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Development of rapid 
and cost‑effective top‑loading 
device for the detection 
of anti‑SARS‑CoV‑2 IgG/IgM 
antibodies
Essam H. Ibrahim 1,2,3*, Hamed A. Ghramh1,2,4 & Mona Kilany2,5

Infection with SARS‑CoV‑2, the Betacoronavirus, caused a pandemic that affected the globe 
negatively. The gold method, RT‑PCR, can detect SARS‑CoV‑2 but it is time‑consuming and needs 
sophisticated equipment and professional personnel. On the other hand, rapid tests offer fast results 
and can detect anti‑SARS‑CoV‑2 antibodies (Abs). The aim of this study is to develop a new rapid and 
cost‑effective method for the detection of anti‑SARS‑CoV‑2 IgG/IgM Abs. A new top‑loading detection 
device was developed and composed of a small piece of plastic (25 × 25 × 0.5 mm) with an opening in 
the center, a piece of nitrocellulose (NC) membrane enough to block the opening from one side and 
adhesive tape to affix the NC to the plastic piece. The NC is blotted with anti‑human IgG/IgM and 
rabbit serum. The device was evaluated against a commercially available IgG/IgM ELISA detection 
kit using normal, Covid‑19‑positive, HCV, HBV, and Cytomegalovirus‑positive sera. Outcomes 
demonstrated simplicity, reproducibility, and accuracy of the new device and results can be obtained 
in less than 5 min. We anticipate our developed assay method to be used widely in point of care before 
deciding on the use of expensive nucleic acid assays.

The immune system is an effective guard against invasions of pathogens on the human body and it has many 
strategies to perform its tasks. The preexisting defense mechanism, the innate immunity, is the first defense to 
prevent body infection by microbes. It can be rapidly activated by invading microbes before going ahead to the 
adaptive  immunity1. Many pathogenic microbes can escape innate immunity using strategies that are fateful for 
the microbes  virulence2. Adaptive immunity is potent and specialized and able to eliminate microbes escaped 
from innate  immunity3. The effector mechanisms of innate immunity are often used by adaptive immunity to 
eliminate microbes. In humoral immunity, B cells synthesize antibodies to eliminate microbes through the com-
plement system and phagocytes, the two effector mechanisms of innate  immunity4. Cell-mediated immunity, 
mediated by T cells, is the effector function against pathogens that get by inside  cells5.

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the RNA virus appeared during 2019, is 
well-described and  analyzed6–8. SARS-CoV-2 enters the host cell after the binding of the spike (S) protein which 
presents on the surface of SARS-CoV-2 to the angiotensin-converting enzyme 2 (ACE2) receptor presents on 
the host cell surface enabling the entrance and propagation of the virus within the cell with a limited innate 
immune response. When the virus proliferates and arrives at the respiratory tract, it faces a stronger innate 
immune response turning the illness to being clinically  manifested9,10.

The immunoglobulin IgA and IgM seroconversion peaks, as a result of SARS-CoV-2 exposure, after approxi-
mately 4–6 days, while it peaks after at least 10 days for  IgG11,12. A study by Zhao et al.12 showed that the average 
days for seroconversion post symptom beginning for total antibodies, IgM and IgG were 11, 12 and 14 days 
respectively. Antibodies recognition in mild cases can take a longer time (a month or more) and in a few cases 
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IgM and IgG are not recognized at all. Cellular reactions against the S protein have been portrayed and found 
to associate with IgG and IgA antibody  titers13,14. Total lymphocytes  (CD4+/CD8+ cells, B-lymphocytes and NK 
cells) showed a significant correlation with inflammatory status in SARS-CoV-2 infection, with special regards 
to  CD8+ T cells and  CD4+/CD8+  ratio15. Decreased absolute numbers of T cells  (CD4+/CD8+) were clear in mild 
cases and severe cases but exaggerated in the severe cases. The  CD4+ T cells IFN-γ production was shown to be 
decreased in severe cases than in moderate  cases16.

