
Spectral genome-wide association studies as a tool 
for understanding pathogenesis
Before the widespread application of genomewide asso
ciation studies (GWASs) in the mid2000s, techniques 
such as linkage analysis of families and candidategene 
studies had largely failed to identify robust and replicable 
loci associated with diseases that are common in the 
population. As judged by the criteria of replication, 
GWASs have been among the most successful epidemio
logical study designs to date, in no small measure due to 
large sample sizes, stringent quality control, simplicity of 
experimental design, and collaborative transparency 
between researchers. Yet identifying common disease 
loci, even when they explain a large proportion of herita
bility, only goes so far in advancing our understanding of 
pathogenesis.

Many GWASs employ a casecontrol design, where a 
set of individuals carrying the disease is compared with a 
set of nondiseased or populationbased individuals. Th is 
is a useful strategy for fi nding loci associated with 

disease; however, categorizing patients into two classes 
(such as disease/nodisease) ignores the biological 
intricacies of the disease at hand, and provides only a 
rough guide to the underlying etiology. To create more 
detailed and accurate models of pathogenesis, it is 
important to look in more detail at the potential 
intermediate phenotypes, for example, by measuring 
concentrations of cellular products and enzymes that 
underlie the processes of disease. Th e ready availability of 
the relevant tissues and accurate, highthroughput tech
nology have allowed researchers to leverage metabolomic 
profi ling to elucidate the genomics of one such class of 
intermediate phenotypes, namely metabolites, which 
play an important role in metabolic and cardiovascular 
diseases [1]. Recent GWASs of the metabolome have 
identifi ed scores of loci associated with metabolites [25], 
some of which (both loci and metabolites) have been 
shown to be associated with disease. Furthermore, given 
known pathway relationships between metabolites and 
the high dimensionality of the phenotype data, researchers 
have begun using novel approaches such as phenotype 
ratios and multivariate analysis of phenotype networks 
[6] to increase statistical power and interpretation.

In this issue of Genome Medicine, Suhre and colleagues 
[7] sidestep a fundamental challenge in previous 
GWASs, the decomposition of nuclear magnetic reso
nance (NMR) spectra into known metabolite concentra
tions, to expand the power of spectral association studies. 
In doing so, they present a novel method for identifying 
previously uncharacterized spectral features that may 
prove to be important biomarkers of disease.

Unbiased assessment of NMR spectra
A large contributing factor to the success of GWASs has 
been that they are relatively unbiased, in the sense that 
they assess marker variables that are roughly evenly 
drawn from across the genome rather than focusing only 
on specifi c loci or variants of interest. Th is lack of bias 
has enabled detection of previously unknown signals that 
would not have been found by methods such as 
candidategene studies. Analogously, the new study [7] 
shows the benefi t of considering phenotypes in an 
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unbiased way as well. Instead of searching for previously 
characterized metabolites in the NMR spectra and 
testing for association of these metabolites with geno
type, the authors examined all available signals in the 
molecular spectra and associated each one with geno
types in a GWASstyle approach [7]. Similar to unbiased 
GWASs, the main premise of the unbiased NMR search 
is that by expanding testing beyond previously known 
metabolites, some novel classes and associations may be 
discovered and characterized.

To this end, Suhre and colleagues [7] used NMR 
measure ments of plasma samples from more than 1,700 
individuals in the KORA study [8]. A workflow of their 
study is presented in Figure 1. The same individuals were 
also genotyped using a genomewide array, covering 
more than 600,000 genomewide single nucleotide 
polymorphisms (SNPs). They binned the NMR spectra 
into 10,000 bins (spectral features), where each bin 
represents a potentially different metabolite. Binning is a 
simple procedure where an NMR spectra is split into 
windows of equal width (in parts per million (ppm)) and 
the signal intensity in a bin represents a quantification of 

the molecule(s) in that window for that sample. Often 
ratios of metabolites are more biologically informative 
than metabolite concentrations themselves, as these 
ratios better reflect enzymatic reactions, in which one 
metabolite is converted into another at a certain rate. 
However, exploring all unique pairs of bins for association 
with each SNP is computationally difficult. Therefore, the 
authors [7] took a twostage approach: first all spectral 
features were examined for association with the SNPs, 
and then the top 500 spectral features were used to 
compute pairwise ratios, yielding a total of 133,350 
pheno types. The association between the genotypes and 
the NMRbased phenotypes (either spectral features or 
ratios thereof ) was tested using a linear model adjusted 
for age and gender, followed by Bonferroni adjustment 
for multiple testing.

Using this approach, seven loci achieved genomewide 
significance: LIPC, CETP, FADS1, GCKR, APOA1, CPS1, 
and PYROXD2. Of these, five are wellknown loci that 
also had been previously reported using a targeted 
approach on the same data (examining 15 known 
lipoprotein subclasses). The use of ratios of NMR shifts 

Figure 1. Flowchart of the spectral GWAS [7]. For each individual, genome-wide SNP data and blood plasma samples were available. Each 
blood plasma sample was then assayed with two different metabolomics platforms (mass spectrometry and proton NMR spectroscopy). The 
chemical shifts in the NMR spectra were then analyzed using a sliding window to create bins that quantified the amount of each molecule(s) that 
contributed to that bin in each sample. Traditionally, metabolite concentrations are extracted from NMR spectra using known profiles, but the use 
of bins allowed the authors [7] to take a hypothesis-free data mining approach. The authors then performed a two-stage GWAS, first identifying the 
500 bins with the strongest genetic signals, determining the ratios between each pair of them, and then adding all unique ratios of the top bins in 
a second GWAS. The phenotype associations of the detected loci could then be interpreted using the mass spectrometry metabolomics data from 
the same blood plasma samples.
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rather than the individual shifts themselves resulted in 
lower phenotypic variance and substantially lower P
values for four of these loci than were achievable using 
the previously reported lipid subclasses.

As further validation of the NMR spectra, the authors 
[7] compared the results from NMR with those obtained 
from mass spectroscopy, showing that NMR spectra for 
the detected loci generally correlated with concentrations 
for the same metabolites determined by mass spectro
metry. Although the possible applications of these methods 
are exciting, one future challenge for phenotypically and 
genotypically unbiased studies will be the interpretation 
of the associations detected, as correlation with a known 
variable is confounded by other crosscorrelations.

The future of metabolic trait associations
This study has highlighted two concepts that may prove 
useful in further genetic association studies of many 
phenotypes: largescale unbiased screening of pheno
types and trying to account for interphenotype relation
ships (such as ratios). There is potential to expand the 
types of relationships modeled, for example, using pheno
type correlation networks [6,9] that capture potential 
pleio tropy of loci affecting a group of correlated metabo
lites. More generally, this work is part of a trend towards 
a systemslevel analysis of disease, based on multivariate 
data analysis of multiple complementary datasets such as 
gene expression, metabolites, and genetic variation data 
[10], leading not just to detection of genotypephenotype 
associations as in standard GWASs but ultimately to 
better mechanistic understanding of the pathways and 
molecular networks involved in the architecture of 
human traits and disease.
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