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Abstract
Current methods for distinguishing acute coronary syndromes such as heart attack from

stable coronary artery disease, based on the kinetics of thrombin formation, have been lim-

ited to evaluating sensitivity of well-established chemical species (e.g., thrombin) using sim-

ple quantifiers of their concentration profiles (e.g., maximum level of thrombin

concentration, area under the thrombin concentration versus time curve). In order to get an

improved classifier, we use a 34-protein factor clotting cascade model and convert the simu-

lation data into a high-dimensional representation (about 19000 features) using a piecewise

cubic polynomial fit. Then, we systematically find plausible assays to effectively gauge

changes in acute coronary syndrome/coronary artery disease populations by introducing a

statistical learning technique called Random Forests. We find that differences associated

with acute coronary syndromes emerge in combinations of a handful of features. For

instance, concentrations of 3 chemical species, namely, active alpha-thrombin, tissue fac-

tor-factor VIIa-factor Xa ternary complex, and intrinsic tenase complex with factor X, at spe-

cific time windows, could be used to classify acute coronary syndromes to an accuracy of

about 87.2%. Such a combination could be used to efficiently assay the coagulation

system.

Introduction
In the United States, heart diseases were the leading account for death in the twentieth century
and continue to be so in the twenty-first century [1]. Identifying patients at risk of acute coro-
nary syndromes (ACS) and predicting probable courses of disease could help provide timely
medical intervention; understanding the physiology of the diseases in patient-specific terms
could also help design better drugs and monitor treatment more effectively. Current efforts
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towards patient-specific characterization include differentiating systemic changes to blood
coagulation in ACS from coronary artery disease (CAD) populations [2]. Blood is observed in
a hyper-coagulable state after ACS [3]. The nature or extent of the hyper-coagulability, as well
as its relation to and its presence before the acute condition are not well understood. This
could be attributed to at least two reasons: i) lack of assays to efficiently and effectively deter-
mine the status of blood chemistry [4]; and ii) lack of adequate statistical and mathematical
tools to understand blood coagulation system involving large numbers of variables.

In the last two decades, sustained interest has been shown in empirical and computational
thrombin generation assays [5] to study the coagulation system under abnormal conditions.
Brummel-Ziedens et al. [6] studied alterations in thrombin dynamics between ACS and CAD.
Features of thrombin profile like maximum value, area under the curve, and maximum rate
were higher in ACS than CAD, suggesting hyper-coagulability. Recently there have been
attempts to study changes in factor Xa (fXa), in another hyper-coagulable condition—deep
vein thrombosis, using computational models [7]. Features similar to those used for thrombin
were used to describe fXa. We have good prior knowledge about thrombin and fXa, which are
both active chemical species that play significant roles in clotting. Naturally, the following
questions arise:

1. Do the dynamics of any other chemical species change significantly?

2. Are there better features to characterize changes in the system?

3. Can we efficiently assay the entire system without losing much information pertaining to
classification?

We seek answers to these questions using simulations. We study blood coagulation using a
model for the Tissue factor(Tf)-initiated extrinsic pathway developed by Hockin et al. [8]. The
model uses a system of ordinary nonlinear differential equations to describe dynamics of
thrombin evolution. The model has copious empirical validation and has been previously used
for risk analyses between ACS/CAD [6]. The number of chemical species involved is large (34
in this case), and their responses are varied, typically requiring large numbers of features to
represent the time profiles.

We use a non-parametric statistical learning algorithm—Random Forests [9] to classify
ACS and CAD populations. Random Forests can be used to capture highly nonlinear class
boundaries, and is robust to outliers in data and to lots of noisy features. Random Forests tech-
nique allows us to filter significant species and find their critical aspects. Moreover, unlike the
current use of isolated features for group comparisons prevalent in thrombin generation litera-
ture [5], use of Random Forests here exploits the role that interactions of features play in order
to classify data into various groups.

Our objective is to find a small combination of features (localized regions in the state space
of the model, and labelled in time) which discriminate ACS and CAD well.