The rapid genomic sequence analysis of SARS-CoV-2 facilitated the design of reverse-transcription poly-
merase chain reaction (RT-PCR) methods and antibody-based  diagnostics17. RT-PCR methods can detect the 
presence SARS-CoV-2 in upper respiratory tract specimens. The majority of the antibody-based methods depend 
on recombinant S protein. Some use the nucleoprotein (N), but taking into account that N is more conserved 
among coronaviruses and the possibility of cross-reactivity. Several laboratory assays are validated, and several 
antibody data were  accrued18–22. There are several formats of antibody tests, including rapid lateral flow devices, 
enzyme-immunoassay techniques, and virus neutralization assays. Antibody diagnostic tests are useful in dis-
covering the asymptomatic and/or recovered  persons23.

In respect of its low-cost, fast, sensitive, low limit of detection and specific diagnostic power, the lateral flow 
immunoassay (LFA) technique became the popular diagnostic method in recent  years24. This technique can be 
helpful in the detection of the SARS-CoV-2 infection, offering a rapid diagnosis of suspected patients. Thou-
sands of lateral flow assay kits have been developed since the emergence of SARS-CoV-225. Different formats 
are adopted in LFA but all have a basic structure. LFA contains four main components; sample application pad, 
conjugate pad, nitrocellulose membrane and adsorbent  pad26. Sample application pad is made of cellulose or glass 
fiber. To that pad, the sample is applied to start the assay. Conjugate pad is the place where labeled biomolecules 
are dispensed. Liquid sample diffusing from the sample pad reacts with materials found in the conjugate pad, 
releases labeled biomolecules and moves them toward the nitrocellulose membrane. Nitrocellulose membrane 
has test and control lines. It is ideal for providing good support and binding to capture probes (antibodies or 
antigen). Adsorbent pad is found at the end of the strip and works as a sink. It works to keep a continuous flow 
of the liquid over the membrane and prevents back flow of the sample.

Taking into consideration the studies completed on SARS and MERS, the immune responses of exposed 
individuals would be focused on antibody responses to the S protein 27–29. So, in this study, we aimed to design a 
new format of colloidal gold-based immune-diagnosis using the S protein and a top-loading method.

Results
Characterization of synthesized AuNPs. Gold nanoparticles (AuNPs) were shown to be synthesized at 
a peak of 520–570 nm (Fig. 1A,B) with spherical shape (Fig. 1C).

The powder X-ray diffraction (PXRD) pattern (Fig. 2) displayed some diffraction peaks at ca. 38.29°, 44.52°, 
64.69° and 77.45°, which are well-indexed to the (111), (200), (220) and (311) facets of the typical fcc phase of 
gold (JCPDS no. 04–0784), respectively 30. Other diffraction peaks may be attributed to the organic materials 
(citrate) during preparation. The average grain size was calculated to be 17.11 nm (Table 1)31.

Figure 1.  Gold nanoparticle synthesis. (A) gold chloride solution; (B) after the formation of AuNPs; (C) SEM 
image showing well-dispersed colloidal AuNPs.
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Optimization of protein concentration and pH value. The concentration of the S protein that is capa-
ble of preventing the clumping of AuNPs in the presence of 10% NaCl was determined. Protein concentration 
of 10 µg/mL started to protect AuNPs from precipitation by 10% NaCl. Protein protection continued to increase 
until the concentration of 50 µg/mL (Fig. 3).

Optimal pH for S:AuNPs conjugation was tested in the pH range of 4.2–10.6 by using 40 µg S protein/mL 
AuNPs. Optimal pH for S:AuNPs conjugation was shown to be stable at all tested pH values (4.2–10.6) (Sup-
plementary Fig. S1 online). We continued using the pH 8.2 for further work.

S‑colloidal gold conjugate probe. The S protein was mixed with colloidal AuNPs to get S-colloidal gold 
conjugate. The final S-gold conjugate was tested using SEM analysis and the SEM image revealed aggregates of 
spherical coated AuNPs (Supplementary Fig. S2 online).

Figure 2.  XRD analysis of AuNPs.

Table 1.  The average particle size (D) calculated from XRD, d-spacing of different diffracting plans.

Peak index 2Theeta FWHM(β) D (nm) d  (A0)

(111) 38.290 0.642 13.104 2.354

(200) 44.520 0.880 9.758 2.033

(220) 64.695 0.410 22.942 1.440

(311) 77.455 0.450 22.634 1.231

The average particle size ( XRD ) 17.110

Figure 3.  Spectral analysis of different protein concentrations that prevented AuNPs precipitation.
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Sensitivity of TLTD. Sera were serially diluted in wash buffer up to 1:128 and its reactivity against S protein 
was tested. Results showed that antibodies were detectable up to the dilution 1:16 in some sera, but it was good 
for all sera at the dilution 1:4 (Fig. 4).

