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Automated ECG-based arrhythmia detection is critical for early cardiac disease prevention and diagnosis. Recently, deep learning
algorithms have been widely applied for arrhythmia detection with great success. However, the lack of labeled ECG data and low
classification accuracy can have a significant impact on the overall effectiveness of a classification algorithm. In order to better
apply deep learning methods to arrhythmia classification, in this study, feature extraction and classification strategy based on
generative adversarial network data augmentation andmodel fusion are proposed to address these problems. First, the arrhythmia
sparse data is augmented by generative adversarial networks.(en, aiming at the identification of different types of arrhythmias in
long-term ECG, a spatial information fusion model based on ResNet and a temporal information fusion model based on BiLSTM
are proposed. (e model effectively fuses the location information of the nearest neighbors through the local feature extraction
part of the generated ECG feature map and obtains the correlation of the global features by autonomous learning in multiple
spaces through the BiLSTM network in the part of the global feature extraction. In addition, an attentionmechanism is introduced
to enhance the features of arrhythmia-type signal segments, and this mechanism can effectively focus on the extraction of key
information to form a feature vector for final classification. Finally, it is validated by the enhanced MIT-BIH arrhythmia database.
(e experimental results demonstrate that the proposed classification technique enhances arrhythmia diagnostic accuracy by
99.4%, and the algorithm has high recognition performance and clinical value.

1. Introduction

Arrhythmia is the main cause of various heart diseases and
poses a great threat to human health. According to the
WHO’s 2020 report, heart disease has become the most
common cause of death [1]. Among them, heart disease
caused by arrhythmia accounts for 80% [2]. (e electro-
cardiogram (ECG) is used to classify arrhythmias, which is
the basic basis for cardiac disease diagnosis [3]. In routine
medical diagnosis, it is very necessary to explore and study
the important information in ECG, but to accurately classify
ECG data for arrhythmia requires cardiologists to have rich
clinical experience and professional knowledge, which will
cost a lot of time and effort. As a result, utilizing a computer
as an auxiliary tool to automatically detect, identify, and

classify arrhythmias can provide objective diagnostic results
while also saving the doctors’ time [4].

Computer-aided diagnosis has been increasingly pop-
ular in the field of arrhythmia in recent years, as artificial
intelligence technology has matured [5, 6]. In computer-
aided diagnostics, machine learning and deep learning
techniques are frequently utilized. (e machine learning
method first preprocesses the ECG data and then extracts
ECG features through linear discriminant analysis (LDA),
principal component analysis (PCA), wavelet transform
(WT), independent component analysis (ICA), and other
methods. Finally, the extracted ECG features are input into
the classifier to complete the classification [7–13]. Classifiers
include support vector machines (SVMs), decision trees, and
artificial neural networks [14–16]. Machine learning
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methods have the advantage of being interpretable, but the
models are less capable of self-learning and often fail to learn
underlying the abstract patterns. At the same time, the
feature extraction of machine learning requires sufficient
manual intervention, and the process of extracting and
selecting features takes a long time. Due to the ECG signal
being affected by noise and human body variances, the
generalization ability of the machine learning method is
weak, and the ideal classification effect cannot be achieved.

To address the drawbacks of machine learning methods,
models of deep learning are widely used for medical image
recognition, where convolutional neural networks and long-
short memory networks are widely used for medical image
recognition, such as cancer diagnosis [17] and organ locali-
zation [18]. (e application of CNN, LSTM, and GAN net-
works in the classification of arrhythmias can help doctors
make accurate diagnoses more easily. (e adequacy of data
determines the performance of convolutional neural network
models [19]. In general, more data indicates better recognition
performance of the model [20]. On the problem of MIT-BIH
data imbalance, scholars at home and abroad have proposed
many methods to solve the data imbalance problem, such as
through resampling and modifications at the algorithm level.
Among them, resampling includes upsampling and down-
sampling. Upsampling is to enlarge the ECG image and insert
new elements between the pixel points based on the original
ECG image pixels using a suitable interpolation algorithm.
Although good results can be produced by using upsampling,
the upsampling method can lead to overlearning of the
classifier, while the downsampling method can generate
thumbnails of ECG images, which can lead to the loss of ECG
data information at that time. Improved at the algorithm level,
by adjusting the ratio of samples, the basic idea is similar to
resampling, which also fails to fundamentally solve the
problem of missing data in ECG signals. As an effective data
augmentation method, GAN has been frequently utilized to
address the issue of data distribution imbalance. Goodfellow
et al. [21] first proposed a generative adversarial network
model in 2014. Two neural networks, a generator, and a
discriminator compete in generative adversarial networks to
create data with a similar distribution to the original data.
Afterward, GANs have been widely used for database aug-
mentation [22–24]. GAN has been widely used as an effective
data improvement method to overcome the problem of
imbalanced data distribution [25]. To address the issue of data
scarcity, this paper uses GAN to augment the ECG signals of
scarce arrhythmia types. (e generated ECG signal has
morphological properties similar to the original ECG signal.
To understand patient-specific ECG signals, we designed a
generative adversarial network ECG-GAN that does not re-
quire any subject-specific ECG labels to train to generate
arrhythmia-specific ECG signals.

