-language 2-sided log-rank test.

Results
LncRNAs co-expressed with m6A regulators

To identify lncRNAs that might be correlated with the above 
m6A regulators, we performed Pearson’s correlation analysis to 
identify co-expressed lncRNAs based on the TCGA-LIHC-
GDC dataset. The results revealed that 34 lncRNAs were co-
expressed with the 19 m6A regulators (|r|>0.6, P < .001) 
(Figure 1A and B). TCGA-LIHC-GDC data indicated that 
the expression levels of the 19 m6A regulators and the 34 co-
expressed lncRNAs were increased within cancerous samples 
than in normal healthy samples (Figure 1C and D).

Sample selection and hierarchical clustering

Based on 34 lncRNA expression profiles, we used Consensus 
Cluster to classify the HCC patients in the TCGA-LIHC-
GDC dataset and found that HCC samples could be classi-
fied into 2 clusters: Cluster1 (n = 223) and Cluster2 (n = 147) 

(Figure 2A and B). The classification performance of the con-
sensus clusters was further confirmed by principal component 
analysis (PCA) (Figure 2C). Then, the Kaplan-Meier survival 
estimate demonstrated a significantly worse prognosis for 
Cluster2 (P < .001; Figure 2D). Subsequently, the 
ESTIMATE algorithm was used to calculate the matrix 
score, immune infiltration score, and tumor purity for both 
HCC samples. We discovered that Cluster2 exhibited higher 
malignancy (lower stromal score, lower immune infiltration 
score, and higher tumor purity; Figure 2E-G), indicating that 
HCC samples in Cluster2 had higher tumor specificity. 
Therefore, we selected the cases in Cluster2 (n = 147) for sub-
sequent analysis.

Establishment of risk signature by LASSO 
algorithm and prognostic potential of m6A 
regulator-correlated lncRNAs

To predict the prognosis based on the 34 lncRNAs co-expressed 
with m6A RNA methylated regulators, we employed LASSO 
Cox regression analysis to establish a risk score model using 
147 samples from Cluster2. Risk profiles for 9-genes were 
established based on the minimal criterion, and risk coeffi-
cients were derived using the LASSO algorithm; this coeffi-
cient was then used to evaluate the risk score for each case in 
Cluster2 (Figure 3A and B). The 9 lncRNAs were: LINC00294, 
SPATA13, SNHG20, AC024560.3, AC027601.1, LINC00205, 
AC092171.4, SNHG1, and LINC00630. According to the 
regression coefficient, the risk score for each case was calcu-
lated using the above formula.

Cases with TCGA-LIHC-GDC, TCGA-LIHC, and 
ICGC cluster2 were divided into high- and low-risk groups 
according to the median risk score. Thereafter, we evaluated 
the potential of the 9-gene signature in terms of prognosis and 
risk score. Firstly, we used Kaplan-Meier survival estimates to 
assess the correlation between risk scores and overall patient 
survival (OS). As shown in Figure 4A to D, the case prognosis 
of the training dataset TCGA-LIHC-GDC and validation 
dataset TCGA-LIHC can be distinguished by the risk score; 
Figure 4E and F showed that the case prognosis of the valida-
tion dataset ICGC, although not significant, can also be dis-
tinguished by the risk score. Similarly, it can be seen from 
Figure 4G and H that the prognosis of cases can be distin-
guished using the risk score according to GSE15654; the 
prognosis of cases could also be distinguished by the risk score, 
although not significantly, according to the GSE76427 score. 
In other words, the risk score was shown to be tightly linked 
to HCC patients’ OS.

Secondly, we employed the receiver operating characteris-
tic (ROC) curve21 to test the predictive efficiency of the sur-
vival model. Figure 4G showed that the area under the curves 
(AUC) for OS from the training dataset TCGA-LIHC-
GDC and validation dataset TCGA-LIHC and ICGC were 

https://www.r-project.org/
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0.78 (5 years), 0.62 (5 years), and 0.62 (5 years). The OS curves 
for GSE76427 and GSE15654 were 0.67 and 0.52, respec-
tively. As revealed by the ROC curve, the risk score-based 
curve showed satisfactory predictive efficiency.

Thirdly, a multivariate Cox’s proportional hazard regres-
sion model was used to analyze the clinical characteristics of 
high-risk and low-risk groups. Figure 5 indicated that stage 
(P = 0.012, HR = 0.503; 95%CI = 0.295-0.86) and the risk 
score (P = 0.0242, HR = 1.891; 95%CI = 1.087-3.29) predicted 
patients’ OS according to training dataset TCGA-LIHC-
GDC. As shown in Figure 6, according to validation dataset 
TCGA-LIHC, stage (P < .001, HR = 0.390; 95%CI = 0.269-
0.567) and the risk score (P = 0.0098, HR = 1.638; 95%CI =  
1.126-2.383) predicted patients’ OS.

