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Objectives: To compare methods to adjust for confounding by 
disease severity during multicenter intervention studies in ICU, 
when different disease severity measures are collected across 
centers.
Design: In silico simulation study using national registry data.
Setting: Twenty mixed ICUs in The Netherlands.
Subjects: Fifty-five–thousand six-hundred fifty-five ICU admis-
sions between January 1, 2011, and January 1, 2016.
Interventions: None.
Measurements and Main Results: To mimic an intervention study 
with confounding, a fictitious treatment variable was simulated 
whose effect on the outcome was confounded by Acute Physiology 
and Chronic Health Evaluation IV predicted mortality (a common 

measure for disease severity). Diverse, realistic scenarios were 
investigated where the availability of disease severity measures 
(i.e., Acute Physiology and Chronic Health Evaluation IV, Acute 
Physiology and Chronic Health Evaluation II, and Simplified Acute 
Physiology Score II scores) varied across centers. For each sce-
nario, eight different methods to adjust for confounding were used 
to obtain an estimate of the (fictitious) treatment effect. These were 
compared in terms of relative (%) and absolute (odds ratio) bias 
to a reference scenario where the treatment effect was estimated 
following correction for the Acute Physiology and Chronic Health 
Evaluation IV scores from all centers. Complete neglect of differ-
ences in disease severity measures across centers resulted in bias 
ranging from 10.2% to 173.6% across scenarios, and no com-
monly used methodology—such as two-stage modeling or score 
standardization—was able to effectively eliminate bias. In scenarios 
where some of the included centers had (only) Acute Physiology 
and Chronic Health Evaluation II or Simplified Acute Physiology 
Score II available (and not Acute Physiology and Chronic Health 
Evaluation IV), either restriction of the analysis to Acute Physiology 
and Chronic Health Evaluation IV centers alone or multiple imputa-
tion of Acute Physiology and Chronic Health Evaluation IV scores 
resulted in the least amount of relative bias (0.0% and 5.1% for 
Acute Physiology and Chronic Health Evaluation II, respectively, 
and 0.0% and 4.6% for Simplified Acute Physiology Score II, re-
spectively). In scenarios where some centers used Acute Phys-
iology and Chronic Health Evaluation II, regression calibration 
yielded low relative bias too (relative bias, 12.4%); this was not 
true if these same centers only had Simplified Acute Physiology 
Score II available (relative bias, 54.8%).
Conclusions: When different disease severity measures are 
available across centers, the performance of various methods 
to control for confounding by disease severity may show impor-
tant differences. When planning multicenter studies, researchers 
should make contingency plans to limit the use of or properly in-
corporate different disease measures across centers in the statis-
tical analysis. (Crit Care Med 2019; 47:e662–e668)
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The prognosis of ICU patients is influenced by disease 
severity at the time of ICU-admission. Several predic-
tion models have been developed to quantify disease 

severity and predict hospital survival, among ICU patients. 
Examples include the Acute Physiology and Chronic Health 
Evaluation (APACHE II, III, and IV) scores and the Simplified 
Acute Physiology Score (SAPS II and III) (1–4). When analyz-
ing the effects of interventions in the ICU, these measures are 
often used as a proxy for actual disease severity to correct for 
potential confounding.

However, different ICUs may routinely collect different di-
sease severity measures (DSMs). When there is not a single, 
common score measured across centers, adjustment for con-
founding may not be straightforward. This applies to obser-
vational multicenter studies, cluster-randomized trials, and 
individual participant data meta-analyses (5–7). Although 
numerous studies have evaluated the prognostic performance 
of different DSMs across various settings (8–10), the aim of 
the current study was to compare different methods to adjust 
for confounding by disease severity in multicenter ICU studies 
when different measures are available from different centers, 
and to assess how the performance of these methods depends 
on the availability of these measures across centers.

METHODS

Study Design
A simulation study was performed using data from the Dutch 
“National Intensive Care Evaluation (NICE)” registry (11). 
This database holds information on APACHE II, APACHE IV, 
and SAPS II scores and their predicted mortalities as well as 
observed in-hospital mortality status for all admissions in all 
ICUs in the Netherlands (see Data section). To mimic an ob-
servational study with confounding, where sicker patients are 
more likely to receive the treatment under study, a fictitious 
treatment was assigned to half of the patients in each center. 
Treatment was assigned conditional only on the APACHE 
IV predicted mortality. In doing so, treatment status is inde-
pendent of the outcome when correcting for the APACHE IV 
predicted mortality, and therefore the corrected odds ratio 
(OR) of treatment on in-hospital mortality is 1.