(is paper makes three major contributions: (1) To
overcome the problem of data imbalance in the MIT-BIH
arrhythmia database, we use an ECG-GAN-based data aug-
mentationmethod to expand the database. By using the ECG-
GAN model to expand the data on 4 types of arrhythmias,
sufficient data support was provided for the classification
model. (2) Because of the periodicity of ECG signals, we

propose a ResNet-based spatial information fusionmodel and
a BiLSTM-based temporal information fusion model. (e
model employs the ECG feature map created by the local
feature extraction phase, and the model’s BiLSTM network in
the global feature extraction part successfully integrates
neighbors’ position information and achieves global feature
correlation through multi-space autonomous learning. Ef-
fectively improve the performance of model arrhythmia
classification. (3) (e model introduces an attention mech-
anism to enhance features for arrhythmia-type signal seg-
ments.(is mechanism can effectively focus on the extraction
of key information, and form feature vectors for final clas-
sification. According to the findings, the model can greatly
increase automated arrhythmia classification accuracy.

2. Related Work

2.1. Generating Synthetic ECG Signal. Due to the sensitivity
of medical data, creating a large-scale ECG database utilizing
medical data is extremely challenging. (e problem of
sample imbalance is very common in medical image diag-
nosis tasks [26]. (e imbalanced ECG database consists of a
majority type with larger data than other types and a mi-
nority type with smaller data than other types. If the machine
learning model is trained with an unbalanced ECG database,
the model will be biased towards the majority type, and the
recognition performance of the minority type will be lower
than the majority type. In recent years, the problem of
unbalanced ECG data is mainly solved by synthesizing the
ECG data. Traditional approaches and deep learning tech-
niques are mostly used to synthesize ECG data. (e tradi-
tional method is to synthesize ECG data by manually
extracting ECG signal features and building a generative
model. For example, the earliest synthetic ECG technique
was proposed by McSHarry et al. [27] in 2003, who gen-
erated ECG waveforms based on calculus equations and
Gaussian models. Roonizi et al. [28] introduced a polyno-
mial spline modeling model to generate ECG data. (e
above traditional methods require manual extraction of
features and tuning of model parameters. Personal experi-
ence will affect the quality of generative models, and sub-
jective awareness will lead to unobjective generated results.

A deep neural network is used to generate ECG data
using deep learning methods. (e generative adversarial
network model is a strong deep learning-based generative
model that has demonstrated superior performance in a
variety of domains, including picture production, resolution
enhancement, and natural language processing. Golany et al.
[29] improved classification performance by adding syn-
thetic ECG heartbeats produced by standard GANs to the
training set. Hernandez-Matamoros et al. [30] employed a
Bi-RNN model to synthesize numerous beat signals that
were identical to the original data; however, the ECG signal
was not subjected to stringent ECG signal denoising, QRS
wave identification, or heartbeat segmentation in the data
preparation step. Zhu et al. [31] proposed a BiLSTM-CNN
GAN for generating ECG signal models. BiLSTM was used
as the generator in the new network model and CNN as the
discriminator, but the experiment only performed data
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enhancement for one signal. Wulan et al. [32] used the
STFT-based SpectroGAN and WaveletGAN models to
generate three types of ECG signals: normal heartbeat, left
bundle branch block, and right bundle branch block, but the
length of the training samples involved in the experiment
was short, it is not conducive to generating long valid data.

2.2. Deep LearningClassificationModels. (e two most often
used neural network models are CNN and LSTM. Cui et al.
[33] proposed a feature extraction method that combines
traditional classification methods and CNN to improve the
accuracy of arrhythmia classification by finding the best
feature set. Acharya et al. [34] created a 9-layer CNN model
that uses an ECG segment as an input to automatically
categorize arrhythmias into five types. To identify electro-
cardiogram (ECG) data, Yildirim et al. [35] introduced a deep
bidirectional LSTM network-based wavelet sequence model.
Although the model has high performance, the database used
in the experiment is too small to process a large amount of
data. Swapna et al. [36] model fusion of CNN and LSTM,
which integrates LSTM into the CNN model, but the clas-
sification accuracy is only 83.4%. Zhou et al. [37] proposed
modeling the same ECG segment using numerous separate
LSTMs and CNNs, then fusing the findings of select LSTMs
and CNNs using inference rules. It could only distinguish
between premature ventricular contractions induced by
normal heartbeats, despite its 99.4% accuracy.

Attention-based CNNs and LSTMs are commonly used
in recommender systems, activity recognition, image anal-
ysis, etc [38]. Since the attention mechanism can effectively
focus on the extraction of key information, more and more
scholars apply it in the direction of ECG. To merge multi-
view data from CT scans for discriminative feature extrac-
tion, Zhang et al. [39] built a multi-view weighted fusion
attention. Hammad et al. [40] designed a ResNet-Attention
residual convolutional neural network for human identity
verification. Zhang et al. [41] constructed multiple CNN-
BiLSTM networks with an attention mechanism for mental
stress detection by introducing an attention mechanism to
the CNN and BiLSTM layers, respectively, and simulta-
neously adding an attention mechanism to the CNN and
BiLSTM layers. Zhang et al. [42] introduced the STA-CRNN
neural network model, which combines a spatiotemporal
attention mechanism with a convolutional recurrent neural
network to categorize nine different types of arrhythmias.

In summary, the findings of the preceding study are
instructive; however, they fall short of achieving high
classification accuracy and resolving the data imbalance
problem. As a result, the GAN network is used in this article
to solve the problem of unbalanced ECG data, as well as
incorporate an attention mechanism into the ResNet-
BiLSTM model to improve arrhythmia detection accuracy
and optimize the classifier.

