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Abstract

Loss of tolerance to nuclear antigens and multisystem tissue destruction is a hallmark of

systemic lupus erythematosus (SLE). Although the source of autoantigen in lupus remains

elusive, a compelling hypothetical source is dead cell debris that drives autoimmune activa-

tion. Prior reports suggest that neutrophil extracellular traps (NETs) and their associated

death pathway, NETosis, are sources of autoantigen in SLE. However, others and we have

shown that inhibition of NETs by targeting the NADPH oxidase complex and peptidylargi-

nine deiminase 4 (PADI4) did not ameliorate disease in spontaneous murine models of

SLE. Furthermore, myeloperoxidase and PADI4 deletion did not inhibit induced lupus. Since

NET formation may occur independently of any one mediator, to address this controversy,

we genetically deleted an additional important mediator of NETs and neutrophil effector

function, neutrophil elastase (ELANE), in the MRL.Faslpr model of SLE. ELANE deficiency,

and by extension ELANE-dependent NETs, had no effect on SLE nephritis, dermatitis, anti-

self response, or immune composition in MRL.Faslpr mice. Taken together with prior data

from our group and others, these data further challenge the paradigm that NETs and neutro-

phils are pathogenic in SLE.

Introduction

SLE is a systemic autoimmune disease characterized by the formation of autoantibodies to

nucleic acids and the proteins to which these nucleic acids associate [1]. Loss of tolerance to

self-antigens results in immune activation and tissue destruction [1]. Although the origin of

autoantigens in SLE are not known, the liberation of antigenic contents from dying cells is

considered a likely culprit.

Neutrophils are postulated to play a critical role in SLE pathogenesis by secreting pro-

inflammatory cytokines, directly mediating end organ injury, and by forming neutrophil

extracellular traps (NETs) [2]. NETs are extruded DNA structures coated with granular and

cytoplasmic contents that are released into the extracellular environment. There is substantial

disagreement and controversy about the definition of a NET, how to detect and quantify
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NETs, and what the triggers of and molecular pathways resulting in NET formation are, as

summarized in a recent consensus document [3]. These outstanding issues in the NET field

make it difficult to study the causative role for NETs in biological processes and diseases.

Classical NET generation in humans and mice relies on NADPH oxidase-generated reac-

tive oxygen species (ROS) [4–6]. However, rapid NADPH oxidase-independent NET forma-

tion, nuclear DNA externalization without concomitant cell lysis, and extrusion of

mitochondrial DNA have been described [3]. In addition to NADPH oxidase, peptidylarginine

deiminase 4 (PADI4) [7–13], neutrophil elastase (ELANE) [10, 14–17], and myeloperoxidase

(MPO) [18, 19] have been identified as critical mediators of NET formation.

It is a compelling paradigm that NETs could be a source of autoantigen and a downstream

mediator of end-organ damage in SLE. NETs are present in the peripheral blood, skin, and

kidneys of SLE patients and mice [2]. Early studies suggested that pharmacological inhibition

of PADI4 via pan-PAD inhibition with CL- and BB-CL- Amidine mildly improved clinical

manifestations of SLE in murine models [20, 21]. However, the NET hypothesis has recently

been challenged by studies that have either genetically deleted or pharmacologically inhibited

important NET mediators in multiple murine models of SLE. Genetic deletion of critical

NADPH oxidase complex components, required for the neutrophil oxidative burst in addition

to ROS-dependent NET formation, exacerbated SLE in mice [22, 23], an observation that also

extends to humans [24, 25]. Genetic deletion of padi4 did not improve clinical or immunologi-

cal manifestations of SLE in the MRL.Faslpr and pristane induced lupus (PIL) mouse models

[23, 26]. In fact, disease was exacerbated in the latter [23, 26]. Pharmacological inhibition of

the PADI family of enzymes by Cl-amidine had no impact on two inducible models of nephri-

tis [26]. MPO-deficient mice subjected to PIL have increased proteinuria and glomerulone-

phritis [27]. While these data argue against a role for neutrophils and NETs in SLE

pathogenesis, it remains possible that PADI4, CYBB, and MPO independent NETs or other

neutrophil effector functions could drive disease.

To address this controversy, it is necessary to use additional genetic approaches to block

NET formation. We reason that while the case for NETs driving lupus could posit that one or

even more canonical members of the NET cascade would be dispensable specifically in the

case of lupus, it would be unlikely that multiple such molecules would all be dispensable.

