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Abstract: The number of obesity cases is rapidly increasing in developed and developing countries,
thereby causing significant health problems worldwide. The pathologic factors of obesity at the
molecular level are not fully characterized, although the imbalance between energy intake and
consumption is widely recognized as the main reason for fat accumulation. Previous studies reported
that obesity can be caused by the dysfunction of genes associated with other diseases, such as
myocardial infarction, hence providing new insights into dissecting the pathogenesis of obesity by
investigating its associations with other diseases. In this study, we investigated the relationship
between obesity and diseases from Online Mendelian Inheritance in Man (OMIM) databases on the
protein–protein interaction (PPI) network. The obesity genes and genes of one OMIM disease were
mapped onto the network, and the interaction scores between the two gene sets were investigated
on the basis of the PPI of individual gene pairs, thereby inferring the relationship between obesity
and this disease. Results suggested that diseases related to nutrition and endocrine are the top two
diseases that are closely associated with obesity. This finding is consistent with our general knowledge
and indicates the reliability of our obtained results. Moreover, we inferred that diseases related to
psychiatric factors and bone may also be highly related to obesity because the two diseases followed
the diseases related to nutrition and endocrine according to our results. Numerous obesity–disease
associations were identified in the literature to confirm the relationships between obesity and the
aforementioned four diseases. These new results may help understand the underlying molecular
mechanisms of obesity–disease co-occurrence and provide useful insights for disease prevention
and intervention.
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1. Introduction

Obesity is a common medical condition, which negatively affects health. Obesity and being
overweight means that the weight of a person is beyond the prescribed limits that match his or her own
height [1]. Adult body mass index (BMI) has been introduced as a unique parameter for the quantitative
distinction of such two terms [2,3]. BMI is generally calculated by the weight of a person in kilograms
divided by the square of height in meters [3]. If the BMI of a person is more than 30, then this person
can be considered obese on the basis of the overweight parameter ranging from 25 to 30. According to
the statistics provided by the World Health Organization (WHO) [4] in 2016, the population suffering
from obesity has been doubled since 1980. In 2014, more than 600 million adults, which constitutes
approximately 13% of all adults, have suffered from obesity, thereby indicating that this disease can be
considered a common health issue worldwide [5,6].

The fundamental precipitating factor for the pathogenesis of obesity is the imbalance between
energy intake and consumption, thus inducing the accumulation of excessive energy in the form of
fat [7]. The increased intake of energy-containing food and lack of physical exercises may be the double
burden and major inducer for this energy imbalance-induced pathogenesis, thereby accumulating
extra energy-transformed fats. However, the pathological factors for this fat accumulation abnormality
are not completely identified. Previous studies confirmed that a high BMI may be a major risk factor
for various non-communicable diseases, including cardiovascular diseases, musculoskeletal disorders,
and cancers. According to statistical data, the risk of these diseases may be high when the BMI is high;
this result indicates the influences of obesity on other diseases [8,9].

Various studies have confirmed the potential pathological contribution of obesity to different
diseases subtypes, especially to nutritional and endocrinal diseases. Early in 2014, a systematic
study [10] on obesity and its metabolic complications confirmed the potential relationship between
obesity and insulin resistance and dyslipidemia. Further, in 2015, obesity has also been functionally
connected to another nutritional disease subtype, celiac disease, implying the potential pathogenic
contribution of obesity [11]. Apart from nutritional diseases, obesity has also been reported to
participate in the pathogenesis of endocrinal disease. In 2015, a clinical study [12] on the hepatic fat
distribution confirmed that obesity accompanied with fat accumulation may be functionally connected
to a common endocrinal disease, diabetes. Another case report [13] on the pathogenic contribution
of obesity implied that obesity may also be associated with Cushing’s and Madelung’s diseases,
implying the complicated relationship between obesity and endocrine diseases. As for cardiovascular
diseases, FAIM2 reportedly contributes to the pathological processes of myocardial infarction [9].
Common disease subtypes such as orthopedic diseases, cardiovascular diseases and neoplasms have
also been reported to be pathologically related to fat accumulation and obesity, validating the impelling
role of obesity in various disease subtypes. Recent publications [9,14] confirmed that FAIM2 may
be a susceptibility gene for fat accumulation and obesity. Considering the pathological role of fat
accumulation, a biological process FAIM2 may participate in, therefore, obesity may demonstrate
specific functional relationships with the pathogenesis of myocardial infraction. However, although we
indeed summarized that obesity may participate in the pathogenesis of various diseases, it is still not
clear whether other diseases may also be related to obesity in some unrevealed ways and how obesity
promote such pathogenesis. According to recent publications, detailed biological mechanisms that
connect obesity and certain diseases may be attributed to the shared abnormal metabolism biological
processes and pathways connected by functional co-relevant genes. Therefore, to identify the detailed
contribution of obesity to different disease subtypes, the screening of optimal genes that contribute to
both obesity and certain disease subtypes may be an effective means.