Testing of samples for IgG and IgM antibodies. All samples (COVID-19 PCR positive and negative) 
were tested for anti-SARS-CoV-2 IgG and IgM antibodies using the commercially available ELISA kit. The 
results of ELISA greatly matched those obtained by the top-loading test device (TLTD), but with the discrepancy 
in the intensity of the reaction in some sera. All control samples showed no IgG and IgM reactive antibodies 
against SARS-CoV-2.

Patient sera showed different reactivity regarding IgG and IgM depending on the case, but most of them were 
IgM reactive, either alone or showing faint dot at IgG place. Many samples were negative for both IgM and IgG 
and only 2 samples were positive IgG alone (Fig. 5 and Supplementary Fig. S3 online).

Specificity of TLTD. To determine specificity of the TLTD for COVID-19 detection, normal and HCV, 
HBV, HIV, and cytomegalovirus-infected sera were tested using TLTD. No positive reaction was seen using these 

Figure 4.  Titration of COVID-19 positive and negative sera. Where COVID-19 positives serum was diluted to 
A: 1:2; B: 1:4, C: 1:8; D: 1:16and E: 1:32. Negative serum (F) was diluted at 1:2. G: Blank (no serum).

Figure 5.  Testing of COVID-19 PCR positive sera using TLTD format 1 (i–iv) and format 4 (v–viii). Where 
G: expected positive area for IgG against S protein; M: serum positive for IgM against S protein and C: positive 
control. Column Negative control: normal serum; Column IgM-positive: anti-SARS-CoV-2 IgM Abs positive 
serum; Column IgG-positive: anti-SARS-CoV-2 IgG Abs positive serum and Column IgM + IgG-positive: anti-
SARS-CoV-2 IgM and IgG positive serum. All sera at the dilution 1:4.
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sera (Supplementary Fig. S4 online) indicating the specificity of TLTD for Covid-19. Also, the TLTD was tested 
against normal (syphilis, malaria, HCV, HBV, HIV, HTLV and cytomegalovirus-free) sera and was found to be 
non-reactive to any of the tested sera (Supplementary Fig. S5 online).

Reproducibility and stability of VID. Results indicated reproducibility and stability of the TLTD formats 
2–4. Format 1 showed non-reproducible results as dots either appeared with different intensities or did not 
appeared at all.

Discussion
SARS-CoV-2, the positive RNA virus, caused global health and economic disturbances. A new genetic mutation 
appeared in the Great Britain to begin a new episode of the pandemic. Accurate and rapid diagnosis is required 
in any disease including Covid-19. At the onset of COVID-19 symptoms, sera from infected persons contained 
detectable anti-SARSA-CoV-2 Abs 32. qPCR, the method which depends on the detection of the viral RNA, is 
used as the gold-standard method for the diagnosis of SARS-CoV-2 infection 33. Notwithstanding, numerous 
labs and medical clinics do not have the facilities and expertise needed to run the qPCR. Point-of-care (POC) 
needs rapid and simple diagnostic tests that are designed to shorten the sample-to-result timeline, enabling fast 
diagnosis and right treatment 34. Hence, there is a growing utilization of rapid tests for the diagnosis of Covid-19, 
giving the advantage to quickly affirm the infection. Lateral flow assays are the most widely used form in POC 
because of its low-cost and ease of use. In addition to rapid assay tests, ELISA-based assays are useful in detecting 
the antibodies directed against the SARS-CoV-2.

Here, we tried to create a new method for the detection of coronavirus infection at antibody level. We 
developed a new device that uses fewer materials to build up and does not need highly professional personnel 
to perform the test at any POC location. A lateral flow device is composed of sample pad, conjugate pad, NC 
membrane and absorbing filter paper affixed together on a plastic backing and packed into a plastic device 35. 
TLTD is composed only of NC membrane affixed to adhesive tape and a piece of square plastic with an opening. 
This demonstrates how TLTD is simple, economic and easy to assemble.

We performed the test using four formats. Format one had been previously used to detect other diseases such 
as Leptospirosis 36, food allergen 37, HIV-1 38, etc.