Therefore, to further probe the hypothesis that NETs drive lupus, we decided to genetically tar-

get the serine protease elane, since multiple studies both directly [10, 14–17] and indirectly

[28–31] implicate ELANE in NET formation in mice and humans. ELANE, the second most

abundant protein in NETs, is critical for NET formation, functioning by modulating F-actin

dynamics and degrading histones important for chromatin decondensation [15]. In addition

to its active role in NET formation, ELANE decorates NET structures and is proteolytically

active in this setting [32]. Moreover, ELANE is important for neutrophil effector function and

can directly mediate tissue damage upon neutrophil degranulation [33]. Therefore, ELANE

has the potential to be an effective therapeutic target in SLE.

To directly compare elane to both cybb- and padi4- deficiency in the context of SLE patho-

genesis, we elected to eliminate elane in the MRL.Faslpr mouse model of lupus. The MRL.Faslpr

model is a leading system to study SLE as it recapitulates nearly all features of the human dis-

ease and has accurately predicted responses in human translational studies [34].

Here, we show that genetic deletion of elane did not have any impact on clinical or immu-

nological parameters of SLE in MRL.Faslpr mice. Taken together with earlier work [22, 23, 26],

these findings add additional evidence that challenges the concept that neutrophils and NETs,

to the degree that NET generation and neutrophil effector function relies on PADI4 [7–13],

ELANE [10, 14–17], or CYBB [4–6], critically drives lupus.
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Materials and methods

Mice

Elane-Cre C57BL/6 mice were generously provided by Jürgen Roes (Department of Medicine,

University College London, London, United Kingdom). Fully backcrossed mice were obtained

by crossing elaneCre/wt allele onto the MRL.Faslpr (The Jackson Laboratory catalogue # 000485)

background for at least 9 generations. Heterozygous mice were then intercrossed to produce

an experimental cohort. SLE pathology was analyzed at 17 weeks for backcrossed cohorts.

Mice were genotyped for the Elane-Cre allele using a triplex PCR with the following three

primers: ELANE-F 5’-AGGGGCACACATCTCTCCAT-3’, ELANE-R 5’-GCCTTCACAGTAAC
CACCCT, Cre-R 5’-CGCATAACCAGTGAAACAGC-3’. All mice were housed under specific-

pathogen-free (SPF) conditions. Animal studies were approved by the University of Pittsburgh

Institutional Animal Care and Use Committee.

Evaluation of SLE pathology

MRL.Faslpr SLE cohorts were analyzed as previously described [22, 35]. Skin disease was scored

based on the extent of dermatitis on the dorsum of the neck and back. Macroscopic surface

area was scored from 0 to 5 for an affected area up to 9.1 cm2, with up to 1 additional point for

the presence of ear (1/4 point each) and muzzle (1/2 point) dermatitis, as described [36].

Proteinuria was screened using Albustix (Siemens). Plasma was obtained by cardiac punc-

ture. Kidneys were removed, bisected, formalin-fixed, paraffin embedded, and H&E stained. A

clinical pathologist (S.I.B.) scored glomerulonephritis on a scale of 1–6 and interstitial nephri-

tis on a scale of 1–4 in a blinded manner [22].

Flow cytometry

Flow cytometry was performed as previously described [22]. In brief, spleens and bone mar-

row were homogenized and red blood cells were lysed using Ammonium-Chloride-Potassium

buffer (prepared in house). Cells were resuspended in Phosphate Buffered Saline (PBS) with

3% calf serum and the FcR-blocking antibody 2.4G2. Live/dead discrimination was performed

using fixable viability stain 510 (BD) or ethidium monoazide bromide (Invitrogen). Surface

and intracellular staining antibodies are listed below. Cells were fixed in 1% paraformaldehyde

or Cytofix/Cytoperm (BD) where appropriate. Data were obtained using a LSRII or Fortessa

(BD) with FACS DIVA software and analyzed using FlowJo.