Methods

Clotting Simulations for 3600 Seconds, Initiated with 5 pM Tf
We carried out the simulations using the Tf-initiated clotting model [8]. In the simulations,
clotting was initiated with 5 pM trigger Tf. To get the initial condition data for the clotting
model, we used reported mean and standard deviation data of the procoagulant and anticoagu-
lant factor percentages in ACS and CAD populations [6]. We sampled 200 sets of these positive
nonzero percentage values for each group (ACS and CAD) from lognormal distributions (data
provided in S1 Dataset). These percentage values were scaled using the physiological mean
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values [8] (1.4E-06 M for factor II, 2.0E-08 M for factor V, 1.0E-08 M for factor VII, 7.0E-10 M
for factor VIII, 9.0E-08 M for factor IX, 1.6E-07 M for factor X, 2.5E-09 M for tissue factor
pathway inhibitor, and 3.4E-06 M for antithrombin). Solution profiles for all chemical species
were obtained for 3600 seconds using MATLAB’s (MATLAB 8.5.0, The MathWorks, Inc.,
Natick, Massachusetts, United States) ‘ode15s’ stiff solver.

Piecewise Polynomial Representation of Simulation Profiles
We normalized the simulation profiles by their respective physiological mean peak values and
fit them with piecewise cubic hermite interpolating polynomials (PCHIP) [10] using
MATLAB’s ‘pchip’ function. Data in each profile was divided into pieces (time intervals), and a
cubic polynomial was fit in each piece while ensuring smoothness across pieces. PCHIP tech-
nique ensured the resulting interpolation changed monotonically in each interval, thereby
avoiding spurious oscillations inherent in a regular spline interpolation. We used 139 pieces—
each of length approximately 26 seconds. This captured fast changes, such as the time it takes
for Tf-fVIIa to reach its first peak since addition of the trigger, reasonably well. PCHIP repre-
sentation serves two purposes: i) it efficiently stores large amounts of simulation data; and ii)
since the polynomials represent data well, the coefficients of the polynomials could act as fea-
tures for classification.

Feature Extraction from Simulation Profiles
The central idea of the scheme is to consider the data points (simulation profiles) as a “noisy-
image” in a very high-dimensional space from which we try to extract features with semantic
attributes like “concentration is high”, “concentration profile is sharply curved”, etc. This was
implemented by extracting different kinds of features and using them in the classification
study to characterize the system. In order to capture the dynamics of each species at different
times during the simulation, we use the PCHIP coefficients as features. Since there is a lack of
classification study to compare this work with, we used classification results of the plasma fac-
tor composition (initial conditions data used for the simulation), and the features that are con-
ventionally studied to compare with the performance of PCHIP features considered here.
Moreover, we study a fourth set of features which have the possibility of direct experimental
observation.

The list of features we extracted and used for classification include the following four sets:

1. PCHIP features to characterize dynamics—this set includes 18904 PCHIP coefficients
obtained during data representation. This set uses two datasets [6, 8] as described at the
beginning of the section Methods. For a given species, there are 4 coefficients in each time
interval. The coefficients are such that the fit polynomial in an interval starting at ti has the
form Ci3(t − ti)

3 + Ci2(t − ti)
2 + Ci1(t − ti) + Ci0. These coefficients have information pertain-

ing to function values and derivatives up to 3 orders at time ti. Information in second and
third derivatives is expected to be weak as PCHIP enforces monotonicity. Variables corre-
sponding to the two forms of thrombin, IIa (alpha-thrombin) and mIIa (meizothrombin),
were interpolated separately.

2. Plasma factor composition—this set consists of 8 non-zero initial condition percentage
values of procoagulant and anticoagulant factors used for model simulations [6] (S1
Dataset).

3. Conventional features—this set consists of 11 features used to characterize active thrombin
[6] and fXa profiles [7]. This includes time to reach 2 nM (for active thrombin), area under
the curve for active thrombin and fXa, maximum level reached by active thrombin and fXa,
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maximum rate in active thrombin and fXa profiles, time to reach those maximum levels for
active thrombin and fXa, and time to reach maximum rates for active thrombin and fXa.
Data from two datasets [6, 8] are used in this set.