Before evaluating the formats described in this study, all samples were tested for COVID-19 IgG and IgM 
using a commercially available ELISA kit. The plates of the kit are coated with the S protein. This matches our 
created TLTD as both will measure only IgG and IgM directed against the S protein.

Format 1 showed non-reproducible results as dots either appeared with different intensities or did not appear 
at all. This may be due to the manual assembly of the device, no enough time for antibodies interactions or this 
method is not good enough. So we decided to use another formats.

Format 3 and 4 uses fewer amounts of liquids (serum and conjugate) as compared to format 2 as the thickness 
of the plastic used to build the body of formats 3 and 4 is less than that of format 2. The antibody detection results 
of formats 2–4 were comparable to that obtained by ELSA. Most of the qPCR-positive samples were IgM-positive, 
some were IgG/IgM-negative, little IgG-positive and many IgG/IgM-positive. The positive sera for anti-S IgM 
antibodies may be due to variables such as most of the patients are in early phase of immune response where the 
IgM still dominant and the IgG antibodies started to appear or have still not appeared.

All HCV, HBV, HIV, and cytomegalovirus-infected sera gave negative results when tested using TLTD indicat-
ing the specificity of TLTD for Covid-19. Also, when testing the TLTD against syphilis, malaria, HCV, HBV, HIV, 
HTLV and cytomegalovirus-free sera, the TLTD was found to be non-reactive to any of the tested sera indicating 
that the device in not reactive with any component of SARS-CoV-2-free human sera. So, we can conclude that 
TLTD does not cross react with other viruses and is negative for the uninfected sera.

The purpose of making the TLTD in these formats is to use it in more remote areas or POC before decid-
ing to choose qPCR assay. The transport and storage without the use of a cold chain is a great advantage of any 
product. Here, we tested the stability of TLTD after incubating it at different temperatures. The results reflected 
the ability of TLTD to tolerate high temperature (37 ◦ C) for a long time (30 days), giving an advantage to the 
newly designed device.

Results indicated reproducibility and stability of the TLTD formats 2–4 but format 1 was non-reproducible.

Conclusion
A new design of rapid antibody detection device was developed. The new device is simple, accurate, reproducible, 
and cost-effective. It is very suitable for the detection of IgG and IgM arisen in SARS-CoV-2-infected persons 
in point of care and remote areas. The device is easy to use and does not need highly professional personnel to 
perform. It overcomes the need for sophisticated equipment like the PCR system for the diagnosis in POC and 
in remote areas and can be completed within minutes.

Methods
Preparation of colloidal gold nanoparticles. Nano gold was synthesized via the tetrachloroauric(III) 
acid  (HAuCl4.3H2O, Honeywell Fluka) reduction as per Frens 39 procedures. Gold chloride (200 mL, 0.01% w/v, 
Sigma-Aldrich) solution was boiled (2 min), 4 mL of 1% (w/v) of tri-sodium citrate (Sigma-Aldrich) solution 
was then added rapidly and continued by heating until a wine-red color developed. The mixture was left to cool 
down to reach ambient temperature before storing at 4 °C.

Characterization of colloidal AuNPs. Gold nanoparticles (AuNPs) formation was monitored using UV/
Vis spectrophotometry (Genesys 10uv Scanning, Thermo Scientific). Morphology of AuNPs was detected using 
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a scanning electron microscope (SEM, JSM-7500 F; JOEL-Japan) at 80 kV. The powder X-ray diffraction (PXRD) 
measurement was carried out by X-ray diffractometer (Shimadzu LabX-XRD-6000 diffractometer) run at 40 kV 
and 35 mA and a spectrum was recorded by CuKα radiation with a wavelength of 1.5406 Å in the 2θ range of 
10°–80° with Shimadzu software with the pdf-2 library for the analysis of XRD data. The average crystallite size 
(D), was estimated by Debye- Scherer’s Eq. 40:

where the shape factor k is constant, equals 0.9 (k is dimensionless), X-ray’s beam wavelength λ in nm, β is known 
as the full width at half maximum (FWHM) of the peak in radian and the Braggs’ diffraction angle is θ in degree.