Antibodies used for FACS staining

Antibodies used for FACS surface and intracellular staining were as follows: IA/E-PE (Biole-

gend, M5/114.15.2), Bst-2-biotin (in-house conjugated, 927), CD11c-PE/Cy7 (BD Pharmigen,

HL3), CD45R-APC/Cy7 (BD Pharmigen, RA3-6B2), SiglecH-Al647 (eBioscience, eBio440c),

CD19-Pacblue (in-house conjugated, 1D3.2), Ly6G-Al488 (in-house conjugated, 1A8),

Gr1-PE/Cy7 (Biolegend, RB6-8C5), Gr1-PE (Biolegend, RB6-8C5), CD11b-APC/Cy7 (Biole-

gend, M1/70), CD11b-PE (Biolegend, M1/70), F4/80-Al647 (in-house conjugated, BM8), F4/

80-APC (Biolegend, BM8), CD44-Al488 (in-house conjugated, 1M7), CD44-APC-Cy7 (Biole-

gend, 1M7), TcRβ-APC/Cy7, (Biolegend, H57-597), TCRβ-PE/Cy7, (Biolegend, H57-597),

CD62L-PE/Cy7 (Biolegend, Mel-14), CD8-Al647 (in-house conjugated, TIB 105), CD4-PE

(in-house conjugated, GK1.5), CD138-PE (BD Pharmigen, 281–2), CD19-AI647 (in-house

conjugated, 1D3.2), kappa-AI488 (in-house conjugated, 187.1), and Ly6B.2-Fitc (AbD Serotec,

7/4).
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ELISpot assays

AFC producing κ light chain antibodies, IgG1, IgG2a, or IgM were detected by ELISpot as pre-

viously described [37]. In brief, 96-well Immulon 4 HBX plates were coated overnight at 4˚C

with 5 mg/ml polyclonal goat-anti mouse κ (Southern Biotech; 1050–01). Nonspecific binding

was blocked with 1% bovine serum albumin in PBS and samples were incubated at 37˚C. Alka-

line phosphatase-conjugated secondary antibodies (Southern Biotech; Ig κ [1050–04], IgG1

[1070–04], IgG2a [1080–04], or IgM [1020–04]) were detected with bromo-4-chloro-3-indolyl

phosphate substrate (Southern Biotech).

ELISAs

Anti-Sm, anti-nucleosome, anti-RNA, and rheumatoid factor, ELISAs were performed as pre-

viously described [22, 38–41]. Specific antibodies were detected with alkaline phosphatase-

conjugated goat anti-mouse IgG (Southern Biotech [1030–04]). The monoclonal antibodies

Y2, BWR4, 400tμ23, PL4-2 or PL2-3 (in-house) were used as standards for the anti-Sm, anti-

RNA, rheumatoid factor, and anti-nucleosome measurements respectively.

Antinuclear Antibody Assay (ANA)

HEp-2 immunofluorescence assays were performed as previously described [22]. In brief,

serum was diluted 1/200 and then applied to HEp-2 slides (Antibodies Incorporated or

BD). Staining was detected using goat anti-mouse IgG FITC at 1:500 (Southern Biotech)

ANAs were scored on intensity of nuclear and cytoplasmic staining on a scale of 0–3 and

for the presence or absence of mitotic chromatin using wide-field fluorescence microscopy

(Olympus IX83; Cellsense software). The scorer used blinded to the genotype and gender of

the mice.

Statistics

Statistical analysis was performed using Prism 7.0 (Graphpad). A two-tailed Mann-Whitney U

test, two-tailed Welch’s t test, and Fisher’s Exact test were performed where indicated and

appropriate. A p value<0.05 was considered statistically significant.

Results

To assess the role of elane-deficiency in SLE, we utilized the elane-Cre allele, which does not

produce functional ELANE protein. Homozygous elane deficiency does not substantially alter

granulocyte development and recruitment [42]. We backcrossed the elane-Cre allele onto the

MRL.Faslpr background for 9 generations. Heterozygous mice were then intercrossed to pro-

duce an experimental cohort. SLE pathology was analyzed at 17 weeks of age.