The diagnostic potential of the risk score

After confirming the prognostic potential of the risk score of the 
9-lncRNA signaling in the prognosis of HCC patients, we next 
investigated whether the risk score could distinguish cluster2 
from cluster1 and HCC patients from normal controls. We sep-
arated cases in TCGA-LIHC-GDC according to the patients’ 
risk score, using the median value of risk score as cut-off, and the 
high- and low-risk score groups overlapped with the cluster1 
and cluster2 (Figure 7A). Moreover, the risk score could also dis-
tinguish HCC patients from normal controls (Figure 7B and D) 
and HCC cases in different pathological grades (Figure 7C and 
E), according to the training dataset TCGA-LIHC-GDC and 
validation dataset TCGA-LIHC.

Figure 1. Selecting lncRNAs that were co-expressed with m6A core regulators (A and B) r values and P values of lncRNAs co-expressed with m6A core 

regulators based on data from TCGA-LIHC-GDC. Correlations with |r|>0.6, P < .001. (C and D) expression levels of selected lncRNAs and m6A core 

regulators in tumor and non-cancerous control samples based on TCGA-LIHC-GDC data.
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Signaling pathway and functional enrichment 
annotation of risk factors (9 lncRNAs)

We employed independent datasets GSE101685 and 
GSE112790 to analyze genetic differences between HCC 
and normal tissues (|FC|>1, FDR < 0.05), and Pearson 
correlation analysis (|r|>0.6, P < .001) to identify mRNA 
co-expressed with risk factors (9 lncRNAs). We obtained 
232 differential mRNAs co-expressed with risk factors, 
including 18 downregulated genes and 214 upregulated 

genes (Figure 8A and B). The lncRNAs and these co-expressed 
mRNAs formed an interaction network (Figure 8C); among the 
9 lncRNAs, interacting networks of 7 lncRNAs’ co-expressed 
mRNAs were obtained.

Then, we analyzed the functions of these mRNAs by 
Gene Ontology (GO), Kyoto Encyclopedia of Genes and 
Genomes (KEGG), and Protein-Protein interaction (PPI) 
analyses. By PPI analysis, these 232 mRNAs formed 7 inter-
action modules (Figure 9A). GO functional annotation 
revealed that these 232 mRNAs are mainly associated with 

Figure 2. Sample selection (A-C) Cumulative distribution function curve, consensus clustering, and principal component analysis (PCA) were performed 

to analyze TCGA-LIHC-GDC cases; cases could be divided into cluster1 and cluster2. (D) Kaplan-Meier survival estimation was applied to perform 

survival analysis for cases in cluster1 and cluster2. (E and G) Stromal score, immune score, and tumor purity of cases in cluster1 and cluster2 were 

calculated by the ESTIMATE algorithm.
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cell cycle and cell metabolic activities such as mitosis, DNA 
replication, cytokinesis, DNA metabolism, protein degrada-
tion, and biological activities regulating TP53 transcription 
and transferase activity (Figure 9B to E). KEGG signaling 
enrichment annotation showed that the 232 mRNAs are 
mainly enriched in the cell cycle, drug metabolism, cancer, 
platinum resistance, PD-L1 and other pathways, as well as 
hepatocellular carcinoma, hepatitis B, hepatitis C, and other 
liver disease-related pathways and some important signal 
pathways such as p53, MAPK, Wnt, RAS, and so forth 
(Figure 10A and B).

Moreover, clinical samples (tumor and non-cancerous sam-
ples) were collected and the expression levels of 9 lncRNAs 
species were examined in clinical samples. Consistent with 
online datasets, the expression of all 9 lncRNAs were signifi-
cantly higher in HCC samples than in adjacent non-cancerous 
samples (Figure 11), suggesting that these lncRNAs might play 
a key role in the carcinogenesis of HCC.

Discussion
In the current study, we identified that 19 m6A regulators and 
34 co-expressed lncRNAs were significantly upregulated in 
HCC samples. Based on these factors, we used LASSO Cox 
regression analysis to establish a 9-gene signature for HCC 
prognosis including 9 lncRNAs correlated with 19 m6A regu-
lators. Kaplan-Meier survival estimate revealed correlations 
between the risk score and patients’ OS in both the training 
and validation dataset. The ROC curve demonstrated that the 
risk score-based curve had satisfactory prediction efficiency for 
both the training and validation dataset. Multivariate Cox’s 
proportional hazard regression analysis indicated that the risk 

score could be regarded as an independent risk factor in both 
training and validation dataset. In addition, risk scores could 
distinguish HCC patients from normal non-cancerous sam-
ples and HCC samples of different pathological grades. 
Eventually, 232mRNAs were co-expressed with these 9 lncR-
NAs according to GSE101685 and GSE112790. These 
mRNAs were enriched for cell cycle and cellular metabolic 
activities, drug metabolism, liver disease-related pathways, and 
some important signal pathways such as p53, MAPK, Wnt, 
RAS, and other signal pathways. The expression of these 9 
lncRNAs was significantly higher in HCC samples than that 
in adjacent non-cancerous samples.