The network method has been proven to be an effective way to analyze pathogenesis of different
diseases, especial in disease gene identification [15] because it can integrate various information
and investigate problems in a system level. Several methods used the guilt-by-association [16],
which always consider the neighbors of the known disease genes in the network as the novel disease
genes. In other words, the neighbors of genes related to one disease have strong associations with the
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disease. Besides, many other methods used some classic network algorithms, such as Random Walk
with Restart (RWR) [17], Shortest Path (SP) Algorithm [18], as the basic searching engine to discover
novel disease genes [19–27]. Based on the known disease genes, the network algorithms were adopted
to diffuse them, thereby discovering novel disease genes. It can be seen that the guilt-by-association
based method can provide higher accuracies because it always searches novel genes around known
ones, while RWR-based or SP-based methods seek novel genes with larger distances. However,
the guilt-by-association based method cannot find out genes that are quite different from known ones,
while RWR-based or SP-based methods can. Here, we used the guilt-by-association to quantify the
relationship between each gene related to one disease and obesity, thereby further determining the
associations between the disease and obesity.

In this study, we used a class assignment reported in the study of Goh et al. [28], in which
all diseases are clustered into 22 classes [28]. Subsequently, the relevant disease genes that may
connect to such diseases were retrieved from Online Mendelian Inheritance in Man (OMIM), USA [29].
In addition, we obtained a group of obesity genes that may contribute to the pathogenesis of fat
accumulation and obesity. For each disease, the proteins encoded by each disease gene and by obesity
genes were mapped onto the protein–protein interaction (PPI) network retrieved from Search Tool for
the Retrieval of Interacting Genes/Proteins (STRING). The interaction with the most robust linkage,
which maximum interaction score was used to evaluate the linkage between the disease gene and
obesity, was found. The permutation test was further built to evaluate the reliability of this score and
reduce the noise of the PPI network that influences the calculation of maximum interaction score,
hence resulting in a p-value. We proposed a quantitative analysis method based on the distribution
of the p-values of all disease genes in one disease to measure the relationship between obesity and
this disease, thereby extracting the diseases that are highly related to obesity. The results suggested
that nutrition- and endocrine-related diseases are mostly related diseases, followed by psychiatric-
and bone-related diseases. Several important disease proteins encoded by the genes of the four top
diseases were analyzed to further uncover their associations with obesity. For the first time, our study
partially revealed the quantitative correlation between obesity and diseases and genetic background of
this potential obesity-related pathogenesis, hence establishing further experimental studies.

2. Materials and Methods

2.1. Disease Genes of 22 Disease Classes

Several diseases are slightly similar. Thus, diseases with similar features were clustered into
one class on the basis of the morbid map file with the Online Mendelian Inheritance in Man (OMIM)
disease ID and class assignment reported in the study of Goh et al. [28]. In Goh’s study, a network
of disorders and disease genes linked by known disorder-gene associations were presented. All the
known disorder-gene associations were drawn from the Morbid Map of OMIM. The disorder clustering
was mainly based on the physiological system affected by the disorder. Twenty primary disorder
classes were classified manually at first. And another two remaining general categories summarized
disorders with distinct multiple clinical features and with insufficient information for classification
respectively, thus resulting in 22 disease classes (Column 1 of Table 1). The disease genes of each
disease class were retrieved from the OMIM (accessed on January 2014) [14,30]. All disease genes were
mapped onto their Ensembl IDs, and those that do not occur in this network were excluded because
we used the PPI network reported in STRING to present our investigation. Column 2 of Table 1 lists
the number of remaining disease genes for each disease class. Detailed information on remaining
disease genes for each class is presented in Table S1.
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Table 1. Number of disease genes of 22 Online Mendelian Inheritance in Man (OMIM) disease classes.