Thereby, the treatment was noneffective and any devia-
tion from the OR of 1.0 was caused by bias due to incomplete 
confounding adjustment (see Simulating Treatment section). 
Subsequently, multiple scenarios were evaluated, in which 
the hypothetical availability of DSMs differed across centers 
depending on patient- and center-level characteristics (see 
Scenarios section). Within each scenario, several methods to 
adjust for confounding (see Confounding Adjustment Methods 
section) were applied to estimate the association of the simu-
lated treatment with the outcome, adjusted for the available 
DSMs. Confounding adjustment by APACHE IV score in all 
centers was chosen as the reference method (scenario 0) to 
which other combinations of methods and scenarios were 
compared, because we assume that these scores are much more 
frequently available to clinical studies than the APACHE IV  

predicted mortalities (these predictions derive from com-
plex calculations based on many separate variables) (12, 13). 
Thereby, we aim to identify “best-case” methods, which are 
also applicable to practice. To account for simulation error, 
each scenario was repeated 1,000 times on a different bootstrap 
sample from the original data, results were averaged and meth-
ods compared in terms of bias in the estimated treatment effect 
and the coverage of its 95% CI (see Performance Measures sec-
tion). Simulations were performed using R (Version 3.2.2; R 
Foundation for Statistical Computing, Vienna, Austria; https://
www.R-project.org/). The NICE registry is registered accord-
ing to the General Data Protection Regulation. The medical 
ethics committee of the Amsterdam UMC stated that medical 
ethics approval for this study was not required under Dutch 
national law (registration number W18_179).

Data
The NICE registry contains information of more than 80,000 
ICU admissions per year from all 84 Dutch ICU centers  
(11, 14). To obtain a generalizable selection of hospitals with 
differences in level of care, volume, and case-mix, 10 university/
teaching centers (“teaching”) and 10 peripheral (“nonteach-
ing”) centers were chosen randomly. Herein, all unique hos-
pital admissions admitted to the ICU between January 1, 2011, 
and January 1, 2016, were extracted. Subsequently, patients 
younger than 18 years, admissions with ICU length of stay less 
than 24 hours, planned admissions for chronic respiratory di-
sease, and records with missing information on disease severity 
were excluded (n = 318). These criteria were chosen to mimic a 
possible cohort of a medical intervention study in the ICU, and 
therefore do not correspond to the patient selection criteria for 
which the models were developed.

Simulating Treatment
A fictitious treatment (predetermined OR, 1.0) was assigned 
to half of the patients per center, based on each individual’s 
APACHE IV predicted mortality. The APACHE IV model was 
chosen, as it is the most recent prediction model with most 
diagnostic categories. Furthermore, it is most inclusive with 
regard to specific populations (i.e., cardiac surgery patients) 
(1, 15, 16). The data-generating model (DGM) used to relate 
APACHE IV predicted mortality to the probability of treat-
ment is:

logit[ ]P X AP ii AP=( ) = +1 44α β

where AP4
i
 stands for APACHE IV predicted mortality of 

individual i and X
i
 denotes treatment status of individual i  

(0 = untreated, 1 = treated). To ensure that half of the patients 
in the ICU received treatment, a search procedure was applied 
using the original data to determine what the value of the in-
tercept α in equation 1 should be; –0.28. Coefficient β

AP4
 was 

set to 1.25, corresponding to a crude (i.e., not adjusted for con-
founding) OR of 1.50 for the effect of the treatment on in-hos-
pital mortality. Such a confounding effect has been observed 
in earlier publications (17). This effect was determined using 

https://www.R-project.org/
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an iterative procedure using the original data, where β
AP4

 was 
incrementally changed to achieve the desired crude effect. By 
sampling from a Bernoulli distribution with probability of 
success P (Xi = 1), a treatment status was assigned to each in-
dividual, independent of in-hospital mortality and conditional 
on the APACHE IV predicted mortality.

Scenarios
In our reference scenario—to which all subsequent scenar-
ios were compared—all centers were assumed to have the 
APACHE IV score available (scenario 0).

Nine scenarios were investigated, which differed with 
regards to the availability of the APACHE IV score or the alter-
native score across centers, based on center and case-mix char-
acteristics (Table 1; and Supplementary Table 1, Supplemental 
Digital Content 1, http://links.lww.com/CCM/E603). These 
characteristics include the type of center (teaching vs nonteach-
ing), center volume (> 1,500 vs < 1,500 included admissions in 
2011–2015), average APACHE IV predicted probability of in-
hospital death (> 25% vs < 25%), and proportion of medical 
admissions (> 70% vs < 70%).