Regulation of m6A RNA modification has been associated 
with tumor differentiation, occurrence,29 proliferative ability,30 
invasive ability,29 and metastasis31 based on the available stud-
ies. The m6A RNA modification serves as oncogenes and 
antioncogenes in malignancies. Huang et al and colleagues 
analyzed HCC cases in the TCGA datasets, and found that the 
expression levels of m6A RNA methylation-related regulators 
in hepatocellular carcinoma changed significantly in tumor tis-
sue samples, suggesting a potential role for m6A modifications 
in HCC.22 By combining gene expressions, binding targets, 
and binding motifs of many RNA binding proteins (RBPs) 
with a co-methylation network constructed using large-scale 
m6A methylomes across various cellular states. An et al23 
developed a computational framework to identify trans-regu-
lators factors of m6A systematically. By using the framework 
to analyze publicly accessible m6A-seq data from 25 different 
cell lines, it was possible to identify 32 high-confidence m6A 
regulators with a respectable experimental validation rate. In 
this study, we analyzed TCGA-LIHC-GDC data and found 

Figure 3. LncRNA risk model established using the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm: (A) coefficients calculated 

using LASSO multiple Cox regression and (B) the LncRNA risk model consists of 9 lncRNAs.
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that the expression levels of the 19 m6A regulators and the 34 
co-expressed lncRNAs were significantly higher in cancer 
samples than that in normal healthy samples. Consensus 
Clustering, PCA, Kaplan-Meier survival estimation, and 
ESTIMATE algorithm were analyzed for 147 cases in Cluster2 
of TCGA-LIHC-GDC. LASSO regression is suitable for 
data analysis and model construction with a large number of 

independent variables but a limited sample size.24 Then, a 
9-lncRNA signature consists of LINC00294, SPATA13, 
SNHG20, AC024560.3, AC027601.1, LINC00205, 
AC092171.4, SNHG1, and LINC00630 was established by 
LASSO Cox regression analysis.

These lncRNAs have been reported to be associated with 
multiple cancer types. LINC00294 could negatively modulate 

Figure 4. Validation of the prognostic value of the lncRNA risk model (A and B) Risk scores of TCGA-LIHC-GDC cases were calculated using the above 

formula. The median risk score was used as the threshold to divide the cases into 2 groups; the correlation between the overall patient survival and the 

risk score was analyzed. (C and D) Risk scores in TCGA-LIHC cases were calculated using the above formula. Cases were divided into 2 groups using 

the median value of the risk score as a cut-off; the correlation between the overall patient survival and the risk score was analyzed. (E and F) Risk scores 

of ICGC cases were calculated using the above formula. The median risk score was used as the threshold to divide the cases into 2 groups; the 

correlation between overall patient survival and the risk score was analyzed. (G and H) Risk scores of GSE15654 cases were calculated using the above 

formula. Cases were divided into 2 groups using the median risk score as the threshold; the correlation between overall patient survival and risk score 

was analyzed. (I and J) Risk scores of GSE76427 cases were calculated using the above formula. Cases were divided into 2 groups using the median risk 

score as the threshold; the correlation between overall patient survival and risk score was analyzed. (K) Receiver operating characteristic (ROC) curves 

showed the predictive efficiency of the risk score model based on TCGA-LIHC-GDC, TCGA-LIHC, ICGC, GSE15654, and GSE76427 cases in 5-year 

overall survival.
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cell proliferation in glioma.25 SNHG20 expression was 
increased in multiple cancers, suggesting an effect of SNHG20 
on cancer development and progression.26 In HCC tissue sam-
ples, LINC00205 expression was significantly increased and 
LINC00205 enhanced the proliferation, migration and inva-
sion of HCC cells.27 AC092171.4 sponges miR-1271 and 
upregulate GRB2 to promote HCC development.28 SNHG1 
activated the Akt pathway to play a role in sorafenib resistance 
in HCC cells.29 LINC00630 regulated BEX1 gene methyla-
tion to promote radiation resistance in colorectal cancer cells.30 
Considering the previous and present findings, these m6A 
regulator-related lncRNAs might act as prognostic and/or 
diagnostic markers of HCC.