Elane deficiency had no effect on nephritis or dermatitis

No differences in urine protein were detected across elane genotypes in either male or female

cohorts (Fig 1A). Elane deficiency resulted in no significant alterations in glomerulonephritis

or interstitial nephritis (Fig 1B). No statistically significant differences in dermatitis were

detected among the different elane genotypes in either cohort (Fig 1C). Similarly, elane geno-

type did not alter splenomegaly or lymphadenopathy (Fig 1D).
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Elane genotype has no detectable impact on loss of tolerance and the anti-

self response

To determine the effect of ELANE on the autoantibody response in SLE, we characterized the

ANA patterns in elane-sufficient and -deficient MRL.Faslpr mice. No differences were identi-

fied in the dominant ANA pattern or staining intensity across groups (S1A Fig). ELANE defi-

ciency did not alter anti-chromatin autoantibodies as no differences in mitotic chromatin

staining were observed (S1B Fig). Concordant with these data, we did not detect any changes

in anti-RNA antibody (Fig 2A), anti-Sm antibody (Fig 2B), anti-nucleosome antibody (Fig

2C), and rheumatoid factor (Fig 2D) titers by ELISA among the groups.

Elane-genotype did not affect the percentages of CD19+ B cells (Fig 3D) or CD19low-int

CD44+ CD138+ intracellular khigh AFCs (Fig 2E, right panel). Similarly, there were no statisti-

cally significant differences in total kappa Ig AFC ELISpots (Fig 2E, left panel). Elane-deficient

female mice had a higher number of IgG1 AFCs compared to their wild-type MRL.Faslpr coun-

terparts (Fig 2F, p = 0.0141). This finding is unlikely to be biologically significant, as these data

were not mirrored across gender. No differences were identified in IgG2a and IgM AFC ELI-

Spots amongst the groups (Fig 2G and 2H).

ELANE deficiency did not substantially change the myeloid compartment

Elane genotype had only a minor impact on the myeloid compartment in MRL.Faslpr mice.

The percentages of CD11b+Ly6G+ (Fig 3A, left panel) bone marrow (BM) neutrophils and

Fig 1. Elane-genotype does not impact lupus nephritis, dermatitis, or lymphadenopathy/splenomegaly. (A) Proteinuria scores. (B) Glomerulonephritis

(left panel) and Interstitial nephritis (right panel) scores (elane+/+ females n = 17). (C) Dermatitis scores. (D) Axillary lymph node (left panel) and spleen

weights (right panel). Scores and weights are represented as a function of elane-genotype and gender at 17 weeks of age. Bars represent the median with

interquartile range. A two-tailed Mann-Whitney U test was performed to determine statistical significance within each gender (elane-/- males n = 9; elane+/+

males n = 13; elane -/- females n = 20; elane +/+ females n = 18 mice per group unless otherwise indicated).

https://doi.org/10.1371/journal.pone.0226396.g001
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CD11b+F4/80+Gr1low-int BM macrophages (Fig 3B, right panel) were not statistically different

among the groups. Additionally, no changes in CD11b+Ly6G+ (Fig 3B, left panel) splenic neu-

trophils or CD11b+F4/80+Gr1low-int (Fig 3B, right panel) splenic macrophages were identified

across elane genotypes. Female elane-/- mice had a greater percentage of splenic cDCs com-

pared to the wild-type group (Fig 3C, left panel, p = 0.0039). No differences in the percentages

of CD19-BST2+ SiglecH+ pDCs (Fig 3C, right panel) were identified among elane genotypes.

ELANE deficiency had a modest impact on the lymphoid compartment

Elane deficiency did not substantially impact the lymphoid compartment. All genotypes

exhibited indistinguishable total percentages of TCRβ+ T cells (Fig 3D). The percentages of

CD4+ T cells were elevated in female knock-out mice (Fig 3E, left panel, p = 0.0429) while

CD4+CD44+CD62L- activated T cells were elevated in male wild-type mice (Fig 3E, right

panel, p = 0.0348). The percentages of CD8+ T cells and CD8+CD44+CD62L- activated T cells

were similar amongst wild-type and elane-deficient mice (Fig 3F).

Discussion

The data from the genetic study presented here in a relevant murine model of lupus does not

support the hypothesis that ELANE, and by extension ELANE-dependent NET generation

and neutrophil effector function, alters immune system composition or pathology in SLE. This

conclusion is reinforced by prior work from our group and that of others targeting PADI4 in

SLE and nephritis models that yielded similar results [23, 26]. Moreover, NADPH deficiency

exacerbates SLE in mice and humans. It remains unknown whether this phenotype is neutro-

phil or NET dependent as NADPH oxidase is implicated in immunoregulatory functions in

both the myeloid and lymphoid compartments [43].