To investigate confounding adjustment using both the 
APACHE II score and the SAPS II score relative to the APACHE 
IV score, two separate analyses were performed for all nine sce-
narios: participating centers without the APACHE IV score 
had the APACHE II score (A) or the SAPS II score (B) available 
(Table 1).

Confounding Adjustment Methods
Eight different methods to estimate the effect of treatment on 
in-hospital mortality were considered, each unique in their 

strategy to incorporate two distinct DSMs for confound-
ing adjustment (Table 2). Each method had a common fixed 
effects logistic regression as the analysis model, which included 
as independent variables the assigned treatment status (X), 
a measure of disease severity (as determined by the different 
methods), and a fixed intercept per center. A short description 
of each method is given in Table 2.

Performance Measures
The procedure described above was executed on each of 1,000 
bootstrap samples from the selected data, where patients were 
bootstrapped within centers. Within each method and each sce-
nario, the estimated treatment effects were averaged and com-
pared with the treatment effects found in scenario 0 (reference 
effect: adjustment with APACHE IV score in all centers), which 
was assumed to be without uncertainty. For each of methods one 
through eight with scenario’s one through nine, we calculated 
mean effect estimates over the bootstrap estimates and reported 
95% percentile CIs. Subsequently, bias was calculated for each of 
these as follows: relative bias = (mean effect estimate–reference 
effect)/reference effect, absolute bias = mean effect estimate–
reference effect (the absolute bias was reported on the OR scale 
by exponentiating this formula). Coverage was calculated by 
observing the proportion of times the reference effect (treat-
ment effect of scenario 0) fell within the 95% CI constructed 
around the effect estimate obtained for each bootstrap sample.

RESULTS
The resulting dataset consisted of 55,655 ICU admissions 
(Table 3). The median number of average yearly admissions 

TABLE 1. Description of the Availability of Disease Severity Measures Across Centers for 
Each Scenario

Scenario Availability of Disease Severity Measures Across Centers

0 (reference) All centers had the APACHE IV score

 APACHE IV score Analysis A: APACHE II score

Analysis B: SAPS II score

1 Teaching centers Nonteaching centers

2 Nonteaching centers Teaching centers

3 High-volume centersa Low-volume centers

4 Low-volume centers High-volume centersa

5 APACHE IV highest riskb APACHE IV lowest risk

6 APACHE IV lowest risk APACHE IV highest riskb

7 High proportion of medical admissionsc Low proportion of medical admissions

8 Low proportion of medical admissions High proportion of medical admissionsc

9 APACHE IV and APACHE II/SAPS II distributed approximately evenly over centersd

APACHE = Acute Physiology and Chronic Health Evaluation, SAPS = Simplified Acute Physiology Score.
a���Centers with > 1,500 admissions in 2011–2015.
b���Centers with mean APACHE IV predicted mortality > 25%.
c���Centers with proportion medical admissions > 70%.
d���Twelve centers had the APACHE IV score available and eight either the APACHE II or SAPS II score.

http://links.lww.com/CCM/E603
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was 437 (interquartile range [IQR], 267–282) in all centers, 
696 (IQR, 555–1,196) in teaching centers, and 238 (IQR, 
174–325) in nonteaching centers. The average APACHE IV 
score was 68.5, 60.7, and 66.8, and the average APACHE 
IV predicted in-hospital mortality was 0.229, 0.236, and 
0.203 for all, teaching, and nonteaching centers, respec-
tively. There were six centers with more than 70% medical 
admissions, including three teaching and three nonteach-
ing centers.

In Supplementary Tables 2 and 3 (Supplemental Digital 
Content 1, http://links.lww.com/CCM/E603), we present 
the main results, being the performance of the different 
methods and scenarios in comparison with the reference 
scenario (scenario 0, adjustment for APACHE IV score); 
this is both presented as the relative bias (percentages) and 
as the absolute bias (on the OR scale). Negative percentages 
reflect ORs less than 1 and thereby bias toward a protective 
effect of treatment, whereas positive percentages reflect ORs 
greater than 1 and thereby bias toward a harmful treatment 
effect. Coverages are presented in Supplementary Table 4 
(Supplemental Digital Content 1, http://links.lww.com/
CCM/E603).