OMIM Disease Class Number of Disease Genes

Bone 38
Cancer 172

Cardiovascular 126
Connective tissue disorder 46

Dermatological 76
Developmental 55
Ear Nose Throat 39

Endocrine 84
Gastrointestinal 26
Hematological 68
Immunological 91

Metabolic 184
Multiple 187
Muscular 60

Neurological 232
Nutritional 18

Ophthamological 92
Psychiatric 31

Renal 45
Respiratory 47

Skeletal 58
Unclassified 14

2.2. Obesity Genes

Obesity genes were retrieved from the Human Obesity Gene Map [31], in which 379 obesity genes
were curated based on published references with pieces of experimental evidence, such as transgenic
or knockout phenotype relevant to obesity. Evidence linking such genes to obesity were obtained from
176 single-gene mutation obesity cases, 50 loci related to Mendelian disorders, transgenic and knockout
murine models with 244 independent variants, 408 quantitative trait locis from animal cross-breeding
experiments, 426 findings of association studies with candidate genes and linkages from genome scans,
summarizing the genetic background of obesity [31]. We obtained 342 Ensembl IDs after mapping the
genes onto Ensembl IDs and discarding those not occurring in the PPI network reported in STRING.
Detailed information on 379 obesity genes and their Ensembl IDs are available in Table S2.

2.3. PPI Network

Several studies reported that proteins that can interact with each other are likely to share similar
functions [19–22,32–36]. Currently, numerous public databases collect PPI information derived from
various sources, such as Database of Interacting Proteins [37] and BioGRID [38]. This information is
slightly helpful in investigating different protein-related problems. In this study, we aimed to measure
the relationships between obesity and 22 disease classes. The access of proteins encoded by obesity
genes and disease genes of 22 disease classes is easy. Then, we can infer the associations between
obesity and 22 disease classes using the PPI information.

In this study, we adopted the PPI network reported in STRING (version 10.0) [39,40],
a popular public database that collects known and predicted PPIs. The PPIs in this database cover
9,643,763 proteins from 2031 organisms and are derived from (1) genomic context predictions,
(2) high-throughput laboratory experiments, (3) (conserved) co-expression, (4) automated text-mining,
and (5) previous knowledge in databases. Thus, PPIs can measure the associations between proteins
extensively. Furthermore, we downloaded the file, “9606.protein.links.v10.txt.gz,” to retrieve the
human PPIs to construct the PPI network. This file contains 4,274,001 human PPIs that cover
19,247 human proteins. Each interaction consists of two proteins, represented by Ensembl IDs, and one
score ranging between 150 and 999. This score can indicate the strength of the interaction, i.e.,
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the interaction assigned with a high score is likely to occur. For convenience, we denoted the score
of the PPI between proteins p1 and p2 by S (p1, p2). Accordingly, the PPI network was constructed
by defining proteins as nodes and interactions as edges. Each interaction score was added to the
corresponding edge as a weight.

2.4. Interaction Method

Section 2.3 discusses that we can use the proteins encoded by the obesity genes and disease genes
of 22 disease classes to evaluate the associations between obesity and 22 disease classes. For each
disease class, we investigated each disease gene to evaluate its associations to obesity genes. In detail,
the disease gene denoted as g and the obesity genes were first mapped onto the PPI network mentioned
in Section 2.3. Then, this gene was linked to the obesity genes, and the interaction with the highest
score was found. This highest score was assigned to g as the maximum interaction score, denoted by
MIS, which is defined as follows.

MIS(g) = max{S(g, g’): g’ is an obesity gene} (1)

A disease gene assigned a high MIS means the disease gene is highly related to at least one obesity
gene, thereby inducing its strong associations with obesity.