4. Moving averages of concentration values—this set consists of 200-second moving average
(200s-MA) features extracted at uniform time intervals. For each chemical species, we

extracted these 18 time-averaged function values of simulation profiles (1=200
R tþ200
t xðtÞdt,

where x(t) is concentration of a given species) at every 200 seconds starting at 100 seconds.
612 such features were extracted from all species (18 each for 34 species). This set makes use
of two datasets [6, 8]. These features localize significance of each species in a time frame of
about 3 minutes. Moreover, averaging over time gives a more robust feature with respect to
time lags and noise imposed by model and model parameters.

These features are used as inputs in the Random Forests classification algorithm, which out-
puts group identity (ACS/CAD).

ACS/CAD Classification using Random Forests
The core objective of any classification method is to label a collection of data/measurements
using certain features [11]. Here we use Random Forests [9] which is formed by aggregating an
ensemble of decision trees [12].

Decision Tree. A decision tree [12–14] divides the feature space into a number of non-
overlapping regions. The regions have an equivalent tree representation in which each node is
a decision rule regarding class identity. Such trees are nonparameteric and assume no particu-
lar form of the data. The task of the tree algorithm is to frame decision rules that suit the data.
Such decision rules are invariant to all monotone transformations in the data [12]. Once a tree
is formed, data points with unknown classes are assigned a class based on these decision rules.
Decision trees have been used in the study of thrombin generation systems [15].

However, a simple tree structure is sensitive to perturbations in the data [16] which could
propagate down the tree and lead to very different class labels. The random forest technique [9,
17], which uses an ensemble of trees and aggregates the results, offers a solution to this problem.

Random Forests. In Random Forests, the learning process of each tree involves two types
of random subset selection. First, each tree in the ensemble is built with a random subset of the
training data. The other subset which is kept ‘out’ is called as the out-of-bag (OOB) samples.
These OOB samples are used for finding internal estimates such as error rates. Second, each
decision rule in a tree is made only using a random subset of all features. This avoids the classi-
fication results being unduly biased by a few sensitive features most of the time. Such classifica-
tion results aggregated from many trees can capture complex and highly nonlinear class
boundaries. It is well known [18] that the method avoids overfitting of the training data, a fea-
ture which is vital when there is limited or scarce data.

Random Forests methods are known to perform well in a variety of fields such as in gene
selection in microarray data [19], and in functional studies of chemical compounds [20]. In
empirical studies, Random Forests compares well with other classification algorithms [21, 22],
and performs consistently well in high-dimensions [23]. Use of Random Forests in clinical
studies include study of blood proteins in Alzeimer’s disease [24, 25].

A key feature of the Random Forests approach is their ability to provide reliable internal
estimates to monitor error rates, and it has sharp measures to rank significance of features. In
particular, we made use of OOB error rate and mean decrease in Gini index (MDGini) (see
below). Since this error rate does not involve data used in training a given tree, using this error
rate provides inherent cross validation [26].
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OOB Error Rate. OOB samples are used to find error rates for each tree in the ensemble,
and all such error rates are averaged to get the OOB error rate. Empirical studies suggest OOB
error rates are good estimates for generalization error [9, 26]. We used OOB error rates to
assess the accuracy of the classifiers which are reported as percentages of (1.0 −OOB error
rate).

Feature Significance Measure—MDGini. Feature significance was interpreted using a
Random Forest importance measure known as ‘Mean Decrease in Gini index’ [27]. Typically,
the decision rules in the trees are not pure in the sense that the corresponding region in feature
space is heterogeneous; i.e., there is a mix of data points from all classes (in our case 2). Gini
index (or Gini impurity) [16] for a decision rule is a measure of this mix; it is zero only when
the decision rule is perfect (the region is homogenous). It is maximum when the mix is the
highest (half-and-half mix from both the classes).

MDGini involves randomly permuting OOB sample data corresponding to the decision rule
in a tree, and estimating the change (decrease) in Gini index. If the decrease is high while per-
turbing a feature, it suggests that the classification is highly dependent on that particular fea-
ture. This provides an information-theoretic feature significance measure. It inherits the
invariance property of the decision rules, i.e., absolute values of the features do not matter. This
is a very sharp feature significance measure (see figures 1, 2 and 6 in [28]). We use MDGini
here to find even minute differences that are significant between ACS/CAD.