3. Materials and Methods

3.1. Arrhythmia Database. (is paper uses the open-source
arrhythmia database for research. (ere are currently four

open databases for ECG signal research in the world,
namely, MIT-BIH database [43], AHA database [44], CSE
database [45], and ST -T database [46]. Because the MIT-
BIH database is regularly utilized for arrhythmia research, it
was chosen for this study. (e MIT-BIH database not only
contains heartbeat annotations from medical experts but
also records almost all common types of arrhythmias. (e
database contains 48 ECG records from 47 individuals. (e
48 ECG signal recordings can be classified into two groups.
(e first category is a total of 23 records numbered 100 to
124, which are common ECG patterns. (e second category
is a total of 25 records numbered 200 to 234, including
clinically uncommon types of arrhythmias, but the ECG data
of abnormal beats only account for one-third of all ECG
data.

To unify the feature extraction and classification stan-
dards of different patients, this paper uses the AAMI
standard to classify arrhythmias into 5 types and takes 44
records from the database, of which 22 are training sets and
22 are test sets. Table 1 lists the different types of heartbeats
recorded in the MIT-BIH arrhythmia database, according to
the AAMI standard. In the MIT-BIH database, the number
of normal heartbeats much outnumbers the other types.
(ere are more than 90,000 different forms of normal
heartbeats, but only about 800 different types of Q-type
heartbeats. Arrhythmia data is much smaller than normal
ECG data, and the entire database is unbalanced. Such highly
imbalanced databases tend to result in very low sampling
rates for minority classes [47]. To solve the issue of data
imbalance, we created the ECG-GAN model to supplement
the arrhythmia database’s limited data.

Although the MIT-BIH datasets were used in some
studies, their classification results were not as high as the
model shown in this paper. Because the samples in some of
the databases they utilized were too tiny, the model’s ca-
pacity to detect a small number of irregular heartbeats was
harmed. After data balancing, we augmented the dataset
with data from the MIT-BIH database, and the classification
model was trained. (e model significantly increased the
model’s ability to detect aberrant heartbeats. (e AAMI
criteria for categorizing arrhythmias into five types, as well
as the number of counted heartbeats for each type, are
shown in Table 1.

3.2. ECG Signal Preprocessing. Noise and ECG signals are
jumbled in the original data since the ECG data in the ar-
rhythmia database is all raw data. (erefore, this paper
preprocesses the ECG signal to make the signal clearer and
provide a more accurate ECG signal for later experiments.
Heartbeat denoising, R-wave detection, and heartbeat seg-
mentation are all part of the ECG signal preprocessing. (e
method of ECG signal preprocessing is depicted in Figure 1.

3.2.1. ECG Signal Denoising. (e EGG signal has the
characteristics of weak, low amplitude, low frequency,
randomness, etc., and is easily disturbed by noise. However,
the noise may come from the living body, such as breathing,
muscle tremors, or external interference due to poor contact.
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Power frequency interference, electromyography interfer-
ence, and baseline drift are the three primary disturbances in
ECG signals.

(e Discrete Wavelet Transform (DWT) is a new
method for analyzing the transforms. It can be used to
evaluate the signal’s position in time, space, and frequency,
as well as refine it over time by utilizing expansion and
translation processes. Finally, the subdivision of high-fre-
quency time and low-frequency time is realized, allowing
time-frequency signal analysis to automatically adjust to the
needs of the user. because the ECG signal and the noise are
combined. To begin, a wavelet base function is chosen to
deconstruct the noisy ECG signal, and after decomposition,
the wavelet coefficients on the scale are acquired.(e wavelet
coefficient with a relatively big amplitude is a useful signal
after the wavelet transform scale decomposes the ECG
signal, while wavelet coefficients with modest amplitudes are
noise. Process using threshold processing or use the
threshold function to process wavelet coefficients less than
the threshold. After the wavelet scale decomposition, the
low-frequency coefficients and high-frequency coefficients
are processed to recreate the ECG signal. Figure 1 is a
flowchart of wavelet denoising. DWT is used to divide the
ECG signal into high- and low-frequency sub-bands, as well
as multi-level sub-bands. To produce a first-order detail
coefficient, pass the ECG signal through a detail (high-
frequency) filter g(n) and a down-sampler with a coefficient
of 2. (e coefficients of the approximation (low-frequency)
and detail filters are interrelated and together they are called
quadrature mirror filters. From the approximation

coefficients h(n), the g(n) detail filter coefficients are cal-
culated as follows, as shown in formula (1), formula (2), and
formula (3). Because the scale function of the 6-wavelet is
similar to that of the ECG signal, this paper uses db6 as the
wavelet base function to perform a 5-scale wavelet transform
on ECG data.

G(L − 1 − n) � (−1)
n
h(n), (1)

where L is the length of the filter’s coefficients. (e following
is a representation of subsampling and DWTdecomposition:

Ylow[n] � 
∞

k�−∞
x[k]h[2n − k], (2)

Yhigh[n] � 
∞

k�−∞
x[k]h[2n − k]. (3)

Because the sample rate of the MIT-BIH ECG signal is
360Hz, the maximum frequency of the original ECG signal
is below 180Hz, according to the Nyquist sampling theorem.
As a result, the maximum frequency of the D1 layer for
signal decomposition is 180Hz. After decomposing the
original signal, we can deduce that the energy of the detail
components in layers 1-2 corresponds to the original signal’s
high-frequency interference. It shows that the 1-2 layers are
the main places where high-frequency noise is concentrated.
(erefore, we need to filter out the detail components of the
D1 and D2 layers and achieve the purpose of removal by
setting them to 0.(en, the 3∼5 layers of wavelet coefficients

Table 1: AAMI standard classification.