Optimization of pH and protein concentration for the AuNPs conjugation. The concentration 
of the S protein (Cusabio Technology LLC., China) that is capable of preventing the clumping of AuNPs in the 
presence of 10% NaCl (Sigma-Aldrich) was determined and this concentration was selected for further use. First 
the pH of the colloidal gold was adjusted to 8.2 with 0.1 M  K2CO3 (Sigma-Aldrich). Various amounts of S protein 
(0, 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 µg) were individually mixed with 1 mL AuNPs and incubated for 10 min 
with shaking at room temperature. After that, 10% NaCl (100 µL/tube) was added, continued shaking for 10 min 
and then left standing for 2 h and each tube was scanned spectrophotometrically (460–700 nm). The amount of 
protein showed maximum absorbance at about 520 nm was considered as the minimum quantity of S protein 
required to prevent the precipitation of colloidal gold.

Optimal pH for S:AuNPs conjugation was tested in the pH range of 4.2–10.6 by using 40 µg S protein/mL 
AuNPs and testing the proper conjugation as described above.

Preparations of S‑AuNPs conjugate. The S protein (at a final concentration of 40 µg/mL) was mixed 
with 10 mL of AuNPs (pH 8.2) and gently shaken for 30 min. The conjugation process was stabilized via the addi-
tion of 2.5 mL of 10% BSA (Sigma-Aldrich) while gently shaking for 30 min. After that, 250 µL of 5% PEG20,000 
(Sigma-Aldrich) solution (with a final concentration of 0.1%) was added to the mixture and left at room tem-
perature while gently stirring for 16 min. The S-AuNPs conjugate was centrifuged at 14,000 rpm (10 min/4 °C), 
the supernatant was discarded and the pellet was resuspended in 1 mL storage buffer (phosphate-buffered saline 
(PBS, 137 mM NaCl, 2.7 mM KCl, 10 mM  Na2HPO4, and 1.8 mM  KH2PO4, pH 7.4) containing 5% sucrose, 2% 
bovine serum albumin (BSA), 0.5% Tween-20, and 0.03%  NaN3). The final S-gold conjugate was stored at 4 ◦ C 
for further study. The conjugate was tested using SEM analysis.

Construction of the top‑loading test device. We prepared four formats of top-loading test device 
(TLTD) for the detection of human IgG and IgM antibodies (Abs) against S protein of SARS-CoV-2 as described.

Format 1: A container with a screw cap was used to assemble the TLTD (Fig. 6). The cap has a ring opening 
of 12 mm diameter at the center. The container was filled with several layers of square absorbing filter papers 
(Thomas Scientific). A nitrocellulose (NC) piece (0.45 µm, GE Healthcare—Life Sciences) is laid on the top of 
the absorbing filter papers and the cap is closed to hold the NC paper firmly in contact with the absorbing filter 
papers.

Format 2: only the cap of format 1 was used but the NC paper was sealed with an adhesive tape to block the 
hole from the inside of the cap.

Format 3: A square piece of flat plastic with a hole in its center was used. One side of the hole is blocked using 
a piece of NC membrane and adhesive tape.

Format 4: The same design as that of format 3 but with rectangular opening.

Principle and mechanism of TLTD workings. Nitrocellulose paper is manually blotted with 1 µL of 
goat anti-human IgG Fc Abs (1 mg/mL, R&D Systems), 1 µL of goat anti-human IgM Abs (1 mg/mL, Vector 
Laboratories, Inc.) and 1 µL of rabbit serum (Sigma-Aldrich) as a positive control and left to dry at 37 ◦ C for 
1 h. The NC was blocked with blocking buffer (PBS containing 2% BSA, 0.5% Teween-20) for 3 h. The NC was 
washed with washing buffer (PBS containing 0.5% Teween-20) and left to dry. The NC was then assembled into 
the device as described above.

The principle of the detection of anti-SARS-CoV-2 IgG and IgM Abs using all formats is shown in Fig. 7.
Format 1: Human serum is being added to the hole of the TLTD directly onto NC membrane and left to pass 

through by the action of gravity and the absorbing filter papers below the NC. IgG and IgM which are present in 
the human serum will be captured by the corresponding blotted antibodies. The prepared probe (S-AuNPs) mixed 
with the commercially available goat anti-rabbit IgG − gold antibody (Sigma-Aldrich) are added to the hole of 
the TLTD directly to NC membrane and left to pass through by the action of gravity and absorbing filter papers 
below the NC. Approximately 2–3 drops of wash buffer are added to the hole of the TLTD if needed. If any of the 
captured human IgG or IgM are reactive toward the S protein of SARS-CoV-2, the S-Gold probe will be captured 
by these antibodies and indicated by the characteristic reddish-brown color of the gold NPs. Anti-rabbit IgG-gold 
will react with IgG present in the blotted rabbit serum giving a reddish-brown dot (Supplementary video 1).