In humans, elane mutations are generally associated with congenital neutropenias but not

systemic autoimmunity [44]. However, a recent study identified a patient with a novel loss of

function polymorphism (G210R) in exon 5 of elane that did not confer congenital neutrope-

nia, but the patient did exhibit inflammatory arthritis and recurrent parvovirus infections [14].

Concordant with previous observations, NET formation was defective in this patient. More-

over, patients with Papillon-Lefèvre syndrome (PLS), characterized by mutations that inacti-

vate Cathepsin C, a cysteine protease that processes ELANE into its active state [30, 45],

develop severe periodontitis. While systemic autoimmune syndromes are not typically associ-

ated with PLS, a pediatric patient with PLS who subsequently developed SLE has been reported

[46]. Similarly, NET generation was found to be defective in PLS patients [30, 45]. Loss of

function mutations in endogenous ELANE inhibitors, such as secretory leukocyte protease

inhibitor and Serpin Family B Member 1, are associated with increased NET formation but

their role in systemic autoimmunity has not been extensively investigated [28, 29].

It was conceivable that ELANE protease activity could cleave self-antigens, thus impacting

their immunogenicity. Proteases have been suggested as sources to generate novel immuno-

genic forms of self-antigens [47]. However, ELANE deficiency did not alter the anti-self

Fig 2. Elane-genotype does not significantly alter the anti-self response or the AFC compartment. (A-D) Serum anti-RNA (A), anti-Sm (B), anti-

nucleosome (C), and rheumatoid factor (D) antibody titers at 17 weeks of age. (E) Numbers of Ig κ+ antibody forming cells (AFCs) per spleen as determined

by ELISpot (left panel). Percentages of live cells that are TCRβ- CD44+ CD138+ intracellular κ+ AFCs in spleens (right panel). (F-H) Numbers of IgG1 (F),

IgG2a (elane+/+ males n = 9, elane -/- females n = 17, elane +/+ females n = 11) (G), and IgM (elane+/+ males n = 9, elane -/- females n = 14, elane +/+ females

n = 10) (H) AFCs per spleen as determined by ELISpot (elane-/- males n = 8; elane+/+ males n = 11; elane -/- females n = 19; elane +/+ females n = 13 mice per

group unless otherwise indicated). Data representation and statistics are as in Fig 1 unless otherwise indicated. In panel E (right), bar graphs are represented

as the mean with SEM and a two-tailed Welch’s T test was performed to determine statistical significance within each gender.

https://doi.org/10.1371/journal.pone.0226396.g002
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response nor clinical parameters of SLE in the MRL.Faslpr model, ruling out one possible

source of proteases that could fuel such a mechanism of loss of tolerance in autoimmunity.

Fig 3. Elane-genotype does not substantially affect the myeloid, DC, or T cell compartments. (A&B) Percentages of live CD11b+ Ly6G+ neutrophils (left

panel) and CD11b+ GR1low-int F4/80+ macrophages (right panel) in the bone marrow (A) and spleens (B). (C) Percentages of live CD19- MHCII+ CD11c+

conventional dendritic cells (DCs) (left panel) and CD19- BST2+ CD11c+ plasmacytoid DCs (right panel). (D) Percentages of live CD19+ total B cells (left

panel) and TCRβ+ total T cells (right panel). (E) Percentages of live TCRβ+ CD4+ T cells (left panel) and of CD4+ CD44+ CD62L- activated T cells (right

panel). (F) Percentages of live TCRβ+ CD8+ T cells (left panel) and of CD8+ CD44+ CD62L- activated T cells (right panel). Bar graphs represent the mean and

error bars with SEM. A two-tailed Welch’s t-test was performed to determine statistical significance within each gender. (elane-/- males n = 9; elane+/+ males

n = 13; elane -/- females n = 20; elane +/+ females n = 18 mice per group unless otherwise indicated).

https://doi.org/10.1371/journal.pone.0226396.g003
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NADPH oxidase-deficient mice subjected to a monosodium urate crystal induced model of

chronic neutrophilic inflammation, a model of gout, developed more severe arthritis [48]. This

phenotype was attributed to the inability of NADPH oxidase-deficient mice to generate aggre-

gated NETs to degrade proinflammatory mediators. Moreover, the adoptive transfer of aggre-

gated NETs into these animals reduced disease severity [48].