Category Annotations Name Fragment number

Normal (N)

Normal beat NOR-N

90589
Left bundle block beat LBBB-L
Right bundle block beat RBBB-R

Nodal (junctional)escape beat NE-j
Atrial escape beats AE-e

Supraventricular (S)

Atrial premature beat AP-A

2779Aberrated atrial premature beat aAP-a
Nodal(junctional) premature beat NP-J
Supraventricular premature beat SP-S

Ventricular (V) Premature ventricular contraction PVC-V 7236Ventricular escape beat VE-E
Fusion (F) Fusion of ventricular and normal beat Fvn-F 803

Unknown (Q)
Paced beat P-/

8039Fusion of paced and normal beat Fpn-f
Unclassified beat U-Q

ECG signal denoising R peak detection Heartbeat separationECG original signal

Figure 1: Flow chart of ECG signal preprocessing.
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obtained by decomposing the signal are used to process the
threshold value of the signal through the soft threshold
formula. (e pywt threshold () function provides threshold
filtering, and the default is soft threshold filtering with
mode� “soft”. To obtain the denoised signal, the wavelet
coefficients are finally inversely converted. (erefore, this
paper takes the db6 wavelet as the mother wavelet. Figure 2
shows the process of decomposing an ECG signal using
discrete wavelets. In Figure 2, x (n) is a discrete input signal,
g(n) is a low-pass filter used to filter high-frequency in-
formation in the ECG signal and output low-frequency
information, and h(n) is a high-pass filter used to filter high-
frequency information in the ECG signal and output low-
frequency information. It is used to output high-frequency
signals while filtering low-frequency ones. (e signal sam-
pling rate used in this paper is 360HZ, and the db6 wavelet
function is used as the mother wavelet to decompose the
ECG signal into five layers. (e ECG signal is then recreated
using the inverse wavelet transform.

3.2.2. R Peak Detection and Beat Separation. Clinically, the
heartbeat signal collected by the ECG acquisition equipment
is usually several tens of seconds or longer, and a continuous
signal recording usually contains many heartbeats. For some
cardiac diseases, the occurrence of abnormalities may not be
continuous, but in some of these heartbeats, not every
heartbeat will show abnormalities. (erefore, the analysis of
arrhythmias should be performed on individual heartbeats,
rather than analyzing the entire heartbeat signal recording
data. After the heartbeat signal has been denoised, the next
step is to locate and slice the heartbeats of a continuous
segment of the signal and analyze its rhythm class. (e R-
peak is the most easily identifiable waveform in a heartbeat,
with the most distinctive features such as amplitude and
morphology. It is feasible to utilize the position of the R-peak
as a reference to discover additional distinctive points by
acquiring information on its location. Figure 3 depicts the
QRS waveform. After processing the denoised ECG signal,

the feature information of the QRS waveform group was
retrieved using the Pan–Tompkins technique. A total of 150
points samples are intercepted for one heartbeat by finding
the R-peak location and intercepting 50 points forward and
100 points backward from the R-peak position. A huge
heartbeat cycle is included in the size.

3.3. ECG Data Enhancement. Goodfellow et al. [21] intro-
duced a generative adversarial network framework in 2014,
which uses adversarial neural processes to estimate generative
models. (e generative adversarial network is a sort of un-
supervised learning with two components: generator G and
discriminator D. (e generator and discriminator engage in a
continuous game throughout the training phase. (e dis-
criminator D’s purpose is to correctly discriminate the input
into the discriminator, whereas the generator G’s goal is to
generate a new image that is comparable to the real image,
whether or if the image is genuine. In the optimal state, the
generator G may generate pictures that the discriminator D

Level 1
Coefficient

Leve 2
Coefficient

Level 3
Coefficient

Level 4
Coefficient

Level 5
Coefficient

h (n)

h (n)

h (n)

h (n)

h (n) g (n)

g (n)

g (n)

g (n)

g (n)

x (n)

Figure 2: Discrete wavelet decomposition of ECG signal.

QRS
Complex

R

P

Q

S

T

Figure 3: (e QRS waveform.
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cannot identify between real and false as the number of
training rounds increases. (e generative adversarial net-
work’s loss function is represented in formula (4).

min
G

max
D

V(D, G) � Ex∼Pdata(x)
[logD(x)]

+ Ex∼Pz(z)[log(1 − D(G z( )))].
(4)

(is formula consists of two terms, the true image is
represented by x, the noise input to the generator G is
represented by z, and the image generated by the generatorG
is represented by G(z). As a result, the loss function’s op-
timization goal is to reduce the loss of the generator G while
maximizing the loss of the discriminator D.