To further investigate the role of the 9-lncRNA in the 
clinicopathological characteristics and prognosis of HCC, the 

matching clinical data of samples from the training dataset 
TCGA-LIHC-GDC and the validation dataset TCGA-
LIHC were evaluated. The sample was divided into 2 sub-
groups based on median risk score, the Kaplan-Meier survival 
estimate indicated a strong association between the risk score 
and patients’ OS. The ROC curve revealed that the risk score-
based curves had better predictive efficiency, and multivariate 
Cox’s proportional risk regression analysis showed risk scores 
as independent risk factors. More importantly, the prognostic 
nomograms established based on risk score also demonstrated 
the strong association between the risk score and OS in HCC 
patients.

What’s more, the risk score based on these 9-lncRNA sig-
natures could distinguish cluster2 samples from cluster1 
samples, HCC sample from non-cancerous samples, and 

Figure 5. Cox multivariate analyses of clinicopathological variables, including age, gender, stage, and the risk score, and overall survival based on 

TCGA-LIHC-GDC.
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HCC samples in different pathological grades, suggesting 
that the 9-lncRNA signature also have diagnostic potential. 
For further understanding of the potential roles of these 
lncRNAs in the signature, we also performed GO, KEGG, 
and PPI analyses. Consistent with previously-reported func-
tions of these lncRNAs in glioma,25 HCC,27-29 and colorec-
tal cancer,30 these lncRNAs might be associated with cell 
cycle and cellular metabolic activities, drug metabolism, liver 
disease-related pathways, and some important signaling 
pathways such as p53, MAPK, Wnt, RAS through co-
expressed mRNAs.

Regulation of m6A-modified RNA changes, base pairing, 
and RNA-protein interactions, which affect RNA export, 
translocation, translation and degradation.31 Therefore, m6A 
modulators have been reported as potential therapeutic 

agents.32-34 In HCC, upregulation of METTL3 was signifi-
cantly correlated with high levels of m6A, which targeted the 
tumor suppressor SOCS2 and consequently promoted car-
cinogenesis. In addition, the YTHDF2 reader detects an 
excess of m6A in SOCS2, which accelerated the decay of the 
tumor suppressor and triggered HCC.35 Therefore, the 
METTL3 inhibitor with a lower m6A level upregulates 
tumor suppressor expression and prevents t HCC progres-
sion. The WTAP, another key component of m6A methyla-
tion, is significantly upregulated in HCC and promotes the 
development of hepatocellular carcinoma. WTAP-guided 
m6A modification promotes HCC progression through the 
HuR-ETS1-p21/p27 axis.36 Therefore, inhibiting WTAP 
might be a potent strategy for HCC treatment. Considering 
the aberrant expression levels of the 9 lncRNAs identified in 

Figure 6. Cox multivariate analyses of clinicopathological variables, including age, gender, stage, and the risk score, and overall survival based on 

TCGA-LIHC.
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Figure 7. The diagnostic potential of the risk score: (A) risk scores of cluster1 and cluster2 cases based on TCGA-LIHC-GDC, (B) risk scores of normal 

and HCC cases based on TCGA-LIHC, (C) risk scores of HCC cases in different grades based on TCGA-LIHC, (D) risk scores of normal and HCC cases 

based on TCGA-LIHC-GDC, and (E) risk scores of HCC cases in different grades based on TCGA-LIHC-GDC.
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Figure 8. Interaction network of lncRNAs and co-expressed mRNAs (A and B) Differential genes between HCC and normal tissues (|FC|>1, 

FDR < 0.05) were analyzed and differentially-expressed genes co-expressed with the 9 lncRNAs were identified by Pearson’s correlation analysis 

(|r|>.6, P < .001). A total of 232 differential mRNAs co-expressed with 7 risk factors. (C) The lncRNAs and these co-expressed mRNAs formed an 

interacting network.

this study, the associated m6A regulators might be potential 
therapeutic targets.

In conclusion, by using the Consensus Clustering, PCA, 
ESTIMATE algorithm, LASSO regression model, Kaplan-Meier 

survival assessment, ROC curve analysis, and multivariate Cox’s 
proportional hazard regression model analysis, we established  
a prognostic marker consisting of 9 lncRNAs that might have 
prognostic and diagnostic potential for HCC.
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Figure 9. Protein-Protein Interaction analysis and GO functional enrichment annotation (A) Protein-Protein interaction (PPI) analyses were performed to 

analyze the interaction protein network of the above mRNAs. (B-E) Gene Ontology (GO) functional annotation was performed to analyze the functions of 

the above mRNAs.
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Figure 10. KEGG signaling enrichment annotation was performed to analyze the enriched signaling pathways of aforementioned mRNAs.  

(A) Hepatocellular carcinoma and (B) Cell cycle. 
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