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a b s t r a c t

Development of novel multimodality radiotherapy treatments in metastatic breast cancer, especially in
the most aggressive triple negative (TNBC) subtype, is of significant clinical interest. Here we show that a
novel inhibitor of Polo-Like Kinase 4 (PLK4), CFI-400945, in combination with radiation, exhibits a
synergistic anti-cancer effect in TNBC cell lines and patient-derived organoids in vitro and leads to a
significant increase in survival to tumor endpoint in xenograft models in vivo, compared to control or
single-agent treatment. Further preclinical and proof-of-concept clinical studies are warranted to char-
acterize molecular mechanisms of action of this combination and its potential applications in clinical
practice.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Local disease control at primary or metastatic sites in patients
withmetastatic or inoperable breast cancer is commonly addressed
with radiotherapy. However, outcomes remain poor, and progres-
sion in irradiated areas is not uncommon [1e4]. Development of
novel combined modality radiotherapy treatments in metastatic or
inoperable disease, especially in the most aggressive triple negative
breast cancer (TNBC) subtype, is therefore of significant clinical
interest. With the development of more selective chemical in-
hibitors, there has been a renewed interest in agents targeting
regulators of genomic stability and cell cycle which can further
exacerbate numerical chromosomal instability (CIN) and lead to
cellular lethality [5,6]. Ionizing radiation induces genotoxic stress
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and aneuploidy and may thus synergize with agents targeting cell
cycle checkpoints [7e9]. CIN itself mediates susceptibility to radi-
ation [10,11], and therefore therapies that induce CIN may increase
radiosensitivity. Polo-like kinase 4 (PLK4) is a key regulator of the
cell cycle and centriole duplication that is aberrantly expressed in
breast cancer and is associated with CIN [12,13]. PLK4 was identi-
fied as a promising anticancer therapeutic target in TNBC, and a
first-in-class inhibitor, CFI-400945, has been recently characterized
[14,15]. CFI-400945 exacerbates CIN, has been shown to have
antitumor activity in preclinical models, including TNBC, and is
being evaluated in clinical trials in patients with metastatic breast
cancer, and other cancer types [14,16e20]. We therefore assessed
whether radiation and CFI-400945 exhibit combined anticancer
effects in breast cancer cell lines and patient-derived organoids
(PDO).
Methods

Colony formation assays were performed for breast cancer cell
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Abbreviations

TNBC triple negative breast cancer
BME basement membrane extract
CIN chromosomal instability
CDK4/6 cyclin-dependent kinase 4/6
PLK4 Polo-Like Kinase 4
PDO patient-derived organoids
PDXO patient-derived organoids established from a

xenograft
NOD/SCID Nonobese diabetic/severe combined

immunodeficiency

Fig. 1. Effects of CFI-400945 and Radiation in Triple Negative Breast Cancer In Vitro and In
ductions in colony formation in MDA-MB-231. The number of colonies in each treatment
combined CFI-400945 and radiation was observed across several dose levels. Bliss synergy s
red indicates higher degree of synergy. C. Organoid formation assay using various concentr
panel) in BPTO19, generated from a chest wall metastasis of a TNBC patient. Bright-field m
number of organoids was counted by 2 independent observers in at least 3 random fields p
group. Bar represents 100 mm. D. Effect of CFI-400945 and radiation in BPTO19. Average nu
and standard deviations (SD, bars) of replicate experiments are presented. E. In Vivo effect
endpoint survival curve (left) using Kaplan-Meier analysis. P-value was calculated using log-r
no detectable metastases (liver and lungs) were seen on the autopsy in all study arms. Sig
treatment arm compared to other treatment arms.
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lines and organoids using previously described methodologies
[21,22]. In vitro radiation was performed using an X-RAD 320 irra-
diator (Accela), where cells were treated with various doses of ra-
diation. The media was replaced and supplemented with varying
concentrations of CFI-400945 or vehicle control. Synergy of dose-
response matrix data was assessed by Bliss synergy score using
SynergyFinder Software [23]. All patient samples (Supplementary
Table 1) were obtained after participants’ consent and used in
accordance with a research ethics board-approved protocol
(REB#159481). Organoids were generated and propagated as pre-
viously described [24]. Organoid cancer cells were plated
(2000 cells/well) in Basement Membrane Extract, Type II (Bio-
Techne) in 48-well plates. Animal experiments were performed
under an institutionally approved protocol (#1113). MDA-MB-
231 cells (2� 106) were injected into themammary fat pad of NOD/
Vivo Models. A. Combined CFI-400945 and radiation resulted in dose-dependent re-
arm were normalized to the respective control (no-radiation, no-drug). B. Synergy of
cores, calculated with SynergyFinder, are displayed in the heatmap, where intensity of
ations of CFI-400945 alone (top panel) or in combination with 3 Gy radiation (bottom
icroscopy (at 4� magnification) images were taken 28 days following treatment. The
er each well. The counts were normalized to respective unirradiated controls in each

mber of organoids was normalized to that of control (no-radiation, no-drug). Averages
s of CFI-400945 and Radiation on MDA-MB-231 Xenografts in NOD/SCID mice. Tumor
ank test. No significant effects on animal general health and weight were observed, and
nificantly smaller proportion of mice developed tumor ulceration in the combination
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SCID mice. When the xenograft volume reached 100e150 mm3