We used the ‘randomForest’ package in R [29] for our analysis. For each Random Forest
classifier, 501 trees are used in the ensemble. To account for statistical variation between runs,
we report mean and standard deviation (SD) of classification accuracies based on 50 runs.

Results

Classification Performance of the Entire System
Classification using initial factors has a mean accuracy of 88.13% (Table 1). Conventional fea-
tures of fXa and active thrombin classify with lower mean accuracies, 82.58% and 81.04%,
respectively. Using all PCHIP coefficients and all 200s-MA values result in classification accu-
racies of 88.59% and 88.78% respectively, which are slightly better than using 8 initial factors.
At this point, one might wonder if combinations of initial conditions suffice to characterize the
system. However, we note that the same set of initial conditions could give different dynamics
if the reaction network is perturbed (say, rate constants are changed due to a drug or a mutated

Table 1. Classification accuracies (%) of different sets of features. PCHIP and moving average features
classify better than conventional parameters, and slightly better than all nonzero initial conditions.

Random Forest Classifier Mean (SD)

PCHIP Features

All PCHIP Coefficients 88.59 (0.36)

Plasma Factor Composition

8 Initial Conditions 88.13 (0.49)

Conventional Features

fXa 82.58 (0.53)

Active Thrombin 81.04 (0.46)

Moving Averages

All 200s-MA 88.78 (0.32)

fXa—factor Xa; PCHIP—piecewise cubic hermite interpolating polynomials; 200s-MA—200-second moving

average.

doi:10.1371/journal.pone.0153776.t001
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form of a coagulation factor). Hence, studying initial conditions might not suffice to character-
ize the dynamics of the system. Moreover, studying the dynamics of chemical species gives
more physiological insight about the underlying process.

Classification accuracies quantify the information in various features with respect to ACS/
CAD classification. Although, minimum and maximum accuracies in Table 1 vary over a small
range (* 81%-89%), they offer a potent way to compare features and quantify relevant differ-
ences. Loss of 11% accuracy in the initial conditions classifier is due to the overlap in the initial
condition data used (though the means were significantly different for prothrombin, factor
VIII, tissue factor pathway inhibitor, and antithrombin [6], the samples from lognormal distri-
butions used for this study overlapped). Also, the best possible accuracy is restricted by the
choice of features.

Selection of a List of Significant Species
We robustly selected a list of species that behave differently in ACS/CAD. We based our selec-
tion heuristics on three criteria and selected five species:

1. fXa and IIa were selected due to their known significance.

2. Tf-fVIIa-fXa, Tf-fVII-fX—these species had high averages for MDGini values in the classi-
fier built with all PCHIP coefficients. MDGini values for each species were sorted and the
highest*10% of the values were used for selection criterion. Use of just one of the highest
MDGini value for each species would be too biased and prone to noise; use of all MDGini
values caused huge variation in the values, blurring out differences between species.

3. fIXa-fVIIIa-fX—this species had the highest significance during the last 600 seconds of the
simulation in the classifier built with all PCHIP coefficients. Similar to selection criteria 2,
selection was based on averages of highest*10%MDGini values. This criterion was used
since the fate of such a chemical species is highly uncertain after the end time of simulation
and calls for better scrutiny.

For criteria 2 and 3, MDGini values were obtained from the classifier built using all PCHIP
coefficients as it had information pertaining to both function values as well as information
about derivatives at a fine time scale. See S1 and S2 Figs, for Box plots for these MDGini values.

Resolving Significance Over Time for the Selected Species
The five filtered species were further studied by resolving their significance over time. MDGini
for these species obtained using the classifier built with all 200s-MA values is shown in Fig 1.
Tf-fVIIa-fXa and Tf-fVIIa-fX are most significant around 1200 seconds after clot initiation.
Classification accuracies of these individual species using 200s-MA values are tabulated in
Table 2. 200s-MA values of Tf-fVIIa-fXa, Tf-fVIIa-fX, IIa, and fIXa-fVIIIa-fX classify better
than conventional features (Table 1).