An input layer, four deconvolution layers, and an output
layer make up the ECG-GAN generative model employed in
this paper. Different from the two-dimensional and three-
dimensional data in the model that generates pictures, the
ECG signal is one-dimensional data, so the deconvolution
layer in the generated model in this paper is one-dimen-
sional, and the specific deconvolution structure is generated
as shown in Figure 4. In each deconvolution operation, the
features of the previous step will be enlarged by the cor-
responding multiples in the upsampling step. For example,
when the upsampling parameter UpSampling 1D is set to 5,
the feature map will be enlarged by 5 times accordingly,
which can be combined into a new feature. (e aim of this
process is to extract more information and increase the
quality of the heartbeats that are created. Except for the final
output layer, the activation function of the generative model
in ECG-GAN adopts the ReLu function. At the beginning of
training the generative model, a random vector with a size of
100 dimensions that obeys the normal distribution is input
into the generative model, and in the process of deconvo-
lution, the 100-dimensional noise random vector is reshaped
into 1∗ 128-dimensional features, the convolution kernel in
each layer’s deconvolution layer is 6 pixels wide, and “same
padding” is used. (e number of channels is lowered to half
of the previous layer by layer after the deconvolution op-
eration, but because each step is conducted upsampling, the
size of the feature map grows proportionately. (e synthetic
heartbeat data is eventually generated in the last layer, which
outputs a feature map with a channel number of 1.

An input layer and four output layers comprise the ECG-
GAN discriminative model. (e ECG-GAN discriminative
network is shown in Figure 5, with the exception that the
Sigmoid function is used to activate the output layer, while
the other layers use the LeakyReLU function. After inputting
the real heartbeat data and the generated heartbeat data into
the discriminant model, through the convolution layer in the
model, to determine if the input is true or false, the clas-
sification function returns a probability value of 0∼1. (e
model’s learning rate is 0.1, and there are 1000 iterations. To
make the model optimal, this paper uses Adam to adjust the
model parameters. In addition, to prevent the discrimina-
tor’s discriminative ability from being too strong, the gen-
erator cannot reach a balance with it, the random
deactivation technique is used in the generative model, and
the random deactivation coefficient is set to 0.4.

3.4. ECG Classification Model. Convolutional neural net-
works have excelled in many areas, particularly image
identification [22, 23]. Convolutional neural networks [24, 25]
are a sort of feedforward neural network with four layers: an
input layer, a convolutional layer, a pooling layer, and a fully
connected layer, and the network has features such as weight
sharing and local connectivity. (e network takes the pre-
processed ECG data and automatically extracts the features of
the ECG signal, and the process of ECG signal feature ex-
traction is performed by sliding multiple convolutional
windows over the ECG image and performing convolutional
operations on the local ECG features, where the network
needs to compute additional ECG feature mappings in order
to be able to detect multiple local features. (erefore, a
complete convolutional layer consists of several feature
mappings, which can extract more ECG features and finally
complete the ECG feature extraction. Figure 6 depicts the
convolutional neural network’s structure. Since the gradient
explosion problem and the network degradation problem are
impossible to avoid as the model structure becomes complex
and cumbersome, the introduction of residual blocks in the
deep network structure can effectively solve the gradient
disappearance and gradient explosion problems, which in
turn can make the model have better performance. Figure 7
shows the structure of the residual block.

Input 100 random
samples

project and
reshape

Noise x (0, 1)

1024
512 16

256
128

32

4

1 1 1 1

8

Deconv 1 Deconv 2 Deconv 3 Deconv 4

Figure 4: ECG-GAN generation model.
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(e LSTM is a variety of recurrent neural networks that
uses specific gate computation to learn long-term associa-
tions to solve the problem of unstable gradients in the re-
current neural networks. A set of recurrently connected
memory units makes up the LSTM architecture. Although
the LSTM network has the same topology as a traditional
recurrent neural network, the hidden layer neurons are
replaced with recurrently connected memory cells. Figure 8
depicts the LSTMmemory cells and BiLSTM structure. Each
LSTM memory cell contains one or more self-connected

memory cells and three multiplication cells, i.e., forget gate
fn, input gate in, and output gate on, giving the cells con-
tinuous write, read, and reset operations. (e forgetting gate
determines the information discarded and retained from the
cell state, and its purpose is to provide a way for the memory
cell to reset itself, which is essential for tasks that require the
network to forget previous inputs; the input gate selectively
adds fresh information to the cell state and updates it, while
the output gate ensures that the current neuron’s output is
passed on to the next neuron.

Below are the LSTM memory unit’s cell and output
states, as well as the calculation formula (5)–(10) for each
gate :

fn � φ bf + μT
fxn + ωT

fhn−1 , (5)

in � φ bi + μT
i xn + ωT

i hn−1 , (6)

cn � fncn−1 + incn, (7)

cn � tanh bc + u
T
c xn + w

T
c hn−1 , (8)

hn � ontanh cn( , (9)

on � φ bo + w
T
o xn + u

T
o hn−1 . (10)

(e forgetting gate fn and the input gate in control the
LSTM memory unit; each time unit of the sequence may
then delete or add information to the memory block. (e

True

False

Sigmoid

512
256

128

64

120

Conv1 Conv2 Conv3 Conv4

153060

1111

Figure 5: ECG-GAN discriminant model.

ECG signal Feature extraction process

Convolution
process pooling

process

Output

Figure 6: Convolutional neural network structure diagram.

Weight layer

Weight layer

X

F (x) ReLu

ReLu

X
identity

F (X)=H (x) + x

Figure 7: Residual block structure diagram.
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input sequence at instant n is represented by the equation xn.
(e output vector of the LSTM at the preceding instant is
hn−1. (e input and loop weight vectors of the output and
forgetting gates, respectively, are ui, wi, uf and wi , and the
bias term is b. (e input and cyclic weight vectors of the
output gate are represented by the parameters uo and Wo.
(e standard LSTM model has the disadvantage of being
unable to correctly collect future information and can only
handle positive input.(e positive and negative LSTM layers
in the input data may completely consider the global in-
formation of the hidden layers in a bidirectional long and
short-term memory network (BiLSTM), which consists of
one input layer, two hidden layers, and one output layer.
Since this paper studies ECG signals, which are temporal, the
BiLSTM is more suitable for global feature extraction.