In this study, we used the PPI network reported in STRING. This network contains considerable
noise, which may reduce the reliability of the outcome of Equation (1), although the PPIs in this
network can measure the associations between proteins extensively. We performed a permutation
test to further evaluate the MIS of each disease gene and increase the reliability of MIS. A total of
1000 Ensembl ID sets were randomly produced, denoted as D1, D2, D3, . . . , D1000, in which each set
contained many Ensembl IDs similar to those of obesity genes. Then, the MIS of disease gene g is
calculated for each produced set as follows:

MISi(g) = max{S(g, g’): g’ ∈ Di} (i = 1, 2, . . . , 1000) (2)

We can further evaluate the reliability of MIS on the obesity gene set for each disease gene by
comparing the MISs on 1000 randomly produced sets and MIS on obesity gene set. If the MIS on the
obesity gene set of one disease gene is high, and the MISs on the randomly produced sets are also high,
then this gene will not be highly related to obesity because this gene constantly has robust linkages
with randomly produced gene sets and is indistinct for the obesity gene set. Thus, we computed a
measurement, namely, p-value, for each disease gene g as follows.

p_value(g) =
Λ

1000
(3)

where Λ represents the number of MISs on randomly produced sets that were higher than the MIS
on the obesity gene set. The p-value can clearly measure the relative strength of linkages between
disease gene and obesity. A disease gene that is receiving a low p-value indicates its strong associations
to obesity.

2.5. Quantitative Analysis Method

Each disease gene of one disease class was assigned a p-value through interaction method. We can
infer the disease class that is highly related to obesity by a detailed investigation of the p-values of the
disease genes of each disease class. In this study, we proposed a quantitative analysis method that is
slightly similar to the receiver operating characteristic (ROC) curve analysis [41].

The proportion of disease genes receiving p-value less than this threshold was computed for each
disease class given a threshold of the p-value. Then, a proportion–threshold (PT) curve was plotted for
each disease class using the threshold of p-value as the X-axis and the corresponding proportion as the
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Y-axis. If a curve follows a sharply increasing trend similar to the ROC curve when the threshold of
p-value is low, then the corresponding disease class is highly related to obesity. The area under each
PT curve was calculated to provide a further quantitative evaluation of the relationship between the
disease class and obesity. For convenience, this area was called Area Under Curve (AUC). A disease
class that was assigned a high AUC is considered highly related to obesity.

3. Results

In this study, we inferred the relationship between obesity and 22 disease classes from a network
perspective. Figure 1 illustrates the detailed procedures. This section presents the obtained results
through the proposed method.

1 
 

 
 Figure 1. Flowchart of the investigation procedures of this study.

3.1. Results of the Interaction Method

According to the interaction method mentioned in Section 2.4, each disease gene in one disease
class was first assigned an MIS, thereby indicating its associations with obesity genes. The MISs for
all disease genes are provided in Supplementary Materials Table S3. Then, a p-value was further
calculated for each disease gene; this p-value is also provided in Table S3.

3.2. Quantitative Analysis Results

Each disease gene was labeled by a p-value through the interaction method. The p-values
of disease genes in one disease class were collected to evaluate the relationship between obesity
and 22 disease classes. A series of proportions were obtained for each disease class after setting
different thresholds for p-value, hence resulting in a PT curve as depicted in Figure 2. We further
calculated the AUC for each PT curve to quantify the associations between obesity and 22 disease
classes (Figure 3). The disease class “nutritional” received the highest AUC (0.9621), followed by
“endocrine” and “psychiatric.” Intuitively, the top two disease classes “nutritional” and “endocrine” are
highly related to obesity, thereby indicating the reliability of the results obtained through our method.
In addition, the disease classes “psychiatric” and “bone” followed the aforementioned diseases.
However, their associations with obesity are unnoticeable, thus providing new insights for connecting
the two diseases and obesity.
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2 

 

Figure 2. Proportion–threshold (PT) curves for 22 disease classes. X-axis represents the threshold of
p-value (cf. Equation (3)), and Y-axis denotes the proportion of disease genes receiving the p-values less
than the threshold. 

2 

 

Figure 3. Bar chart of the Area Under Curves (AUCs) of 22 disease classes. The disease class
“nutritional” received the highest AUC, thereby indicating that this class is inferred to be highly
related to obesity.
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4. Discussion