A single feature from Tf-fVIIa-fXa classifies with accuracy 78.86%, which suggests that sig-
nificance of Tf-fVIIa-fXa is best localized in time. This can be seen in Fig 1 as well as in Fig 2.
Around 1200 seconds in Fig 2, the mean of the CAD group is outside the 90% quantile of the
ACS group. Tf-fVIIa-fX visually behaves in a similar way. This behavior contrasts with a spe-
cies like fXa (Fig 2).

Among the five species in Table 2, fXa has the lowest accuracy of 82.07%. The best feature
of fXa classifies with an accuracy of 53.26% which is marginally better than random guessing
(50%). This indicates that all the features of fXa are weak. This is due to a huge overlap between
the function values in the two groups (Fig 2). For fXa, conventional features and 200s-MA
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values classify with an accuracy of about 82% due to the ways in which these weak features
interact. Moreover, conventional features of fXa classify marginally better compared to its
200s-MA values due to lack of time information (time to maximum level, rate, etc.,) in 200s-
MA values. This suggests that classification accuracies of every species could be further intensi-
fied by considering more features based on time information, in particular, time delay.

Concentration profiles for fIXa-VIIIa-fX in the ACS group appear to live longer (Fig 3).
Recent studies suggest existence of active circulating particles in blood (long-lived active spe-
cies) to be a primary mechanism leading to spontaneous clotting in hyper-coagulable blood
[30]. As in the case of fIXa-fVIIIa-fX, the computational approach taken here could be tuned
to help identify such long-lived differences under various perturbed conditions of the reaction
network. Next, we further this discussion using IIa.

200s-MA values of IIa classify better compared to conventional parameters of active throm-
bin. It is most significant starting at about 1500 seconds by which time its values are in the
order of pM. Changes in this region are usually not considered in conventional features. IIa
concentration profiles appear to have reached zero by 2000 seconds (Fig 3). However, given the

Fig 1. MDGini variation (in the classifier built with 200s-MA features) with time for the five selected
chemical species. Tf-fVIIa-fXa and Tf-fVIIa-fX are most significant during 1000–1600 seconds, and IIa
during 1400–2500 seconds from the addition of the trigger. Significance of fIXa-fVIIIa-fX increases
monotonically and remains most significant at 3600 seconds suggesting that it is a long-lived species. 200s-
MA—200-second moving average; MDGini—Mean Decrease in Gini index; Tf-fVIIa-fXa—Tissue factor-
factor VIIa-factor Xa; Tf-fVIIa-fX—Tissue factor-factor VIIa-factor X; fIXa-fVIIIa-fX—factor IXa-factor VIIIa-
factor X; IIa—activated alpha-thrombin.

doi:10.1371/journal.pone.0153776.g001

Table 2. Classification accuracies (%), mean (SD), for 200s-MA values of selected species. Classifica-
tion using all 18 200s-MA features of Tf-fVIIa-fXa, Tf-fVIIa-fX, fIXa-fVIIIa-fX, and IIa result in similar accura-
cies. Classification accuracies of the best 3 and the best feature from each species indicate significance is
most localized in Tf-fVIIa-fXa.

Species All 18 Best 3 Best 1

Tf-fVIIa-fXa 83.96 (0.36) 83.18 (0.47) 78.76 (0.08)

Tf-fVIIa-fX 84.23 (0.40) 82.57 (0.38) 77.32 (0.11)

fIXa-fVIIIa-fX 83.80 (0.47) 78.78 (0.56) 75.26 (0.04)

IIa 84.44 (0.59) 75.86 (0.53) 74.26 (0.04)

fXa 82.07 (0.67) 71.36 (0.81) 53.26 (0.08)

MDGini values from the classifier built with all 200s-MA values were used to choose the subset of best

features for each species. Tf-fVIIa-fXa—Tissue factor-factor VIIa-factor Xa; Tf-fVIIa-fX—Tissue factor-factor

VIIa-factor X; fIXa-fVIIIa-fX—factor IXa-factor VIIIa-factor X; IIa—activated alpha-thrombin; MDGini—Mean

Decrease in Gini index.

doi:10.1371/journal.pone.0153776.t002
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information-theoretic nature of MDGini, it is able to differentiate IIa at regions beyond what is
considered as the termination phase of clotting. Given that biological systems are complicated
enough where pico moles of certain chemical species could initiate clotting, and perhaps subse-
quently determine life or death, we do not overlook such a difference here. Regarding precision,
we encountered negative concentration values in IIa in the order of 1E-19 (M). The precisions
of the numerical solution and PCHIP approximation are possibly inadequate at this scale.