Aggregated NETs can degrade cytokines in an ELANE- dependent manner, as treatment of

these structures with multiple elastase inhibitors prevented the degradation of cytokines and

chemokines [48]. These data coupled with the exacerbated disease observed in cybb-deficient

SLE prone mice and padi4-deficient mice subjected to the PIL model suggests a homeostatic

function for NETs in autoimmunity.

While many groups have implicated ELANE as a critical mediator of NET formation [10,

14–17, 28–31], a few reports suggest that NETs can occur in the absence of ELANE. In one

report, immune complexes induced ELANE-independent and FcgrIIA-dependent NET for-

mation in normal neutrophils [49]. Another report concluded that neutrophils from elane-
deficient mice or wild-type neutrophils pretreated with ELANE inhibitors did form NETs in

response to canonical NET inducing stimuli, such as PMA and calcium ionophores [50]. In

this study, elane-deficient mice formed NETs in an experimental model of deep venous throm-

bosis (DVT) and ELANE deficiency did not protect mice from DVT in this model [50]. Since

PADI4 deficiency and pharmacological inhibition reduces NET formation in lupus and

PADI4 pharmacological inhibition or genetic deletion does not impact SLE pathogenesis [23,

26], and given the large number of reports implicating ELANE in NET formation, it seems

unlikely that ELANE-independent NETs drive autoimmunity in this setting.

The multiple studies that blocked or deleted mediators of NET formation but which did not

observe ameliorated disease raise a broader question as to the role of neutrophils per se in

lupus pathogenesis. Infiltration of neutrophils into the kidney has been identified in both SLE

patients and in multiple murine models of the disease. There is a plethora of literature to sup-

port that neutrophils play a pathologic role in lupus [51, 52]. Despite these associations, it is

striking that nearly 20–50% of SLE patients are neutropenic [53, 54] and/or have abnormal

neutrophil function. SLE neutrophils display reduced superoxide production [55] and phago-

cytosis [56]; however, low density granulocytes (LDGs)—a neutrophil subset enriched in SLE

patients—produce type I interferons and proinflammatory cytokines [57]. Testing the function

of neutrophils in animal models of SLE has yielded mixed results. Some recent data support a

regulatory or neutral role for neutrophils in SLE [58]. Antibody mediated depletion of neutro-

phils early in disease increased autoantibody titers and glomerulonephritis in the NZB/W

model [59, 60]. However, neutrophil depletion did not alter autoantibody responses nor renal

pathology in established disease [59]. Conditional deletion of neutrophils in mice subjected to

the PIL model resulted in increased antinuclear antibody responses [23].

The major message from the current studies comes from interpreting them in the context

of other genetic and inhibitor studies that have probed whether NETs and neutrophils pro-

mote lupus. Our work adds ELANE to the list of CYBB and PADI4 as proteins that are

required for NET formation, yet are not needed for lupus. While in each case, it could be

argued that the type of NET generation seen in SLE proceeds independently of the protein in

question, it seems unlikely that the putative type of NET generation that is hypothesized to

critically drive lupus is independent of three of the major pathways documented to be impor-

tant for NET formation. This point, which is punctuated by the current data, along with

emerging evidence to suggest that neutrophils per se are not pathogenic in SLE, heralds a junc-

ture at which the field should seriously reevaluate whether the “NETs drive lupus” hypothesis

remains valid and whether blocking NET formation or neutrophil function makes sense as a

therapeutic strategy. In contrast, multiple studies have shown regulatory roles in various
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systems for CYBB, and to an extent PAD4 and MPO, such that disease is exacerbated in their

absence [22, 23, 26, 27, 61]. We would thus posit that neutrophils and their effector mecha-

nisms, such as NET generation, may have evolved to protect us from autoimmune diseases,

rather than function as vectors to promote them.

Supporting information

S1 Fig. Elane-genotype does not alter ANA patterns. (A) HEp2-ANA slides were scored for

intensity of nuclear and cytoplasmic staining patterns (left panel). Data representation and sta-

tistics are as in Fig 2F unless otherwise indicated. Dominant ANA pattern classified as nuclear

(homogenous), nuclear (speckled), or cytoplasmic (right panel). (B) HEp2-ANA slides were

scored for the presence or absence of mitotic chromatin staining. In panel B, a Fisher Exact

test was performed to determine statistical significance within each gender (elane-/- males

n = 9; elane+/+ males n = 13; elane -/- females n = 20; elane+/+ females n = 17 mice per group).

(TIF)
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