In analysis A, where APACHE II scores were the alterna-
tive to APACHE IV scores, restriction, multiple imputation, 
and regression calibration resulted in the least bias, with 
a mean relative bias over the scenarios of 0.0%, 5.1%, and 
–12.4%, respectively (Supplementary Table 2, Supplemental 
Digital Content 1, http://links.lww.com/CCM/E603) and cov-
erages above 92% for all methods (Supplementary Table 4, 
Supplemental Digital Content 1, http://links.lww.com/CCM/
E603). The naive method gave, as expected, most relative bias 
with percentages ranging from 26.6% to 173.6% depending on 
the distribution of APACHE IV and APACHE II scores over 
centers, but with coverages less than 15% for six of eight sce-
narios. Standardization (both approaches), two-stage anal-
ysis, and propensity score modeling all resulted in comparable 
amounts of relative bias, with mean relative bias over the sce-
narios ranging from 41.5% to 48.6%.

In analysis B, where SAPS II scores were the alternative to 
APACHE IV scores, the least bias occurred with restriction 
and multiple imputation, with mean bias over the scenarios of 
0.0% and 4.6% (Supplementary Table 2, Supplemental Digital 
Content 1, http://links.lww.com/CCM/E603) and coverages 
of 94.3% and 68.5%, respectively (Supplementary Table 4, 

TABLE 2. Methods to Adjust for Confounding by Disease Severity, When Different 
Measures Are Available From Different Centers

Method Description

1) Naive Differences in DSMs across centers were neglected. As such, the disease severity scores were 
treated as if they had been measured in an identical fashion across centers and were combined into 
one disease severity variable included in the analysis model (i.e., falsely assuming that an APACHE 
IV of 30 corresponds to an APACHE II of 30).

2) Restriction Only data from those centers that had the APACHE IV score available were included in the analysis.

3) Two-stage analysis Each group of centers that had the same DSM available was analyzed separately. Subsequently, the 
estimated treatment effects and ses were pooled by inverse variance  
weighting (18).

4) Cluster standardization Within each group of centers with the same DSM, scores were standardized by setting the mean value 
of the empirical distribution to 0 with a sd of 1. The standardized disease severity scores were then 
combined into one variable and included as a covariate in the analysis model.

5) Center standardization Within each center, DSMs were standardized by setting the mean value of the empirical distribution to 
0 with a sd of 1. The standardized DSMs were then combined into one variable and included as a 
covariate in the analysis model.

6) Multiple imputation When unavailable, APACHE IV scores were imputed, using information on treatment status, observed 
outcome, and the available (alternative) disease severity scores (i.e., APACHE II or SAPS II, which 
was assumed available in all centers). According to recent literature, including the outcome in the 
imputation model is considered appropriate and leads to more accurate imputations (19, 20). Each 
dataset was imputed five times using Bayesian linear regression (21, 22). Effect estimates and their 
se were pooled using Rubin’s rules (23).

7) Regression calibration Again, APACHE II or SAPS II was assumed available in all centers. In the subset of centers that also 
had APACHE IV scores, the APACHE IV score was regressed on the treatment and the DSM 
available for all centers (APACHE II/SAPS  II) using ordinary least-squares regression. The esti-
mated coefficients of this regression model were then used to calibrate the estimated treatment 
effect and its se, by means of the procedure described by Rosner et al (24).

8) Propensity score Within each group of centers that had the same DSM available, a propensity score model—to predict 
the probability of having received treatment—was estimated. The estimated propensity scores were 
used to obtain inverse probability weights. A single weighted regression was then performed to 
estimate the treatment effect.

APACHE = Acute Physiology and Chronic Health Evaluation, DSM = disease severity measure, SAPS = Simplified Acute Physiology Score.

http://links.lww.com/CCM/E603
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Supplemental Digital Content 1, http://links.lww.com/CCM/
E603). The next best methods were standardization (both 
methods) and two-stage analysis, with relative bias of 18.4% 
and 18.7%, respectively—which are more than twice as low 
as in the scenarios with APACHE II—and high coverages. 
Interestingly, the propensity score method performed similar 
to the naive method, with relative biases of 33.2% and 36.2% 
and coverages of 83.6% and 81.4%, respectively. Contrary to 
the APACHE II scenarios, regression calibration resulted in 
high relative bias when some of the centers had SAPS II score, 
overestimating the treatment effect on average with 54.8% 
(coverage 68.5%). With regard to the scenarios, those where 
most centers or the teaching centers had APACHE IV resulted 
in least relative bias.