Classification Performance of a Few Combinations of Species at
Specific Times
Classification performance of a few combinations of the selected species is shown in Table 3.
Average values of Tf-fVIIa-Xa, IIa, and fIXa-fVIIIa-fX at specific times classify with about 87%
accuracy. This is better than conventional features or measuring any single species, and is close

Fig 3. Means and 90% quantiles for fIXa-fVIIIa-fX and IIa simulation profiles in ACS and CAD populations. A: fIXa-fVIIIa-fX profiles show that this
species is more long-lived in ACS than CAD cases. B: Though IIa concentration profiles appear to reach zero by 2000 seconds, MDGini suggests that
the dynamics between the two groups is most significant during that time. fIXa-fVIIIa-fX—factor IXa-factor VIIIa-factor X; IIa—activated alpha-thrombin;
MDGini—Mean Decrease in Gini index.

doi:10.1371/journal.pone.0153776.g003

Fig 2. Means and 90% quantiles for Tf-fVIIa-fXa and fXa simulation profiles in ACS and CAD populations. A: Tf-fVIIa-fXa concentration profiles
from the two groups split significantly from about 1000 to 1500 seconds. B: In fXa concentration profiles, there is a huge variation in both ACS and CAD
populations. However, the profiles from the two groups overlap and make the features of this species weak for classification. Tf-fVIIa-fXa—Tissue
factor-factor VIIa-factor Xa; fXa—factor Xa.

doi:10.1371/journal.pone.0153776.g002
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to using all features considered. For illustration, Fig 4 shows a single decision tree built with
just two of the best features from fIXa-fVIIIa-fX and Tf-fVIIa-fXa. Typical of chemical kinetics,
the region spanned by the data is localized, suggesting dynamics in a low dimensional mani-
fold. The localized separation of the two groups in 2 dimensions of 200s-MA values is seen in
the figure.

Discussion
We found high-dimensional feature representations for computational solution profiles and
studied how combinations of these features could be used to classify ACS/CAD. We modified
and tuned the tools offered by Random Forest to fit our purpose. The species we studied are

Table 3. Classification accuracies (%), for classifiers built using combinations of best 200s-MA fea-
tures. An efficient way to assay the entire system is by measuring three species at three specific time inter-
vals of 200 seconds. Tf-fVIIa-fXa, IIa and fIXa-fVIIIa-fX make the best combination.

Combination Mean (SD)

Tf-fVIIa-fXa, IIa, and fIXa-fVIIIa-fX 87.16 (0.39)

Tf-fVIIa-fX, IIa, and fIXa-fVIIIa-fX 87.03 (0.40)

Tf-fVIIa-fXa, Tf-fVIIa-fX, and fIXa-fVIIIa-fX 85.58 (0.39)

Tf-fVIIa-fXa, Tf-fVIIa-fX, and IIa 84.90 (0.50)

Tf-fVIIa-fXa at 1400–1600 sec; Tf-fVIIa-fX at 1400–1600 sec; IIa at 1800–2000 sec; fIXa-fVIIIa-fX at 3400–

3600 sec; Tf-fVIIa-fXa—Tissue factor-factor VIIa-factor Xa; Tf-fVIIa-fX—Tissue factor-factor VIIa-factor X;

IIa—activated alpha-thrombin; fIXa-fVIIIa-fX—factor IXa-factor VIIIa-factor X.

doi:10.1371/journal.pone.0153776.t003

Fig 4. Illustrative decision tree. A single decision tree built with just two of the best 200s-MA features, one
each from fIXa-fVIIIa-fX and Tf-VIIa-Xa, is shown. ACS and CAD populations separate well in just those two
features. fIXa-fVIIIa-fX—factor IXa-factor VIIIa-factor X; Tf-VIIa-Xa—Tissue factor-factor VIIa-factor Xa;
200s-MA—200-second moving average.

doi:10.1371/journal.pone.0153776.g004
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limited by the species considered in the extrinsic pathway model. We also note that there are at
least two other versions of this extrinsic pathway model [31–33].