(Day 0), mice were randomized to no treatment (N ¼ 6), CFI-
400945 only (7.5 mg/kg daily, N ¼ 6), radiation only (8 Gy single
dose by targeted radiation to the xenograft, N ¼ 6) or combination
treatment of CFI-400945 and radiotherapy (N¼ 7). CFI-400945 was
initiated on Day 0 in the respective groups. On Day 7, mice in the
assigned groups received targeted 8 Gy radiation to the tumor site
using an XRAD 225Cx (Precision X-RAY) micro-IGRT delivery sys-
tem. On Day 30, CFI-400945 was stopped and monitoring of the
tumor volume continued until tumor endpoint was reached, at
which point the animal was sacrificed, and survival time was
recorded. Kaplan-Meier survival analysis was used to assess sur-
vival times. P-values were calculated using a log-rank test (Prism 8,
GraphPad Software).

Results

In the MDA-MB-231 TNBC cell line (Fig. 1A), synergy of com-
bined treatment was observed at 10 and 20 nM of CFI-400945
(Fig. 1A) and was greatest at 10 nM of CFI-400945 and 2 Gy of ra-
diation (Fig. 1B). Similar synergistic relationships were observed in
two other TNBC lines, MDA-MB-468 and MDA-MB-436
(Supplementary Fig 1). In the TNBC PDO model, BPTO19, 1 nM of
CFI-400945 had no significant effect on organoid formation, while
at 50 nM no organoid formation was observed (Fig. 1C and D). At
5 nM concentration, CFI-400945 alone caused 2.1 times decrease in
colony formation. Irradiation with 3 Gy reduced the number of
organoids by 1.6 times, compared to no-radiation control. When
combined with CFI-400945 at 1 or 5 nM, irradiation resulted in an
average 2.8- and 5.6-fold decrease in organoid formation respec-
tively, compared to no treatment control. Similar effects were
observed in 2 other organoid models, BXTO81 and BXTO64
(Supplementary Fig 2). We then assessed the combination of orally
delivered CFI-400945 with a single fraction of targeted radiation to
MDA-MB-231 xenografts in NOD/SCID mice (Fig. 1E). In the control
arm, median survival to tumor humane endpoint was 32 days,
which was increased to 43, 57 and 75 days for radiation-only, CFI-
400945-only and combination treatment respectively (Fig. 1E).
Statistically significant (p < 0.0005) improvements in survival
comparing combination versus single treatments or control groups
were observed. Similarly, analysis of the median time to tumor
volume tripling showed that combination treatment resulted in a
significantly prolonged tumor volume tripling time, compared to
control, drug-only or radiation-only arms (Supplementary Fig 3).
No significant effects on animal general health and weight were
observed.

Discussion

Augmenting the effects of radiation with chemotherapeutic
agents or targeted therapy is an attractive strategy to improve
survival and quality of life of cancer patients, through achieving
synergistic antitumor activity and minimization of the overlapping
toxic effects [25,26]. This strategy has not been incorporated into
the standard clinical management of breast cancer, though che-
moradiation is sometimes used, and targeted combinations are
being explored in clinical trials [27]. Our results demonstrate
combination synergy and radiosensitizing effects of CFI-400945
across multiple preclinical TNBC models. We show that the com-
bined delivery of these treatments in vivo results in significant
prolongation of survival and delay in growth of tumors. CFI-400945
has been shown to be safe and well-tolerated in humans and is
being tested in Phase 2 clinical trials in patients with advanced/
metastatic breast cancer [19,20]. Emerging data suggest synergistic
effects of combining radiotherapy with other novel therapeutic
8

compounds, particularly those that affect cell cycle control and
exacerbate CIN. In patients with breast cancer brain metastases
receiving CDK4/6 inhibitors, delivery of radiotherapy has been re-
ported to confer prolonged survival outcomes [28]. Ongoing clinical
trials are evaluating CDK4/6 inhibitors in combination with radio-
therapy in patients with bone metastases and oligometastatic
breast cancer [29,30]. Similar to our results, an inhibitor of the
spindle assembly checkpoint control protein TTK has been shown
in preclinical studies to confer radiosensitization effects and sub-
stantially improved tumor control in TNBC [31]. Our findings sup-
port development of further preclinical studies of this combination
and its molecular mechanisms, as well as early clinical trials to
evaluate safety/toxicity in patients with metastatic breast cancer.
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