The ORs for all DSMs—when each is assumed avail-
able in all centers—are provided in Supplementary Table 5 
(Supplemental Digital Content 1, http://links.lww.com/CCM/
E603). In comparison with the DGM, where treatment was 
simulated based on the APACHE IV predicted mortalities, 
the estimated treatment effect of scenario 0 was OR 1.08; this 

is the reference effect used to calculate bias for the different 
scenarios and methods, and it reflects the bias due to con-
founding adjustment by APACHE IV score rather than the 
APACHE IV predicted mortalities (OR, 1.00). For complete-
ness, the obtained ORs and percentile CIs obtained for each 
method and scenario are presented in Supplementary Table 6 
(Supplemental Digital Content 1, http://links.lww.com/CCM/
E603). Note that the absolute bias (on the OR scale) with re-
spect to the DGM (correction using the APACHE IV predicted 
mortality; OR, 1.00) is easily obtained by subtracting 1 from all 
cells in this table.

DISCUSSION
In this simulation study, we compared eight methods to adjust 
for confounding by disease severity in multicenter ICU studies 
of medical interventions, where different DSMs are available 
across centers. Neglecting differences between DSMs across 
centers led to large relative bias in treatment effects. Com-
monly used methods such as two-stage modeling or standardi-
zation were unable to eliminate bias. Restriction of the analysis 

TABLE 3. Characteristics of the Selected Centers and Patients, Stratified for Teaching and 
Nonteaching Centers

Characteristics
Teaching  
Centers

Nonteaching  
Centers

All  
Centers

Number of included admissions (total) 43,516 12,139 55,655

Center characteristicsa

  Number of centers 10 10 20

  Number of high-volume centers (> 1,500 admissions in 
2011–2015)

10 4 14

  Number of centers with high average APACHE IV predicted 
mortality (> 25%)

6 0 6

  Number of centers with high proportion of medical admissions 
(> 70%)

3 3 6

  Average “yearly”b number of included admissions per center, 
median (IQR)

696 (555–1,196) 238 (174–325) 437 (267–682)

Patient characteristics

  Median age (IQR) 66 (55–74) 70 (59–78) 67 (55–75)

  Male sex (%) 62 55 60

  APACHE IV score, mean (sd) 68.5 (29.2) 60.7 (27.7) 66.8 (29.1)

  APACHE IV predicted in-hospital mortality, mean (sd) 0.236 (0.255) 0.203 (0.227) 0.229 (0.250)

  APACHE II score, mean (sd) 18.9 (7.67) 16.8 (7.75) 18.5 (7.74)

  APACHE II predicted in-hospital mortality, mean (sd) 0.288 (0.248) 0.274 (0.228) 0.285 (0.244)

  SAPS II score, mean (sd) 40.7 (16.9) 35.8 (16.9) 39.7 (17.0)

  SAPS II predicted in-hospital mortality, mean (sd) 0.309 (0.267) 0.246 (0.249) 0.295 (0.265)

  Died in hospital (%) 16.2 14.5 15.9

APACHE = Acute Physiology and Chronic Health Evaluation, IQR = interquartile range, SAPS = Simplified Acute Physiology Score.
a���To preserve anonymity, information could not be presented for each individual center.
b�From the ten centers, from which data from 5 years of admissions were used, indicates the average number of admissions per year per center. From these 10 
averages are presented the median and IQR.

http://links.lww.com/CCM/E603
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to centers where APACHE IV scores were available and mul-
tiple imputation of APACHE IV score resulted in the least bias. 
Regression calibration yielded low relative bias when some 
centers had APACHE II score available, but not when these had 
only SAPS II available.

