
ll
OPEN ACCESS
iScience

Article
Germline variants predictive of tumor mutational
burden and immune checkpoint inhibitor efficacy
Ajay Chatrath,

Aakrosh Ratan,

Anindya Dutta

ad8q@virginia.edu

HIGHLIGHTS
GVITMB were found in 7

genes and 38 gene sets

GVITMB influence the

somatic mutation and

gene expression profiles

of tumors

GVITMB predict immune

checkpoint inhibitory

efficacy in SKCM

Chatrath et al., iScience 24,
102248
March 19, 2021 ª 2021 The
Author(s).

https://doi.org/10.1016/

j.isci.2021.102248

mailto:ad8q@virginia.edu
https://doi.org/10.1016/j.isci.2021.102248
https://doi.org/10.1016/j.isci.2021.102248
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2021.102248&domain=pdf


iScience

Article

Germline variants predictive
of tumor mutational burden and immune
checkpoint inhibitor efficacy

Ajay Chatrath,1 Aakrosh Ratan,2 and Anindya Dutta1,3,*

SUMMARY

High tumor mutational burden (TMB) is associated with response to checkpoint
blockade in several cancers. We identify pathogenic germline variants associated
with increased TMB (GVITMB). GVITMBwere found in 7 genes using a pan-cancer
approach (APC, FANCL, SLC25A13, ERCC3,MSH6, PMS2, and TP53) and 38 gene
sets (e.g., those involved in DNA repair and programmed cell death). GVITMB
were also associated with mutational signatures related to the dysfunction of
the gene carrying the variant, somatic mutations that further affect the gene or
pathway with the variant, or transcriptomic changes concordant with the ex-
pected effect of the variant. In a validation cohort of 140 patients with cutaneous
melanoma, we found that patients with GVITMB had prolonged progression-free
survival (p = 0.0349, hazard ratio = 0.688) and responded favorably (p = 0.0341,
odds = 1.842) when treated with immune checkpoint inhibitors. Our results sug-
gest that germline variants can influence themolecular phenotypes of tumors and
predict the response to immune checkpoint inhibitors.

INTRODUCTION

The explosion of massively parallel sequencing data has helped to identify rare germline variants that cause

or contribute to disease (Sanderson et al., 2019; Vaske et al., 2019). In oncology, it is well-established that

patients with germline variants in genes mutated in certain genetic syndromes, such as Lynch syndrome, Li-

Fraumeni syndrome, von Hippel-Lindau syndrome, and Fanconi anemia, are at much higher risk of

acquiring cancer (Ellrott et al., 2018; Kamps et al., 2017). Although individuals with these pathogenic

germline variants are generally screened more aggressively, clinical management of patients with these

germline variants is not always differentiated from the management of patients without these pathogenic

variants (Ballinger et al., 2017; Lindor et al., 2006; Maher et al., 1990). This has begun to change. For

example, patients with Lynch syndrome have pathogenic germline variants in mismatch repair genes,

such as MSH2, MSH6, PMS2, and MLH1, and their tumors exhibit higher levels of microsatellite instability.

As a consequence, patients with Lynch syndrome are more likely to respond to immune checkpoint

inhibitors such as pembrolizumab (Snyder et al., 2014; Van Allen et al., 2015) (Le et al., 2017).

We have reported that germline variants affect tumor progression across a large spectrum of cancers

through the analysis of common germline variants with a minor allele frequency greater than 5% in the gen-

eral population (Chatrath et al., 2019, 2020). In this study, we analyze rare pathogenic germline variants to

identify germline variants associated with increased tumor mutational burden (GVITMB) to test whether

these germline variants increase the likelihood of a patient responding to immune checkpoint inhibitors

(Keenan et al., 2019; Liu et al., 2019; Miao et al., 2018). After identifying the set of pathogenic germline

variants predictive of tumor mutational burden (TMB), we demonstrate that they predict responsiveness

to immune checkpoint inhibitors in a cohort of 140 patients with skin cutaneous melanoma.

RESULTS

Germline variants can be analyzed using pan-cancer or gene set-level approaches

Huang et al. had previously described 435 rare pathogenic germline variants that were found in the patients

in The Cancer Genome Atlas (TCGA) (Huang et al., 2018). Briefly, all somatic variants were scored based on
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(ACMG-AMP) guidelines developed for rare variants in cancer and variants known to be pathogenic in

ClinVar and curated databases were labeled as pathogenic. Themajority of these pathogenic germline var-

iants were predicted to functionally perturb known tumor suppressor genes or oncogenes. Before identi-

fying which pathogenic germline variants contribute to elevated TMB, we first evaluated whether we were

able to identify GVITMB based in individual genes in individual cancers. We set a modest threshold

requiring at least five patients in the cancer cohort to have a pathogenic germline variant in a given gene.