As our study indicates, we are now in a position to answer the three questions at the begin-
ning of the paper as follows:

1. There exists chemical species that can be used to classify ACS/CAD better than what can be
achieved using thrombin and fXa. Our primary list includes Tf-fVIIa-fXa, Tf-fVIIa-X, fIXa-
fVIIIa-fX, and IIa. Tf-fVIIa-fXa is the most important species in our list.

2. Conventional features from active thrombin and fXa can be used to classify with an accu-
racy of 81% and 82.6%. There are better features to characterize the system compared to
conventional summary parameters, such as initial conditions (plasma factor composition),
which result in a classification accuracy of 88.1%. However, plasma factor composition
might not capture many attributes of the reaction network. The entire system, when repre-
sented using PCHIP coefficients and 200s-MA values, can be used to classify with accuracies
of 88.6% and 88.8%. There could be a lot more going on in the system other than changes in
thrombin and fXa. For example, activity of IIa (activated alpha-thrombin) was significantly
different beyond the termination phase. Long-term activity of such active species warrants
better scrutiny.

3. The entire system could be efficiently assayed by measuring a few combinations of species
at well-specified times. For example, concentrations of 3 chemical species, namely IIa, Tf-
fVIIa-fXa, and fIXa-fVIIIa-fX, averaged over specific time windows (see Table 3) chosen rel-
ative to the time of trigger (Tf), could be used to classify ACS/CAD to an accuracy of about
87.2%. This is a 7.6% improvement in classification accuracy over using the conventional
summary parameters of thrombin.

To the best of our knowledge, this is the first study in the literature to find such localized
regions labelled in time and in very low dimensions of the state space that could be associated
with ACS. Further validation of the classification scheme is contingent upon the availability of
more detailed data on these two cases. Such localized and effective combinations, which are
also easily measurable, could make good global assays for the thrombin generation system.

Conclusion
While the random forest technique is a well accepted method for classification in the statistical
learning field and has been used in clinical studies, this is the first study in the literature to
apply it to classify ACS/CAD using numerical simulations of the thrombin generation system.
The approach shows promise in characterizing hyper-coagulability and predicting ACS. Our
results open up a way to globally phenotype the thrombin generation system and include spe-
cific suggestions for experimental assays to classify ACS/CAD. Currently, measuring some of
the recommended chemical species, especially at such low concentration values, may not be
practical. However, using models to study combinations of triggers through this approach can
reveal measurable chemical species. Moreover, current studies of ACS/CAD classification are
restricted to reporting only mean and standard deviation data of plasma factor composition.
Wide availability of more raw data would help researchers from diverse fields to study the
thrombin generation system and the coagulation cascade.

Supporting Information
S1 Fig. Significance during the entire simulation. Box plots of MDGini values for the PCHIP
coefficients for each species. Tf-fVIIa-Xa and Tf-fVIIa-X stand out from the rest of the
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variables. MDGini values were obtained from the classifier built with all PCHIP coefficients so
that their relative importance could be compared for filtering.
(TIFF)

S2 Fig. Significance at the end of simulation. Box plots of MDGini values for the PCHIP coef-
ficients taken from the last ten minutes of the simulation. Unlike S1 Fig, many species appear
significant based on 5 MDGini values. Average of 25 MDGini values makes fIXa-fVIIIa-fX
stand out.
(TIFF)

S1 Dataset. Sampled plasma factor composition data. Sampled sets of positive nonzero per-
centage values of initial conditions for each group (ACS and CAD) from lognormal distribu-
tions used in this study. Scaling these with the mean physiological values (see Methods) should
give the concentration values of each factor.
(XLSX)
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