The current analyses are by no means exhaustive and sev-
eral assumptions were made to perform a simulation that 
would, in our opinion, best mimic a real-life multicenter 
study. First, the best proxy for disease severity was consid-
ered to be the APACHE IV predicted in-hospital mortality, 
which was used in the DGM to simulate treatment. We also 
assumed that in real-life studies, the best available DSM 
would be the APACHE IV score. This measure was not op-
timal, because correction for APACHE IV score in all centers 
(scenario 0) resulted in bias (OR, 1.08) relative to the DGM 
(Supplementary Table 5, Supplemental Digital Content 1, 
http://links.lww.com/CCM/E603). This may be explained by 
the fact that APACHE IV score does not have a linear rela-
tionship with in-hospital mortality; rather each variable and 
diagnostic category included in the model has a different re-
lationship with the outcome, which is often ignored in con-
founding adjustment. Second, we assumed that there was a 
single average treatment effect (adjusted OR, 1.0) across cen-
ters, both in the DGM and in the analyses, and hence that 
there was no treatment effect heterogeneity across centers. In 
practice, however, there may be variation in treatment effects 
across centers. Inclusion of such variation may influence the 
results, but would likely not alter the conclusion. Instead, a 
different treatment effect variable—for example, an adjusted 
OR 1.5 (effective treatment) instead of OR 1.0—could influ-
ence the performance of the different methods (the amount 
of bias) in the different scenarios to a varying extent. Similarly, 
we assumed a single confounding effect across centers, result-
ing in a crude OR of 1.50; the magnitude of confounding may 
in practice vary with the type of study performed and may 
also differ across centers. Future studies may incorporate het-
erogeneity of treatment effects or confounding effects across 
centers by simulating the treatment using hierarchical regres-
sion models. Otherwise, data from a large multicenter ICU 
trial can also be used as the treatment variable is then already 
observed and does not have to be simulated.

This study has some limitations. The scenarios chosen in 
this simulation study partly overlapped; teaching hospitals, 
for example, were all high-volume centers (Supplementary 
Table 1, Supplemental Digital Content 1, http://links.lww.
com/CCM/E603). This might explain some of the similarity 
of results across scenarios. Second, treatment was simulated 
based on APACHE IV predicted mortality, which was there-
fore by definition the only confounder in this study, while 
in practice, there may be more (unmeasured) confounding 
variables. Although the APACHE IV includes many differ-
ent confounders such as age and comorbid conditions, it is 
uncertain to what extent our comparison of confounding 
adjustment methods is affected by that. Third, although our 
simulation study was based on a dataset with national cov-
erage, results may not directly generalize to other countries 

with different case-mix (i.e., different distributions of di-
sease severity across different countries). Fourth, with all 
centers trained to collect the various DSMs, we assumed 
no measurement error and no missing data; future research 
could assess the impact of these sources of bias on the dif-
ferent methods to control for confounding by disease se-
verity in multicenter ICU studies. Finally, generalizability of 
our findings depends on the prognostic performance of the 
APACHE IV score in the respective setting, the underlying 
treatment effect size, and the type of outcome measure. The 
current study could be repeated with a different DSM to 
simulate treatment (e.g., recalibrated SAPS III in-hospital 
mortality probabilities), and with a yet other methods to 
correct for confounding. Furthermore, it should be repeated 
for different outcome types (continuous, time-dependent, 
instead of dichotomous) and with different magnitudes of 
treatment effectiveness.

In practice, when it is not feasible to collect a single DSM 
in all study centers, the choice for a specific confounding 
adjustment method may depend on the availability and 
type of DSM across centers. For multiple imputation and 
regression calibration, it is paramount that all centers have 
the alternative measure available. When that is not the case, 
the more modestly performing methods of standardization, 
two-stage analysis, and propensity score modeling may be 
best applicable. Although restriction resulted in least rela-
tive bias, it also yielded relatively imprecise estimates, which 
in practice could result in underpowered studies (which is 
unethical). Furthermore, in practice, studies may not want 
to restrict to a selection of sites based on the available DSM. 
As expected, the naive method, neglecting differences be-
tween APACHE IV and alternative scores, resulted in high 
relative bias, especially when APACHE IV score (range, 
0–286) and APACHE II score (range, 0–72) were available 
(SAPS II score’s range is 0–163). In practice, when choosing 
between different methods to control for heterogeneously 
measured confounders for the analysis of a particular data-
set, this choice could be supported by small focused simula-
tion studies for which our simulation code could be used as 
a starting point. The ultimate approach would be to try and 
obtain a single DSM from all centers, preferably the one that 
is most informative for the outcome of interest and treat-
ment decisions in practice.

To the best of our knowledge, this is the first study to 
assess different modeling methods for confounding ad-
justment when different DSMs are available from different 
centers. Our results may help investigators of multicenter 
studies and individual participant data meta-analysis in 
the field of Intensive Care Medicine to design the statistical 
analysis when confounding adjustment is needed. Future re-
search could compare these same methods in different data-
sets that may be smaller, have more measurement error, have 
heterogeneity in treatment effects, or have different DSMs 
available. In addition, investigators may focus on the perfor-
mance of combinations of methods to most effectively ad-
just for confounding.
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