We utilized four approaches to identify germline variants associated with increased TMB. (1) We tested in-

dividual genes for association with TMB in individual cancers, testing a total of 13 unique genes (Figure 1A).

(2) We pooled all the patients in TCGA together, and by doing so we were now able to test 73 total genes

for the presence of GVITMB (Figure 1B). (3) We grouped the pathogenic germline variants by gene set to

identify gene sets carrying GVITMB in individual cancers (Figure 1C). (4) Finally, we repeated the analysis in

(3) but after grouping all cancers together (Figure 1D). Our overall methodology is summarized in Figure 2.

Calculation of tumor mutational burden

Overall TMB, nonsynonymous TMB, and clonal nonsynonymous TMB have previously been reported to be asso-

ciated with favorable response in patients treated with immune checkpoint inhibitors (Keenan et al., 2019; Miao

et al., 2018).We, therefore, calculated these threemetrics of TMB for each patient in TCGAandnormalized them

to per megabase (MB) based on the total number of sites in each patient wherein we were sufficiently powered

to call a somaticmutation. This normalization accounted for the coverageat each site in the exomeand thepurity

and ploidy of each tumor. All metrics of TMB were highly correlated to each other (Spearman’s rho >0.90 for all

pairs, Figure 3A), and we present the normalized distribution of TMB by cancer in Figure 3B. We used clonal

nonsynonymous TMB per MB as our dependent variable for this study as it has been shown to have a better

association with immune checkpoint inhibitor responsiveness (Keenan et al., 2019; Miao et al., 2018).

Pan-cancer identification of individual genes associated with TMB

We identified seven genes that when perturbed by a pathogenic germline variant are associated with

elevated TMB (Figure 4A, Table 1). Three of these genes (APC, FANCL, and SLC25A13) were determined

to be significant after multiple hypothesis testing correction (adjusted p value <0.05). However, later in this

study we also characterize the four genes (ERCC3, MSH6, PMS2, and TP53) that did not reach the

significance threshold of an adjusted p value < 0.05 even though they crossed the raw p value threshold

of <0.05 because they have well-known roles in DNA repair.

Identification of gene sets carrying GVITMB in individual cancers

We identified significant associations of pathogenic germline variants in gene sets and TMB in Colon

Adenocarcinoma (COAD), Skin CutaneousMelanoma (SKCM), and Uterine Corpus Endometrial Carcinoma

(UCEC) (Figure 4B, Table 2, list of perturbed genes in Table S1). Although each of the identified gene sets

consisted of different and unique gene sets, the genes that empirically contributed to these gene sets

sometimes overlapped in this analysis. We have therefore grouped gene sets for which the contributing

genes entirely overlapped in this particular analysis. In total, we identified 29 associations (2 in COAD,

11 in SKCM, and 16 in UCEC). The significantly associated gene sets were primarily related to DNA damage

and repair and cell cycle control.

Pan-cancer identification of gene sets carrying GVITMB

Last, we identified pathogenic germline variants associated with TMB using a pan-cancer approach in

which the pathogenic germline variants were grouped by gene set (Figure 4C, Table 3, list of perturbed

genes in Table S2). In total, we identified 12 significant associations. Several of the gene sets were related

toWnt signaling, and the pathogenic germline variants inAPC greatly contributed to these associations, as

described in our analysis of individual genes. One association was driven entirely by SLC25A13 and had

also been described in our previous analysis of individual genes. The other associations were related to

apoptosis, cell cycle control, and DNA damage repair.

GVITMB influence somatic events

We next sought to characterize the somatic events associated with GVITMB. Several studies have sug-

gested that germline variants influence somatic events (Carter et al., 2017; Chatrath et al., 2019, 2020; Chir-

ita-Emandi et al., 2020). We found that patients with GVITMB in mismatch repair genes exhibited
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enrichment of mutational signatures associated with mismatch repair gene dysfunction, suggesting

exome-wide evidence of the dysfunction of these genes (Table 4).

We next tested whether the genes and gene sets perturbed by GVITMB were associated with somatic mu-

tations in these same genes or gene sets. We controlled for TMB in all analyses to account for the general

Figure 1. An overview of the number of genes or gene sets that could be tested with the threshold that the

pathogenic germline variants must be present in five or more patients

(A) Number of testable genes in individual cancer types. This analysis was not performed due to the small number of

testable genes.

(B) Number of patients with pathogenic variants in the indicated genes when patients with all cancers were pooled

together. The stacked bars show the cancer types color coded as in the key. These patients were analyzed by Approach 1.

(C) Number of testable gene sets in each of the individual cancer types, analyzed by Approach 2.