Obesity has been extensively reported as a health-threatening medical condition for humans,
hence increasing the risk for various pathological diseases, including cardiovascular diseases,
musculoskeletal disorders, and cancers. In this study, we revealed the quantitative correlation between
obesity and 22 disease classes. According to our results, disease classes “nutritional” and “endocrine”
are the top two relative diseases of obesity. Obesity, as a contributing and risk factor for the pathogenesis
of the two diseases, is reasonable because obesity is induced by nutritional intake and consumption
imbalance and may involve various endocrine regulation processes [42,43], thereby validating the
efficacy and accuracy of our results. Furthermore, we can find additional pieces of evidence by detailed
analyses of the disease genes of the two diseases, partially revealing the potential obesity-associated
pathogenesis. In addition, disease classes “psychiatric” and “bone” acquired the third and fourth
places, respectively, thereby indicating strong associations with obesity. However, their linkages to
obesity are unnoticeable, unlike “nutritional” and “endocrine”. Notably, the following classifications
include two specific subgroup named metabolic catalogue and cardiovascular catalogue. According to
the classification rule provide by the Goh et al. [28], the general “macroscopic” metabolic catalogue
can be detailed divided into nutritional diseases and other nutrition unrelated “metabolic” diseases,
due to the different pathogenic emphasis (nutrition related or not). Therefore, such discriminative
emphasis of metabolic disease and nutritional disease may lead to their different correlation ship with
obesity. Even so, in our prediction list metabolic diseases and another effective category, cardiovascular
diseases have also been shown to be related to obesity though ranking behind the optimal classes we
have mentioned above. Due to the space limitation, in this study, we only selected the four diseases
for our analysis. The analyses on disease genes with p-values less than 0.05 can help us uncover
the relationship between the disease class and obesity because 0.05 is a widely accepted cutoff on
the significance level of the test in statistics. Thus, we removed this type of disease genes of the
aforementioned four disease classes and listed them in Tables 2–5.

4.1. Analysis of Disease Genes of the “Nutritional” Class

Among the 22 disease classes, “nutritional” was inferred to have the highest correlation with
obesity. Obesity is induced by abnormal energy intake and consuming imbalance; hence, this disease
class can be induced as the potential obesity-associated disease subgroup reasonably. For the detailed
pathological mechanisms, we can extract 15 functional proteins with p-values less than 0.05 according
to the results of the interaction method (Table 2), which may mediate the relationships between obesity
and the disease class.

Table 2. Information on important disease genes of “nutritional”.

Gene Symbol MIS p-Value

UCP1 969 <0.001
POMC 998 <0.001
PPARG 999 <0.001
AGRP 999 <0.001
MC4R 999 <0.001
PCSK1 970 <0.001

PPARGC1B 978 <0.001
UCP3 960 <0.001
GHRL 994 <0.001

ADRB3 964 <0.001
PYY 993 <0.001

ENPP1 979 <0.001
NR0B2 993 0.027
SIM1 879 0.044

HTR2A 949 0.046

MIS: Maximum Interaction Score.
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NROB2 (ENSP00000254227), as a transcriptional regulator, is generally reported to contribute
to steroid hormone metabolisms and co-activation function of the p300/CBP-mediated transcription
complex [44,45]. Recent publications confirmed that NROB2-induced fat accumulation may have
direct connections with initiating and progressing a nutritional disease, that is, nonalcoholic fatty
liver disease [46]. NROB2 has been confirmed to participate in CD11b-mediated obesity-induced
insulin resistance during the biological processes of fat accumulation, thereby contributing to the
proliferation of adipose tissue macrophages [47] and promoting fat accumulation, resulting in
obesity [48]. In addition to NROB2, another protein, namely, SIM1 (ENSP00000262901), is also a
potential regulator that contributes to the pathogenesis of the nutritional disease. SIM1 has been
reported to be related to appetite disorders, a specific subtype of nutritional diseases, because
of its potential contribution to nutritional disease. It contributes to the regulation of human
weight and has also been reported to be abnormally inactivated in obesity mouse model [49,50],
implying that the inactivation of SIM1 may accompany the initiation and progression of obesity.
UCP1 (ENSP00000262999), the uncoupling protein 1, has been confirmed to further participate in the
pathogenesis of abnormal gastric emptying and gut hormone release processes, confirming its potential
biological functions for nutritional disease [51,52]. Recent studies on energy intake and reproductive
output reported that UCP1 participates in a specific biological process, namely, thermogenic respiration
in adipose tissue, negatively regulating fat accumulation because of the potential contribution of UCP1
to obesity [53]. POMC (ENSP00000264708) is generally reported to participate in stimulating adrenal
glands to release cortisol [54]. The abnormal expression and release of cortisol have been reported to
participate in the pathogenesis of zinc metabolism disorders clinically [55]. Furthermore, the release of
cortisol and fat accumulation have been reported to be abnormally regulated during the development
of obesity [56]. Therefore, the abnormal expression of nutritional disease-associated gene POMC
may definitely contribute to obesity [55]. PPARG (ENSP00000287820), a specific steroid hormone
coactivator, has also been reported to participate in obesity-associated biological processes [57,58].
In 2015, a specific study on obese people with PPARG variants has confirmed that altered insulin,
high low-density lipoprotein, and diastolic blood pressure are risk phenotypes that are induced by
PPARG in obese populations [59]. PPARG becomes a functional nutritional disease-associated protein
because these phenotypes (altered insulin level, high low-density lipoprotein, and abnormal blood
pressure) are potential phenotypes for various nutritional diseases [60]. Therefore, obesity may directly
contribute to the pathogenesis of a certain nutritional disease, and partially attributing the contribution
of obesity to nutritional disease to PPARG is reasonable.