(e attention mechanism achieves classification accu-
racy by mimicking the human brain attention mechanism
in the form of capturing more critical features on input
information features. (e attention mechanism has dem-
onstrated strong performance in voice and natural language
processing, as well as benefits in temporal information
processing [27, 28]. Amapping from aQuery to a set of Key-
Values may be characterized as the Attention mechanism.
(ere are three steps in the calculation of attention in this
mechanism; the first one is to obtain the relevant weights by
the similarity calculation between Query and Key. (e
similarity calculation formulas (11)–(13) are multiplication,
cascade, and perception, respectively. (e SoftMax function
then performs the normalizing step. To produce the final
attention vector output, the weights and the matching Key
are weighted and summed, where Wa, Ua, va are the
learning parameters, Q is the query, and Ki refers to the key
value.

f Q, Ki(  � Q
T
WaKi, (11)

f Q, Ki(  � Wa Q: Ki , (12)

f Q, Ki(  � v
T
a tanh WaQ + UaKi( . (13)

In summary, an automatic classification model of ar-
rhythmias based on the attention mechanism is designed in
this paper using ResNet-BiLSTM. Figure 9 depicts the
graphical representation of the model. (ree parts constitute
the main part of the model: local feature extraction, global
feature extraction, and feature reinforcement. ResNet is used
to implement the local feature extraction part. (e mor-
phological elements of the original ECG signal can be
successfully extracted using the convolutional operations in
the convolutional neural network. When a deep neural
network reaches saturation, adding more layers or neurons
can lead to network degradation and poor model perfor-
mance. Using residual blocks in a deep network can help
solve the problem of gradient disappearance and explosion,
resulting in better performance when training networks with
more layers. To compress long sequences of ECG signals into
shorter sequences of local feature vectors by learning local
features, the model uses a stacked residual convolution
module. (e ECG signal is input to the present-day initial
layers, and the output ECG signal features are processed
sequentially by seven residual blocks, which contain 14
convolution layers and 7 MaxPool layers. Each residual
block combines the output of the fast join with the output of
the second convolutional layer and contains two Batch
Norm, the ReLu layer, and Dropout layers. When the feature
map goes across a max pooling layer with a pool size of 2, its
length is cut in half. Following the local feature extraction
phase, the final subsampling of the original input is carried
out 28 times, and the output length is 1/256 of the input
length. (en, the position information of the nearest
neighbors is effectively fused using the BiLSTM model, and
the retrieved local feature vectors are input to the BiLSTM
one by one for global feature extraction. To extract global
features, the original signal is fed into a BiLSTM algorithm,
where each LSTM unit in the forward and backward layers
has a number limit of 128. Global features from BiLSTM and
local features from ResNet are used to become fused hybrid
features, and multi-space autonomous learning is performed
through an attention mechanism to obtain correlations
between global and reinforcement features. Finally, the
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arrhythmias of N, S, V, F, and Q types are classified by the
SoftMax layer. Meanwhile, the ResNet-BiLSTM model
without adding the attention mechanism is used as a
comparison experiment in this paper, so as to highlight the
influence of the attention mechanism on the classification
effect.

3.5. Evaluation Method. (is paper uses three assessment
measures to assess the model’s classification performance:
accuracy, recall, and specificity. (e calculation method and
significance of each index are shown in formulas (14)–(16) as
follows.

Accuracy: refers to the proportion of accurately cate-
gorized true positive and true negative samples among all
samples.

Acc �
(TP + TN)

TP + TN + FP + FN
. (14)

Sensitive: refers to the percentage of all positive samples
that are positive.

Sen �
TP

TP + FN
. (15)

Specificity: refers to the proportion of correctly predicted
abnormal heartbeats to all data that are abnormal.

Spe �
TP

TP + FP
. (16)

(e number of valid classifications in the formula above
is called true positives (TP). True negatives (TN) reflect the
number of misclassifications, whereas false negatives (FP)
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Figure 11: Results of QRS complex detection and heartbeat segmentation.
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and false positives (FN) measure the number of
misclassifications.

4. Results

4.1. Experiment Platform. (e experiments in this paper use
the Python 3.8 programming language and the Pytorch deep
learning framework. (e operating system is 64 bit Linux,
the CPU is Intel (R) Xeon (lice Lake) Platinum 8369R @
2.90GHz, the GPU is NVIDIA A10, and the video RAM is
24GB.

4.2. ECG Signal Preprocessing. (e ECG signal 101 from the
MIT-BIH dataset is shown in Figure 10 as an example of
denoising. (e first graph shows the original ECG signal,
whereas the second graph shows the denoised ECG signal.
(e denoised ECG signal’s waveform smooths down and its
quality is noticeably improved, which raises the precision of
waveform recognition.