(D) Number of patients carrying germline variants in the testable gene sets, analyzed by Approach 3. The stacked bars

show the cancer types with pathogenic germline variants in a given gene set color coded as in the key.
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increase in somatic mutations in tumors with the GVITMB, along with controlling for tumor type and demo-

graphic factors. Patients with GVITMB in the mismatch repair gene PMS2 were much more likely to exhibit

somatic mutations in PMS2 than patients without the GVITMB in PMS2 (beta = 3.05, p value = 5.86E-5,

adjusted p value=4.1E-4). We found that GVITMB in ERCC3 or TP53 were associated with an increased inci-

dence of somatic mutations in gene sets that include ERCC3 or TP53, respectively (Table S3). In addition,

patients with SKCM with GVITMB in the disease gene set (a compilation of genes associated with human

diseases) were more likely to acquire somatic mutations in other genes of the same gene set (beta=20.2, p

value = 4.12E-6, adjusted p value=1.73E-4).

Finally, we tested for up- or downregulation of gene expression consistent with the expected effects of the

GVITMB.We found that patients with GVITMB in genes regulating the G2-M checkpoint in UCEC exhibited

upregulation of E2F target genes, suggesting upregulation of cell cycle activity (p value = 0.013).

GVITMB predict immune checkpoint inhibitory efficacy in SKCM

To test whether patients with SKCM with pathogenic germline variants in the gene sets that we had found

to be associated with TMB in the TCGA dataset (Table 2) responded better to immune checkpoint inhib-

itors, we analyzed sequencing data from 140 patients with SKCM treated with either nivolumab or pembro-

lizumab (Liu et al., 2019). Given the relatively small sample size, we were not sufficiently powered to test

individual gene sets for association with outcome. Of all the gene sets that contained GVITMB in SKCM

Figure 2. A summary of the overall approach employed in this study
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(Table 2), only the disease gene set was sufficiently powered to detect an association with progression-free

survival. Patients with pathogenic germline variants in the disease gene set exhibited prolonged progres-

sion-free survival (p = 0.0245, hazard ratio [HR] = 0.662) (Figures 5A and 5B) and were more likely to show a

response to immune checkpoint inhibitors based on Response evaluation criteria in solid tumors (RECIST)

criteria (p = 0.0393, odds = 1.781, ordering of categories was progressive disease, stable disease, partial

response, and then complete response) (Figure 5C). Although patients with pathogenic germline variants

had a higher median number of overall mutations, nonsynonymous mutations, and clonal nonsynonymous

mutations, this difference was not statistically significant (Table S4, top three rows).

We were better powered to detect such an association by pooling all pathogenic germline variants found in

the genes of the gene sets that we found to be associated with elevated TMB in SKCM the TCGA dataset

(Figures 5D and Table 2). When tested, we found that patients with pathogenic germline variants in these

genes exhibited favorable outcome and were less likely to progress (Figure 5E, p = 0.0349, HR = 0.688).

Similarly, patients with pathogenic germline variants in these genes were more likely to exhibit a response

to immune checkpoint inhibitors based on RECIST criteria (Figure 5F, p = 0.0341, odds = 1.842). Turning to

TMB, we found that the median number of total mutations, nonsynonymous mutations, and clonal

nonsynonymous mutations was greater in patients with pathogenic germline variants in genes in our

gene set than patients without these pathogenic germline variants, although these differences were also

not statistically significant (Table S4, lower three rows). Thus the GVITMB have a more significant effect

on responsiveness than can be expected from the differences in TMB alone.

DISCUSSION

The widespread collection of sequencing data has enabled detailed study of rare genetic syndromes

(Kamps et al., 2017; Sylvester et al., 2018). Although patients with pathogenic germline variants are often

Figure 3. Calculated tumor mutational burden across cancers

(A) All six metrics of tumor mutational burden are highly correlated with each other.

(B) Overall TMB per megabase (MB), nonsynonymous TMB per MB, and clonal nonsynonymous TMB per MB across cancers.
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screened more aggressively for cancer, clinical guidelines for these patients have only changed in a few

circumstances (Le et al., 2017; Lindor et al., 2006). We had previously identified common germline variants

associated with differences in patient outcome across a multitude of cancers, suggesting that germline

variation contributes not only to cancer risk but also to tumor progression (Chatrath et al., 2019, 2020).

In this study, we have identified pathogenic germline variants associated with TMB. Some of these associ-

ations were expected and confirmed existing hypotheses (e.g., mutations in known DNA repair genes such

asMSH6 and PMS2), whereas other associations (e.g., mutations in SLC25A16) are more surprising and can

motivate future hypotheses. We identified molecular fingerprints of the effects of some of the pathogenic

germline variants by analyzing RNA sequencing data and somatic mutation profiles. Our findings suggest

that these pathogenic germline variants remain relevant after a patient has been diagnosed with cancer

and may contribute to the molecular differences in tumors collected from patients with and without

pathogenic germline variants.