4.2. Analysis of Disease Genes of the “Endocrine” Class

In addition to “nutritional,” obesity has also been inferred to promote the pathogenesis of
“endocrine” disease class at the genetic level. Obesity, as an energy metabolism abnormality, may have
potential relationships with the effective system in humans because the endocrine system contains
various energy metabolism-regulating hormones. For the disease genes of this class, 38 functional
genes received p-values less than 0.05 (Table 3), which may link obesity to this disease. We investigated
the expression patterns of these genes across different tissues through the online databases from the
Human Protein Atals [61], the Genotype-Tissue Expression (GTEx) [62] and FANTOM5 project [63],
and obtained the tissues/organs where those 38 genes were significantly enriched (Table S4). Figure 4
shows the numbers of genes enriched in different tissues or organs based on genes expression
levels from GTEx database, which has the fewest missing data comparing with the other two.
Among 38 genes, 11 are not enriched in any tissue but widely-expressed in most or all of the tissues.
However, we can see 6, 3, and 2 genes enriched in pituitary gland, adrenal gland and thyroid
gland, respectively. Meanwhile, other tissues/organs such as liver, pancreas, and testis are also
involved in endocrine functions, and the hypothalamus is well-known as the neural control center
of endocrine system in human. These results demonstrated again the connection between endocrine
system and obesity.
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Figure 4. Gene expression enrichment in tissue/organ of 38 “endocrine”-class genes based on GTEx.

RETN (ENSP00000221515) is a functional hormone that mediates the insulin capability to
stimulate glucose uptake into adipose cells, thereby contributing to the normal regulation of endocrine
functions [64,65]. Secreted by adipocytes, the protein coding by RETN may link obesity to type II
diabetes considering its functional biological functions on regulating insulin activity and biological
source [66]. Therefore, obesity may be connected to the pathogenesis of endocrine disease via specific
predicted genes, such as RETN. HGF (ENSP00000222390) has also been induced to reveal the linkage
between obesity and endocrine diseases. Insulin resistance, as an endocrine-regulating abnormality,
is directly related to various endocrine diseases, including diabetes [67,68]. Furthermore, HGF acts as
a growth factor for a broad spectrum of tissues and cell types and is extensively reported to participate
in regulating high-fat-diet-induced obesity and improve insulin resistance in mice [69,70]. In summary,
obesity may also contribute to the pathogenesis of endocrine diseases. GCK (ENSP00000223366),
a glucokinase, is also identified to link obesity to endocrine diseases. The abnormal biological
function of such protein, as a mitochondria-locating energy-regulating gene, is widely reported
in obese populations, indicating its specific biological functions for obesity occurrence [71,72]. Recent
publications further confirmed that GCK may be associated with non-insulin-dependent diabetes
mellitus [73,74], maturity-onset diabetes of the young, type 2 [74], and persistent hyperinsulinemic
hypoglycemia of infancy [75], thereby validating the potential biological contributions of obesity to
this endocrine pathogenesis. The protein, INS (ENSP00000250971), encodes the famous glucose
homeostasis-regulating hormone insulin. INS regulates hormone stability and is also reported
to contribute to obesity, confirming the potential relationship between obesity and endocrine
diseases [76,77]. AVP (ENSP00000369647) as the following predicted gene has been confirmed
to be abnormally hyperactivity in obesity [78]. Further study on the effective role of AVP in
endocrine disease confirmed that such gene may be associated with specific syndrome induced
by inappropriate antidiuretic hormone secretion (SIADH) [79], validating the co-related role of such
gene in multiple pathogenesis.
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Table 3. Information on important disease genes of “endocrine”.