After the raw signal is preprocessed and the signal is
denoised, the heartbeat segmentation is needed to obtain a
single heartbeat signal before further analysis of the ECG
signal. (e most important part of heartbeat segmentation is
to detect and identify the characteristic points, including the
peak, start point, and end point of characteristic points. QRS
is the wave with the highest amplitude and energy in the
heartbeat cycle, so the most important part of heartbeat
segmentation is the detection of the QRS wave. After lo-
cating the QRS wave, the R-wave peak is used as the ref-
erence point, and based on the distance to the QRS wave, the
interval location of other wave peaks can be determined. To
facilitate subsequent data processing and feature extraction,
heartbeat segmentation we use a total of 150 data as a
complete heartbeat based on the location of QRS wave peaks,
taking the R-peak as the reference point, intercepting 50
sample points forward and 100 sample points backward,
containing QRS peak points. (e results of QRS complex
detection and heartbeat segmentation are shown in Fig-
ure 11. For the purpose of this paper, we employ the MIT-

BIH arrhythmia dataset, which has a 360Hz sampling rate, a
normal heart rate of 60 to 120 beats per minute, and a pulse
duration of 0.5 to 1 seconds.

4.3. Data Enhancement and Classification. Because the pa-
tients had pacemakers, four records from the MIT-BIH
arrhythmia database were excluded from this paper. (e
ECG-GAN approach is used to supplement the remaining 44
pieces of data. After 10,000 training cycles with the ECG-
GAN model, Figure 12 illustrates a comparison of raw and
produced heartbeats. (e synthesized ECG data has the
same QRS waveform as the original, as shown in the figure,
which can reconstruct the original ECG more realistically,
thus augmenting the scarce ECG data. Table 2 displays the
differences between the original database and the expanded
database. (e Q-type heartbeat data is expanded to 20399,
the S-type heartbeat data is expanded to 20236, the V-type
heartbeat data is expanded to 20179, and the F-type
heartbeat data is expanded to 20339.

(is paper uses ECG-GAN to generate scarce ECG data to
expand the database. Under the condition of the same data,
this paper sets up ResNet-BiLSTM and ResNet-BiLSTM-
Attention hybrid models for comparative experiments. Ta-
bles 3 and 4, respectively, show the Acc, Spe, and Sen of the
two models for five types of heartbeat types. As shown in the
comparison, the ResNet-LSTM-Attention hybrid model
outperforms the ResNet-BiLSTM hybrid model in terms of
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Figure 12: Comparison of original ECG and generated ECG.

Table 2: Summary of the 5 types of Heartbeats.

Heartbeat type Number of raw ECG Expanded number
of heartbeats

N 90589 90589
Q 8039 20399
V 7236 20236
S 2779 20179
F 803 20339
Total 109446 171742
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overall performance. In particular, the recognition of type V
and type F is significantly improved. Figure 13 shows the
accuracy rate and loss rate change curves for the full ResNet-
BiLSTM model process, whereas Figure 14 shows the

accuracy rate and loss rate change curves for the entire
ResNet-BiLSTM-Attention model process. Figures 13 and 14
demonstrate this, when the training times of the ResNet-
BiLSTM model are 100, the overall accuracy curve is still in

Table 3: Experiment results of ResNet-BiLSTM classification.

Classification Evaluation parameters
Heartbeat type

N S V F Q

ResNet-BiLSTM
Accuracy/% 99.14 99.25 97.32 97.7 99.09

Spe/% 99.93 93.54 98.12 98.1 99.46
Sen/% 99.13 99.14 98.51 98.51 99.83

Table 4: Experiment results of ResNet-BiLSTM-Attention classification.

Classification Evaluation parameters
Heartbeat type

N S V F Q

ResNet-BiLSTM- attention
Accuracy/% 99.96 99.55 99.06 99.21 99.32

Spe/% 99.97 99.09 98.16 98.87 99.42
Sen/% 99.31 100 98.25 99.42 99.67
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Figure 13: Graph depicting the ResNet-BiLSTM model accuracy and loss rates.
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the rising stage, the loss rate curve is in the falling stage, and
then gradually stabilizes; the training times of the ResNet-
BiLSTM-Attention model are at 100, the overall curve of the
accuracy rate and loss rate has stabilized, and it can be seen
that the fitting speed of the ResNet-BiLSTM-Attention model
is faster. (e ResNet-BiLSTM-Attention model’s ROC curve
is shown in Figure 15, and it can be observed that the ROC
area is almost close to 1, demonstrating the model’s excellent
stability and suitability for use in the creation of an automatic
classification model for cardiac arrhythmias. In Figure 15,
class 0 represents Heartbeat Type N, class 1 represents
Heartbeat Type S, class 2 represents Heartbeat Type V, class 3
represents Heartbeat Type F, and class 4 represents Heartbeat
Type Q.

5. Discussion

Due to the inherent disadvantages of ECG signals such as
low frequency and susceptibility to interference, it is an
extremely complex and tedious task to adopt efficient and
accurate extraction of ECG features. Machine learning in the
traditional sense requires the design of feature extractors to
manually extract features, but due to the very limited
nonlinear fitting ability of some machine learning methods,
it is not always possible to extract high-level and highly
differentiated ECG features very accurately. Meanwhile, the
existing public ECG database has the problem of data im-
balance, and some ECG data have the problem of scarcity,

which will cause the omission of important ECG infor-
mation when performing denoising and feature extraction,
plus the different classification effects of various classifiers,
thus leading to the final classification results are not good
enough.