After identifying the set of pathogenic germline variants associated with TMB in skin cutaneous melanoma,

we showed that patients with these pathogenic germline variants exhibit prolonged progression-free sur-

vival and increased responsiveness to immune checkpoint inhibitors. Given the relatively small size of the

validation cohort, our validation study had limited resolution because we were not adequately powered to

test individual genes or gene sets. As the total amount of sequencing data from patients treated with

Figure 4. Manhattan plots summarizing the associations with clonal nonsynonymous tumor mutational burden

per megabase

(A–C) We identified associations with elevated tumor mutational burden in (A) genes perturbed by pathogenic germline

variants using a pan-cancer approach, (B) gene sets perturbed by pathogenic germline variants in individual cancers, and

(C) gene sets perturbed by pathogenic germline variants using a pan-cancer approach. For each gene set, the fraction of

patients with a particular cancer carrying a pathogenic germline variant is indicated by the color code.
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immune checkpoint inhibitors continues to increase, our ability to identify individual genes and gene sets

predictive of responsiveness will improve. In this study, we identify pathogenic germline variants associ-

ated with TMB as a proxy for immune checkpoint inhibitory efficacy, although determining the extent to

which TMB is predictive of immune checkpoint inhibitor efficacy across all cancers is still an active area

of research (Wood et al., 2020).

Tumors from patients with pathogenic germline variants in themismatch repair genesMSH6 and PMS2 and

in the mismatch repair pathway exhibit elevated TMB. We found enrichment in the contribution to these

patients’ somatic mutation profiles from COSMIC signatures related to mismatch repair. Germline

mismatch repair deficiency has previously been associated with microsatellite instability and increased

responsiveness to immune checkpoint inhibitors, and so these findings served as an important positive

control in our study (Le et al., 2017).

Tumors with pathogenic germline variants in the nucleotide excision repair gene ERCC3 were associated

with elevated TMB in our study. Although a previous study showed that somatic mutations in the nucleotide

base excision repair gene ERCC2 likely contributes to increased TMB, no previous study has demonstrated

an association between nucleotide excision repair gene perturbation and immune checkpoint inhibitor ef-

ficacy (Van Allen et al., 2014). We did not find a significant association between nucleotide excision repair

pathway perturbation by pathogenic germline variants and TMB at the pathway level, suggesting that the

contribution to TMB may be limited to select genes in the pathway.

We found patients with pathogenic germline variants inAPC, which binds to beta-catenin and leads to its degra-

dation, and genes involved with beta-catenin degradation to be associated with elevated somatic mutation

burden. Aberrations to the Wnt signaling pathway are linked to the formation of many cancers (Anastas and

Moon, 2013). Spranger et al. showed that non-T cell inflamed tumors exhibited high b-catenin signaling activity

and reduced response to immune checkpoint blockade (Spranger et al., 2015). Further work is necessary to pre-

dict whether pathogenic germline variants in APC and genes involved with b-catenin degradation will be asso-

ciated with increased or decreased response to immunotherapy, as the elevated TMB would be expected to

increase efficacy, whereas the elevated b-catenin signaling would be expected to decrease efficacy.

Tumors from patients with pathogenic germline variants in SLC25A13 exhibited elevated somatic mutation

burden. This gene codes for a mitochondrial aspartate/glutamate transporter. Pathogenic germline variants

in this gene are associated with the urea cycle disorder type II citrullinemia and neonatal intrahepatic cholestasis

(Song et al., 2013). Lee et al. have previously shown that tumors exhibiting urea cycle dysfunction generate

nitrogenmetabolites, resulting inDNAdamage and ultimately better response to immune checkpoint blockade

(Lee et al., 2018). Lee et al.’s analysis focused on somatic urea cycle dysfunction, whereas our work suggests that

germline urea cycle dysfunction may also be a marker for improved immune checkpoint blockade response.

FANCL is the E3 ubiquitin ligase subunit within the FA core complex that enhances the efficiency of

FANCD2 monoubiquitination. FANCD2 participates in DNA damage recognition and repair. As the

Table 1. A summary of the associationswe foundwith elevated somaticmutation burden in individual genes using a

pan-cancer approach

Gene Number of patients with a PGV

Additional clonal

nonsynonymous

mutations per MB p value Adjusted p value

APC 5 32.51 7.910E-09 5.300E-07

FANCL 8 23.77 9.500E-08 3.180E-06

SLC25A13 17 11.46 1.938E-04 4.329E-03

TP53 16 8.87 4.897E-03 8.202E-02

ERCC3 23 6.87 9.044E-03 1.212E-01

MSH6 20 6.34 2.453E-02 2.348E-01

PMS2 32 5.05 2.367E-02 2.348E-01

PGV, Pathogenic Germline Variants.
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Table 2. A summary of the associations we found with elevated somatic mutation burden in individual gene sets in

individual cancers

Gene set Cancer

Patients

with PGV

Additional clonal

nonsynonymous

mutations per MB p value

Adjusted

p value

TP53 regulates transcription

of DNA repair genes

UCEC 14 38.78 8.712E-31 2.004E-29

DNA repair UCEC 31 25.71 7.358E-30 8.462E-29

Transcriptional regulation

by TP53

UCEC 20 27.86 4.704E-23 3.607E-22

Generic transcription

pathway

UCEC 22 26.34 1.132E-22 6.508E-22

Disease UCEC 12 34.18 5.317E-21 2.446E-20

Gene expression

transcription

UCEC 24 23.87 1.828E-20 7.009E-20

Mismatch repair, diseases

of mismatch repair (MMR)