Gene Symbol MIS p-Value Gene Symbol MIS p-Value

RETN 981 <0.001 FSHB 999 <0.001
PPP1R3A 954 <0.001 CYP11B1 973 <0.001

NEUROD1 994 <0.001 IRS1 999 <0.001
MC2R 998 <0.001 KCNJ11 999 <0.001

CYP17A1 994 <0.001 AR 999 <0.001
AVP 997 <0.001 ABCC8 999 <0.001
INS 999 <0.001 IL6 999 <0.001

PPARG 999 <0.001 STAT5B 999 <0.001
LIPC 984 <0.001 HNF4A 999 <0.001

AVPR2 804 <0.001 ENPP1 979 <0.001
PTPN1 999 <0.001 IRS2 999 <0.001

IGF2BP2 989 <0.001 CAPN10 923 <0.001
SSTR5 968 0.013 PAX8 954 0.014
GCK 989 0.017 TBX19 937 0.017

TSHR 980 0.017 SLC2A4 994 0.026
PAX4 925 0.03 STAR 942 0.032
HGF 992 0.033 BMP15 699 0.034

HNF1A 993 0.036 GPD2 924 0.038
HMGA1 984 0.041 GCGR 960 0.043

4.3. Analysis of Disease Genes of the “Psychiatric” Class

According to our results, psychiatric disease class is the third most related disease to obesity.
Eleven disease genes of this class were assigned the p-values of less than 0.05, as listed in Table 4.
Most of those genes have no enrichment in expression pattern across tissues, while four are enriched in
central nervous system (Table S4), suggesting the potential role of those genes in psychiatric disorders.
The analysis of several of these genes can validate the potential pathogenic connections between
obesity and psychiatric disease.

Table 4. Information on important disease genes of “psychiatric”.

Gene Symbol MIS p-Value

DRD4 972 <0.001
SLC6A4 961 <0.001

AKT1 999 <0.001
APOL4 742 <0.001
COMT 981 <0.001
BDNF 999 <0.001

SLC6A3 984 0.017
CHI3L1 842 0.024
APOL2 662 0.035
HCRT 967 0.043

HTR2A 949 0.046

The first candidate, DRD4 (ENSP00000176183), is a G-protein coupled receptor that contributes
to the neuronal signaling in the mesolimbic system of the brain that regulates emotion and
behavior [80,81]. In addition, DRD4 is clustered as dopamine proteins and is reported to reveal
the potential relationship between weight gain, obesity, and seasonal affective disorder [82] not
only confirming the potential biological connections between obesity and psychiatric disease but
also validating the regulator role of DRD4 during this pathogenesis. Functional gene SLC6A4
(ENSP00000270349) has also been predicted to be a correlated gene of obesity and psychiatric disease.
Early in 2015, a specific study [83] on the serotonin transporter confiremd that our predicted gene
SLC6A4 participate in processing emotional stimuli and abnormal brain function in pathogenic status.
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Another study [84] in 2016 implied that our predicted gene which also known as 5-HTT may be related
to the obesity of Portuguese origin, validating our prediction. Moreover, APOL2 (ENSP00000249066) is
a regulator for the movement of lipids in the cytoplasm and the binding of lipids to organelles [85,86].
In 2008, a GWAS study [87] on schizophrenia, a typical psychiatric disease, has confirmed that APOL2
may also contribute to the pathogenesis of schizophrenia given its potential contribution to psychiatric
diseases. In addition to its lipid-regulating role, this gene is reported to contribute to a reduction in
weight gain, stored fat, and circulating lipids, with a low expression profile in the obese population [88],
thus confirming the potential contribution of APOL2 and obesity to the pathogenesis of psychiatric
diseases. Then, CHI3L1 (ENSP00000255409) is generally reported as a carbohydrate-binding lectin
with a preference for chitin [89]. YKL-40 is a pro-inflammatory glycoprotein regulated by CHI3L1 in
obese populations and is extensively reported to contribute to the progression of Alzheimer’s disease
given its contribution to psychiatric diseases [90,91]. Coincidentally, CHI3L1 and chitin enhances obese
inflammation and upregulates the plasma levels of pro-inflammatory glycoprotein YKL-40 according
to recent publications [89,92], hence revealing the specific inflammatory regulatory role of CHI3L1 in
obese populations and validating the potential relationships between obesity and psychiatric diseases
mediated by CHI3L1. COMT (ENSP00000354511) has also been predicted to be a co-related gene for
both obesity and psychiatric diseases. A case study [93] in 2015 validated that the polymorphisms of
COMT may be correlated with obesity occurrence. Further study on COMT confirmed that such gene
turns out to be one of the potential pathogenic gene for Parkinson disease, validating the efficacy and
accuracy of our prediction.