Regarding formats 2–4, the serum is applied to the hole of the TLTD, left for 1–2 min, liquid is absorbed 
using absorbing filter paper, mixed gold conjugates are applied to the hole of the TLTD, left for 1–2 min, liquid 
is absorbed using absorbing filter paper and washed twice by adding wash buffer to the hole and absorbing the 
buffer with absorbing filter paper (Supplementary video 2).

(1)D =

k�

β cos θ
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Figure 6.  Components of TLTD. Format 1 (1A-1C); Format 2 (2A-2C); Format 3 (3A-3B) and Format 4 (4A-
4B). Where NC: Nitrocellulose membrane covering the plastic opening; FP: absorbing filter papers. Format 1 
is formed of a cap with a circular opening, a nitrocellulose membrane put into the inside of this cap to cover its 
opening (1A), FP put over the NC (1B), and the cap containing the NC and FP are put on the container body to 
get the final shape of the TLTD format 1 (1C). Format 2 is formed of only a cap (2A) and a NC (2B) affixed with 
a tape into the inside of the cap to cover its opening (2C). Format 3 is formed of only a square piece of plastic 
with circular hole in its center (3A) and a NC affixed with a tape to into one side to cover its opening (3B). 
Format 4 is formed of only a rectangular piece of plastic (4A) with a centered rectangular opening and a NC 
affixed with a tape at one side to cover its opening (4B).

Figure 7.  Principle structure and work of the TLTD. Where NC: nitrocellulose membrane; #hIgG: anti-human 
IgG Abs; hIgG: human IgG; #hIgM: anti-human IgM Abs; hIgM: human IgM; #rIgG: anti-rabbit IgG Abs. 
AuNPs: Gold nanoparticles.
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Samples. The Research Ethics Committee at King Khalid University (HAPO-06-B-001) reviewed and agreed 
on this study. All experiments were performed in accordance with the above mentioned committee guidelines 
and regulations. Patient informed consent was not a need as we got coded serum samples without patient infor-
mation.

We used patient sera that were diagnosed positive for COVID-19 via RT-PCR (n = 89). We have stored coded 
sera (n = 7267 random healthy blood donor volunteers) for several years before the onset of the pandemic and 
were used in a previous study (https:// journ als. ekb. eg/ artic le_ 13699. html). From these samples, negative control 
sera (n = 100, HIV, HCV, HBV, HTLV and cytomegalovirus-free), HCV positive (antibody and PCR confirmed, 
n = 5), HBV positive (surface antigen and PCR confirmed, n = 50) and cytomegalovirus positive (antibody con-
firmed, n = 20) were selected.

All samples used in this work were tested for anti-SARS-CoV-2 IgG and IgM Abs using COVID-19 Human 
IgM IgG Assay Kit (Abnova). The ELISA plates of the Abnova kit are coated with the S protein, similar to the 
S-Gold probe used in this work. All samples were also tested for the presence of anti-SARS-CoV-2 IgG and IgM 
Abs using the four TLTD formats as described above.

Sensitivity of TLTD. For titration purpose, sera were serially diluted in wash buffer (1:2, 1:4, 1:8, 1:16, 1:32, 
1:64 and 1:128). The outcomes were decided as positive or negative by visual review and the test detection limit 
was identified as the minimum concentration of the serum at which the test dot was unambiguous.

Specificity of TLTD. To determine the specificity of the TLTD for COVID-19 detection, normal and HCV, 
HBV, HIV, and cytomegalovirus-infected sera were tested using TLTD.

TLTD stability and reproducibility. COVID-19 (positive and negative) confirmed samples were exam-
ined 3 times to explore the reproducibility of TLTD.

For stability, TLTDs were kept at 4 °C, ambient temperature and 37 °C (accelerated heat stability) up to 30 days 
and examined using positive/negative samples at the end of incubations.

Data availability
All data are available in the manuscript and supplementary files.

Received: 23 January 2021; Accepted: 12 July 2021
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