UCEC 7 34.55 3.925E-13 1.290E-12

Sumoylation UCEC 6 31.43 9.928E-10 2.854E-09

Deubiquitination UCEC 6 31.15 1.396E-09 3.568E-09

Fanconi anemia pathway UCEC 8 25.54 1.040E-08 2.393E-08

DNA double-strand

break response

UCEC 7 26.42 2.932E-08 6.130E-08

G2 M checkpoints, G2 M

DNA damage checkpoint,

regulation of TP53 activity,

regulation of TP53 activity

through phosphorylation

UCEC 9 20.00 1.958E-06 3.753E-06

Post-translational protein

modification

UCEC 9 19.61 3.065E-06 5.423E-06

Cell cycle checkpoints UCEC 10 17.62 9.955E-06 1.635E-05

Disease COAD 8 20.53 4.064E-06 7.315E-05

DNA double-strand

break repair

UCEC 15 11.48 4.291E-04 6.580E-04

Cell cycle UCEC 15 11.37 4.835E-04 6.950E-04

DNA repair SKCM 30 7.89 6.214E-04 1.243E-02

Disease SKCM 6 16.17 1.680E-03 1.680E-02

Cell cycle SKCM 20 8.43 2.805E-03 1.870E-02

Generic transcription

pathway, gene

expression transcription

COAD 15 9.86 2.467E-03 2.220E-02

Cell cycle checkpoints SKCM 12 9.57 8.553E-03 2.851E-02

Regulation of TP53 activity SKCM 11 10.38 6.340E-03 2.851E-02

DNA double-strand

break repair

SKCM 19 7.72 7.643E-03 2.851E-02

Homology-directed repair

(HDR) through homologous

recombination (HRR)

SKCM 17 7.85 1.027E-02 2.903E-02

(Continued on next page)
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pathogenic germline mutations in FANCL associated with TMB are predicted to be loss-of-function

mutations, we hypothesize that they lower the efficacy of interstrand crosslink repair, affecting TMB.

High TMBhas been associated with response to checkpoint blockade in several malignancies. However, the de-

gree to which TMB changes over time, across anatomical sites, and with intervening treatment is still not clear.

Studies have noted that tumor sampling from different anatomical sitesmay be associated with greater discrep-

ancies in TMB calculations (Smithy et al., 2019). Efforts are ongoing to standardize TMB evaluation, which is

needed to ensure reliability, reproducibility, and clinical utility (Galuppini et al., 2019). Compared with TMB,

germline variants are relatively simpler to detect, annotate, score, and classify (Huang et al., 2018). Furthermore,

they do not change during the course of the disease. It remains to be evaluated if they have additional value as a

biomarker beyond that is provided by TMB, but our analyses suggest that they should be viewed as a biomarker

candidate that can provide a robust and reproducible signal.

Overall, the results of our analysis suggest that understanding the germline contribution to somatic events

could inform clinical therapy decisions (Carter et al., 2017; Menden et al., 2018). In this study, we have shown

that pathogenic germline variants inform TMB and that these sets of pathogenic germline variants can be

used to predict immune checkpoint inhibitor efficacy in patients with skin cutaneous melanoma. Future studies

of germline variants in cancer will likely continue to illuminate areas in which clinical management can be

further personalized based on an understanding of a patient’s germline variants.

Limitations of the study

In this study, we used the TCGA data to identify pathogenic germline variants that are associated with

increased tumor mutation burden (GVITMB). More than 80% of the patients in TCGA are of European

ancestry, so it remains to be seen whether these associations will be replicated in a more diverse cohort.

For the association analysis, we collapse the pathogenic variants in genes and gene set with the assumption

that all pathogenic germline variants contribute toward increased TMB. It is likely that using adaptive

burden association tests could increase our power to determine the associations, but that would come

at the expense of interpretability. Using a second SKCM dataset, we were able to show that GVITMB

have prognostic value, but it still needs to be determined whether GVITMB offer additional prognostic

value beyond TMB. However, GVITMB do offer some advantages, as we highlight in the discussion, and

should be considered as possible biomarker candidates in future studies.

Resource availability

Lead contact

Further information and questions should be directed to and will be fulfilled by the lead contact, Anindya

Dutta (ad8q@virginia.edu).