4.4. Analysis of Disease Genes of the “Bone” Class

According to our results, the disease class “bone” was the fourth obesity-related disease.
Four disease genes received p-values less than 0.05, as listed in Table 5. All of these genes are widely
expressed in most or all tissues (Table S4). The analyses on these genes can partly uncover the
relationship between “Bone” and obesity.

Table 5. Information on important disease genes of “bone”.

Gene Symbol MIS p-Value

ALPL 969 <0.001
ANKH 610 0.015

TNFRSF11B 895 0.034
EXT1 968 0.043

ANKH (ENSP00000284268) is a multipass transmembrane protein that mainly participates in
regulating intra- and extracellular levels of inorganic pyrophosphate (PPi) as functional transporter [94].
Ankylosing spondylitis is a type of arthritis that involves the inflammation of the joints of the
spine, hence involving the bone system [95]. ANKH is a specific bone disease-associated gene [96]
and is also reported to participate in the biological processes of obesity, thereby corresponding to
our results [97]. Obesity may also be linked to specific bone diseases through various functional
genes, including ANKH, considering the specific contribution of ANKH in bone disease and fat
accumulation. TNFRSF11B (ENSP00000297350) is a member of the TNF receptor superfamily, involving
in osteoclastogenesis [98,99]. In 2016, TNFRSF11B was reported to participate in obesity-induced
metabolic bone disease of women given its detailed relationship with bone disease [100]. Furthermore,
a specific study on obesity-mediated inflammatory microenvironment in 2011 validated the specific
contribution of TNFRSF11B as a bone disease-associated gene on the pathogenesis of obesity [101].
ALPL (ENSP00000363965) is a member of the alkaline phosphatase family of proteins, which participate
in skeletal mineralization in bones [102,103]. The polymorphisms of mineralization genes, such as
ALPL, are reported to be directly related to obesity according to recent publications, hence indicating
the accompanying role of ALPL for obesity [97]. EXT1 (ENSP00000367446), encoding a member
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of transmembrane glycosyltransferase has been reported to participate in the obesity associated
biological processes in the Lebanese Arab population [104]. As for its contribution on bone diseases,
in 2013, a mutation screening [105] for EXT1 in Chinese population confirmed that such gene may be
functional related with a specific bone disease, osteochondromas, validating the efficacy and accuracy
of our prediction.

Based on the analyses, certain diseases of the four disease classes are highly related to obesity,
thereby further inferring the close associations between these diseases and obesity. This study
suggested that “psychiatric” and “bone” classes are obesity-related diseases, which may provide
new insights for investigating their pathogenesis.

5. Conclusions

This study provided an investigation on the relationship between obesity and 22 disease classes.
The relationship between the disease class and obesity was evaluated by the linkages between proteins
encoded by the disease genes and obesity genes by using the PPI network reported in STRING.
The results indicated that “nutritional” and “endocrine” were most related to obesity; these results are
consistent with our general knowledge. In addition, “psychiatric” and “bone” classes followed the
abovementioned two diseases, which do not obviously relate to obesity. However, further analysis
uncovered their potential associations with obesity. Our new finding aims to provide new insights to
investigating obesity-related diseases.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4425/8/12/392/s1.
Table S1: Disease genes of 22 OMIM disease classes and their Ensembl IDs, Table S2: Gene symbols of
379 obesity genes and their Ensembl IDs, Table S3: Maximum interaction scores and p-value for each disease gene
of 22 disease classes, Table S4: The tissues/organs where genes related to “Endocrine”, “Psychiatric” and “Bone”
were significantly enriched.
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