In this paper, we design an ECG-GAN network to extend
the sparse data in an ECG database and a ResNet-BiLSTM-
Attention classification model to type ECG data into five
categories using AAMI criteria. (e experimental findings
reveal that all five heartbeat types have increased in accuracy
and the overall results have been enhanced. ECG-GAN
model data augmentation is compared with the traditional
algorithm, which enlarges the ECG and inserts new elements
between the original pixels on the ECG. Although this
method creates thumbnails of ECG images, it results in
missing ECG data. Often these missing data may be the data
we need, which in turn leads to overlearning of the classifier.
(e ECG-GAN model designed in this paper does not need
to design complex feature engineering for the generated
model, but simply must create the neural network structure
to detect the true characteristics of the real ECG signal which
helps to generate data closer to that in terms of waveform
and other feature data, and we can generate ECG features
without spending much time to find the right parameters.
(e final classification model performs feature enhancement
for arrhythmia-type signal segments by introducing an at-
tention mechanism based on ResNet-BiLSTM. (is mech-
anism can effectively focus on the extraction of focused
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information and form feature vectors for final classification.
According to the outcomes of the trials, the model increases
the accuracy of automated arrhythmia classification.

(is paper summarizes the classification results of some
previous work on arrhythmias, as shown in Table 5. Sahoo
et al. [52] introduced a QRS complex feature identification
technique that used the multiresolution wavelet transform
(MWT) and integrated it with SVM as a classifier, achieving a
98.39% accuracy. Elhaj et al. [50] employed a combination of
SVM and RBF to accurately categorize five types of ar-
rhythmias: N, S, V, F, and Li et al. [48] designed a meth-
odology for classifying ECG signals based on WPE and RF
that has a 94.61% accuracy. All of the approaches listed above
are machine learning methods that involve manual feature
extraction, which is a time-consuming and complicated
operation, and then use a classifier alone to complete the
classification process. Acharya et al. [34] introduced a CNN-
based technique that removes the need for human heartbeat
signal feature extraction, simplifying the process and yielding
a 94.03% accuracy. Tan et al. [49] employed CAD synthetic
ECG to increase the database and categorize it with a 95.8%
classification accuracy using the CNN-LSTM model. In
summary, to compensate for the lack of data samples, an
ECG-GAN model was established, and a ResNet-BiLSTM-
Attention model was developed in this study to overcome the
issue of data imbalance in the arrhythmia database. (e
model’s accuracy was tested using the enhanced dataset, and
the results showed a classification accuracy of 99.4%. (e
results of the literature review are summarized in the table
below. In this paper, we found that type V arrhythmias in-
clude atrial premature heartbeats and junctional escape. It is
easy to be misclassified into other categories and therefore has
the lowest accuracy. In the next research work, more effective
feature information is extracted to distinguish V-type ar-
rhythmias and improve their classification accuracy. (e
heartbeat data generated by the ECG-GAN model suggested
in this paper has the same form as the original data; however,
the smoothness needs to be enhanced. (is is related to the
ECG-GAN model’s instability. As a result, in the following
study, we will look into how to make the training process of
generative adversarial networks more stable.

6. Conclusions

(e ECG-GAN data augmentation model and the ResNet-
BiLSTM-Attention classification model are proposed in this
paper. We present the ECG-GAN data improvement model

for the problem of data imbalance in MIT-BIH arrhythmia
data, which can efficiently tackle the problem of data im-
balance. Meanwhile, for the existence of periodicity of ECG
signals, we proposed ResNet-based spatial information fusion
and BiLSTM-based temporal information fusion models. (e
model effectively fuses the location information of the nearest
neighbors through the ECG feature map generated by the
local feature extraction part and obtains the correlation of the
global features through the BiLSTM network in the global
feature extraction part, and through the multi-space auton-
omous learning. (e model also introduces an attention
mechanism for feature enhancement of arrhythmia-type
signal segments. (is mechanism can effectively focus on the
extraction of focused information and form feature vectors
for final classification. Finally, the accuracy of the classifi-
cation model is tested using the MIT-BIH arrhythmia da-
tabase, which has a 99.4% accuracy rate. (e results of the
experiments show that our proposed strategy surpasses other
models in terms of overall performance, proving its superi-
ority. (e algorithm can accurately identify the type of ar-
rhythmia with a high accuracy rate. (ese experimental
outcomes demonstrate that the proposed technique outper-
forms the most recent methods, which proposes that our
system for classifying arrhythmias has considerable thera-
peutic potential. Additionally, additional situations, such as
the detection and classification of atrial fibrillation, can be
handled using the proposed way in our system for classifying
arrhythmias. In this paper, generative experiments on real
data with other sampling frequencies were not conducted in
this paper due to time constraints. (erefore, the effect of the
sampling frequency of ECG data on the authenticity of ECG
data generated by generative adversarial networks becomes
the focus of the next work. Meanwhile, we only utilized the
MIT-BIH arrhythmia database, but we hope to extend the
developed model to other arrhythmia databases in the future
to improve its performance.
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Table 5: A comparison of our method to other methods.

Authors Method
Performance

Acc (%) Sen Spe
Acharya et al. [34] Generation of synthetic data + 9-layer deep CNN 94.0 96.7% 91.5%
Li et al.[48] WPE+RR+RF classifier 94.6 — —
Tan et al. [49] CAD generation of synthetic data +CNN-LSTM 95.8 87.9% 87.9%
Elhaj et al. [50] SVM-RBF+NN 97.0 97.1% 96.9%
Jangra et al. [51] DWT+SVM+CNN 97.8 — —
Sahoo et al. [52] MWT+SVM 98.4 96.7% 98.9%
Our method ECG-GAN+Resnet-BiLSTM-attention 99.4 98.4% 99.3%
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