Table 2. Continued

Gene set Cancer

Patients

with PGV

Additional clonal

nonsynonymous

mutations per MB p value

Adjusted

p value

Resolution of D-loop structures,

resolution of D-loop structures

through synthesis-dependent

strand annealing (SDSA),

homologous DNA pairing,

and strand exchange

SKCM 16 7.96 1.161E-02 2.903E-02

Generic transcription pathway,

gene expression transcription

SKCM 18 6.90 2.029E-02 3.568E-02

G2 M checkpoints, G2 M DNA

damage checkpoint, regulation

of TP53 activity through

phosphorylation

SKCM 10 9.52 1.696E-02 3.568E-02

Transcriptional regulation

by TP53

SKCM 16 7.44 1.827E-02 3.568E-02
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Materials availability

This study did not generate new unique reagents.

Data and code availability

All scripts used for analyses are available at https://github.com/achatrath/GermlineSomaticMutationBurden.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

Table 3. A summary of the associations we found with elevated somatic mutation burden in individual gene sets

using a pan-cancer approach

Gene set

Number of

patients with PGV

Additional clonal

nonsynonymous

mutations per MB p value

Adjusted

p value

Degradation of b-catenin by

the destruction complex

5 32.51 7.907E-09 8.223E-07

b-catenin phosphorylation cascade,

disassembly of the destruction

complex and recruitment of axin

to the membrane, signaling by

WNT in cancer, phosphorylation

site mutants of CTNNB1 are not

targeted to the proteasome by

the destruction complex

5 32.51 7.907E-09 8.223E-07

Ovarian tumor domain proteases 22 13.70 3.466E-07 2.403E-05

Deactivation of the b-catenin

transactivating complex

7 22.42 2.517E-06 1.309E-04

Programmed cell death 28 11.03 3.729E-06 1.551E-04

Regulation of kit signalling 5 23.99 2.086E-05 7.231E-04

Apoptotic cleavage of cellular

proteins, apoptotic execution phase

11 14.55 1.299E-04 3.378E-03

Signaling by WNT, TCF-dependent

signaling in response to WNT

10 15.31 1.241E-04 3.378E-03

Mitochondrial protein import,

gluconeogenesis, glucose

metabolism, aspartate and

asparagine metabolism,

protein localization

17 11.46 1.938E-04 4.480E-03

Disease 211 3.17 2.993E-04 6.226E-03

Mismatch repair 63 5.63 4.116E-04 7.782E-03

Diseases of mismatch repair (MMR) 62 5.62 4.615E-04 7.999E-03

Table 4. Mutational signature results concordant with the expected effects of the pathogenic germline variants

Gene or gene set Cancer Mutational signature Fold enrichment p value

MSH6 Pan-cancer 44 3.83 3.11E-03

Mismatch repair UCEC 20 2.16 2.90E-02

Mismatch repair Pan-cancer 20 2.16 2.13-03

Mismatch repair Pan-cancer 26 1.58 3.48E-02

Mismatch repair Pan-cancer 44 2.89 8.38E-06
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Figure 5. Pathogenic germline variants predict immune checkpoint inhibitor efficacy in an independent cohort of

140 patients with skin cutaneous melanoma treated with immune checkpoint inhibitors

(A–C) Patients with pathogenic germline variants in the (A) disease gene set exhibit (B) prolonged progression-free

survival and (C) are more likely to respond to immune checkpoint inhibitors.

(D–F) We (D) pooled all gene sets with GVITMB in SKCM together and found that patients with germline variants in these gene

sets exhibited (E) prolonged progression-free survival and are (F) more likely to respond to immune checkpoint inhibitors.

Abbreviations: PD, progressive disease; SD, stable disease; PR, partial response; CR, complete response.
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 1 

Transparent Methods 1 

Patient Data Availability 2 

 We downloaded the set of rare, pathogenic germline variants found in the 3 

patients in The Cancer Genome Atlas (TCGA) previously published by Huang et al. and 4 

the set of somatic mutations in these patients generated by Ellrott et al. (Ellrott et al., 5 

2018; Huang et al., 2018). Clinical data for the TCGA patients were accessed from the 6 

TCGA pan-cancer clinical data resource (Liu et al., 2018). We used the calculated race 7 

of each patient from The Cancer Genome Ancestry Atlas to effectively control for 8 

genetic ancestry throughout our analyses (Yuan et al., 2018).   9 

Calculating Tumor Mutational Burden (TMB) 10 

 We counted the number of somatic mutations called by Ellrott et al. in each 11 

patient in The Cancer Genome Atlas (Ellrott et al., 2018). This count depends on the 12 

number of sites in the exome where we are adequately powered to call a somatic 13 

mutation.  We first determined the sequencing depth at each position in the exome for 14 

each patient using SAMtools (Lau et al., 2017; Li et al., 2009). We then estimated the 15 

power to detect a somatic mutation at each position in the exome for each patient using 16 

the R package PureCN utilizing the purity and ploidy previously reported by The Cancer 17 

Genome Atlas Pan-Cancer Atlas initiative (https://gdc.cancer.gov/about-18 

data/publications/pancanatlas) (Riester et al., 2016). The somatic mutations had 19 

previously been categorized as synonymous or nonsynonymous by Ellrott et. al. (Ellrott 20 

et al., 2018). We classified the somatic mutations as clonal or subclonal by calculating 21 

the probability of observing the number of reads supporting the somatic mutation in the 22 

tumor based on a binomial distribution, given the total number of reads covering that 23 



 2 

position. We assumed that the probability of a read supporting a clonal somatic 24 

mutation was equal to !
"#$%&'∗)*+$,	"*,%.'

. If the probability was less than 5% (p<0.05), 25 

we classified the somatic mutation as subclonal (Carter et al., 2012).  26 

We calculated six metrics of tumor mutational burden. The first three were overall 27 

tumor mutational burden, nonsynonymous tumor mutational burden, and clonal 28 

nonsynonymous tumor mutational burden. These three metrics were normalized by the 29 

number of sites for which there was 80% or greater power to detect a somatic mutation. 30 

This enabled us to calculate overall tumor mutational burden per megabase, 31 

nonsynonymous tumor mutational burden per megabase, and clonal nonsynonymous 32 

tumor mutational burden per megabase.  We used clonal nonsynonymous tumor 33 

mutational burden per megabase as our dependent variable for this study as clonal 34 

nonsynonymous TMB has been shown to be more closely associated with response to 35 

immune checkpoint inhibitors (Keenan et al., 2019; Liu et al., 2019; Miao et al., 2018).  36 

Identification of Genes with GVITMB 37 

 Across all of the TCGA patients, 132 unique genes contained at least one 38 

pathogenic germline variant. We limited our analysis only to genes with pathogenic 39 

germline variants in at least five different patients. Our results do not change 40 

substantially when we lower this threshold. However, setting the minimum threshold at 41 

five patients eliminates associations driven by a small number of patients, which could 42 

make them less compelling and more difficult to validate. We tested individual genes for 43 

association with clonal nonsynonymous tumor mutational burden per megabase, 44 

controlling for age, gender (if applicable), and calculated patient race. We tested a total 45 

of 13 unique genes.  46 
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We also looked for associations between individual genes and tumor mutational 47 

burden using a pan-cancer approach. We pooled all of the TCGA patients together and 48 

tested whether individual genes perturbed by pathogenic germline variants (presence or 49 

absence of a pathogenic germline variant) were associated with clonal nonsynonymous 50 

TMB per megabase using linear regression, controlling for tumor type, age, gender, and 51 

calculated patient race. We tested a total of 73 unique genes in this analysis. P-values 52 

were adjusted using the Benjamini-Hochberg procedure throughout this study.  53 

Identification of Gene Sets with GVITMB  54 

 To study the association between pathogenic germline variants and tumor 55 

mutational burden in individual cancers, we grouped genes by gene sets. Gene sets 56 

perturbed by pathogenic germline variants in five or more patients were tested. Gene 57 

set annotation was downloaded from Reactome (Fabregat et al., 2018). We tested 58 

whether having a pathogenic germline variant in the gene set (presence or absence) 59 

was associated with clonal nonsynonymous TMB per megabase using linear 60 

regression, controlling for age, gender, and calculated patient race. We tested a total of 61 

117 unique gene sets. Finally, we performed a pan-cancer analysis of gene sets 62 

associated with clonal nonsynonymous TMB per megabase using the same approach, 63 

controlling for tumor type, age, gender, and calculated patient race. We tested a total of 64 

454 unique gene sets in this analysis. While each gene set included in these analyses is 65 

unique, some of the gene sets have overlapping sets of genes (Table 2-3 and Table 66 

S1-2).  67 

Gene Set Enrichment Analysis 68 
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 We performed gene set enrichment analysis to test for upregulation or 69 

downregulation of RNAs in specific gene sets in patients with GVITMB. To do this, we 70 

downloaded the previously released RNA-sequencing quantification files for each 71 

patient generated by the TCGA research network (https://portal.gdc.cancer.gov/). We 72 

then excluded genes with a median expression level of <1 FPKM across the patient 73 

cohort being tested. The expression values of the remaining genes were then 74 

standardized to have a mean of 0 and a standard deviation of 1. We ranked the genes 75 

by coefficients after measuring the association between the expression of each gene 76 

and the status of the GVITMB under study using logistic regression, controlling for 77 

tumor type, age, gender, and calculated patient race. We used these ranked gene lists 78 

to perform Gene Set Enrichment Analysis (Subramanian et al., 2005). 79 

Mutational Signature Analysis 80 

 We hypothesized that the tumors of some of the patients with GVITMB would 81 

exhibit enrichment of mutational signatures. We downloaded all single base substitution 82 

signatures from COSMIC (Tate et al., 2019). We determined the optimal contribution of 83 

COSMIC signatures to reconstruct the mutational profile observed in each of the 84 

patients in TCGA using the R package “MutationalPatterns” (Blokzijl et al., 2018). We 85 

converted the contribution values to percentages, such that the sum of the percent 86 

contributions of all the COSMIC signatures for each patient was equal to 100%. 87 

  We evaluated whether a COSMIC signature is enriched in tumors with a GVITMB 88 

by testing for the association between the percent contribution of a signature and the 89 

presence or absence of the GVITMB, controlling for tumor type, age, gender, and 90 

calculated patient race.  91 
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Increased Susceptibility to Mutations in Driver Genes and in the Same Gene Set 92 

 To ask if the GVITMB influenced the somatic mutations acquired by the patient, 93 

we calculated the number of “probably damaging” somatic mutations in each gene in 94 

each patient, as classified by Ellrott et al. (Ellrott et al., 2018). We tested whether the 95 

chance of observing a “probably damaging” somatic mutation in the same gene as the 96 

GVITMB was more likely in patients with the GVITMB using logistic regression, 97 

controlling for tumor type, age, gender, calculated patient race, and clonal 98 

nonsynonymous TMB per megabase. We also tested whether the mutational burden in 99 

genes of the gene set that the GVITMB was found in differed based on the germline 100 

variant status using linear regression, controlling for tumor type, age, gender, calculated 101 

patient race, clonal nonsynonymous TMB per megabase and the number of sites for 102 

which we were sufficiently powered to call somatic mutations. We controlled for the 103 

TMB in both these analyses to test if the mutation burden in these somatically mutated 104 

genes was higher than that could be explained by the increase in the overall TMB of the 105 

patient.  106 

Validation in an Independent Cohort of Patients with Skin Cutaneous Melanoma 107 

Treated with Immune Checkpoint Inhibitors 108 

 As part of our analysis, we had identified patients with pathogenic germline 109 

variants predictive of TMB in patients with Skin Cutaneous Melanoma (SKCM). We 110 

hypothesized that patients with this set of pathogenic germline variants would exhibit a 111 

favorable response to immune checkpoint inhibitors (Keenan et al., 2019; Liu et al., 112 

2019; Miao et al., 2018; Van Allen et al., 2015; Van Allen et al., 2014). We, therefore, 113 

analyzed sequencing data from 140 patients with skin cutaneous melanoma treated 114 
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with immune checkpoint inhibitors (Liu et al., 2019). Although there are a total of 144 115 

patients in this cohort, we only included 140 patients in this study as 4 patients had a 116 

“mixed response” to treatment that was not clearly categorized.  117 

 We downloaded the raw reads  from the non-tumor samples from dbGAP 118 

(accession number: phs000452.v3.p1) using the SRA toolkit (http://ncbi.github.io/sra-119 

tools/). The data was aligned and variant called according to GATK best practices (Liu 120 

et al., 2019; Van der Auwera et al., 2013). Germline variants were categorized as 121 

pathogenic using CharGer (Scott et al., 2019).  122 

 We tested whether we were sufficiently powered to detect differences in 123 

progression free survival based on the status of the pathogenic germline variants we 124 

had identified assuming a hazard ratio of 2 using the “powersurvepi”( https://cran.r-125 

project.org/web/packages/powerSurvEpi/powerSurvEpi.pdf) R package. We were not 126 

sufficiently powered to detect associations at the level of individual genes or gene sets. 127 

We, therefore, combined all of the gene sets where GVITMB were found in SKCM to 128 

create a test gene set for responsiveness to immune checkpoint inhibitors. We were 129 

adequately powered to perform the analysis in this larger cohort, as the probability of 130 

detecting an association assuming a hazard ratio of 2 was 92.5%.  We tested whether 131 

GVITMB in this test gene set were associated with progression free survival using Cox 132 

regression, controlling for age, gender, treatment type (Nivolumab or Pembrolizumab), 133 

prior treatments, and whether or not the patient had brain lymph node, lung, liver, or 134 

bone metastases. Cox regression was performed using the “survival” and “survminer” R 135 

packages. We tested whether the patients with pathogenic germline variants in the test 136 

gene set were associated with increased responsiveness to immune checkpoint 137 
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inhibitors based on RECIST criteria using ordinal logistic regression in R. The 138 

responses were ordered as follows: progressive disease, stable disease, partial 139 

response, and complete response. Our null hypothesis was that the patients with 140 

pathogenic variants in genes included in this gene set would not exhibit a favorable 141 

response to immune checkpoint inhibitors. To test that hypothesis, we performed one-142 

sided statistical tests when testing for an association between progression free survival 143 

and response based on RECIST criteria and germline variants in our test gene set.  144 

Software 145 

Computation was performed using R version 3.5.2. The R packages “ggplot2” and 146 

“scatterpie” were used to generate the figures in this manuscript. 147 

 148 
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