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Abstract 

Background:  Metabolic predictors and potential mediators of survival in sepsis have 
been incompletely characterized. We examined whether machine learning (ML) tools 
applied to the human plasma metabolome could consistently identify and prioritize 
metabolites implicated in sepsis survivorship, and whether these methods improved 
upon conventional statistical approaches.

Methods:  Plasma gas chromatography–liquid chromatography mass spectrometry 
quantified 411 metabolites measured ≤ 72 h of ICU admission in 60 patients with 
sepsis at a single center (Brigham and Women’s Hospital, Boston, USA). Seven ML 
approaches were trained to differentiate survivors from non-survivors. Model perfor‑
mance predicting 28 day mortality was assessed through internal cross-validation, and 
innate top-feature (metabolite) selection and rankings were compared across the 7 ML 
approaches and with conventional statistical methods (logistic regression). Metabolites 
were consensus ranked by a summary, ensemble ML ranking procedure weighing their 
contribution to mortality risk prediction across multiple ML models.

Results:  Median (IQR) patient age was 58 (47, 62) years, 45% were women, and 
median (IQR) SOFA score was 9 (6, 12). Mortality at 28 days was 42%. The models’ 
specificity ranged from 0.619 to 0.821. Partial least squares regression-discriminant 
analysis and nearest shrunken centroids prioritized the greatest number of metabolites 
identified by at least one other method. Penalized logistic regression demonstrated 
top-feature results that were consistent with many ML methods. Across the plasma 
metabolome, the 13 metabolites with the strongest linkage to mortality defined 
through an ensemble ML importance score included lactate, bilirubin, kynurenine, 
glycochenodeoxycholate, phenylalanine, and others. Four of these top 13 metabolites 
(3-hydroxyisobutyrate, indoleacetate, fucose, and glycolithocholate sulfate) have not 
been previously associated with sepsis survival. Many of the prioritized metabolites are 
constituents of the tryptophan, pyruvate, phenylalanine, pentose phosphate, and bile 
acid pathways.

Conclusions:  We identified metabolites linked with sepsis survival, some confirm‑
ing prior observations, and others representing new associations. The application of 
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ensemble ML feature-ranking tools to metabolomic data may represent a promising 
statistical platform to support biologic target discovery.

Keywords:  Artificial intelligence, Machine learning, Metabolism, Metabolomics, Sepsis

Background
Mortality from sepsis remains unacceptably high [1], compelling an ongoing search for 
novel disease mediators which may represent therapeutic targets. Metabolic alterations 
have represented an under-explored pathophysiologic axis in sepsis [2, 3]. Unbiased, 
high-dimensional molecular platforms for profiling hundreds of circulating metabolites 
in concert (metabolomics) [4, 5] have opened opportunities for data-driven, systems 
biology approaches to clinical risk prediction as well as the search for potential novel 
therapeutic targets in humans [6].

Although the application of metabolomics in critical care research has increased over 
recent years [2, 7–9], optimal statistical analytic approaches to such high-dimensional 
data remain uncertain, particularly when there is a large imbalance between the number 
of metabolites profiled relative to the number of clinical events. Conventional statisti-
cal methods such as logistic regression may have important limitations when applied to 
data with high degrees of internal correlation (including the metabolome), missingness, 
subclass heterogeneity, and imbalance between exposures (metabolites) and outcomes—
frequent challenges in high-dimensional human biologic data in critically cohorts. Ana-
lytic approaches using machine learning (ML), a subset of artificial intelligence, may 
overcome some of these challenges [10]. Such approaches have recently been success-
fully applied to metabolomics data with a focus on building clinical prediction models 
[11]. However, less focus has been placed on how robustly and consistently ML could 
enhance biologic discovery through statistical mining of the metabolome to identify 
metabolites may show the strongest links with clinical outcomes.

In the present study, we hypothesized that parallel and ensemble ML methods could 
facilitate identification of individual metabolites potentially implicated in sepsis survi-
vorship using gas chromatography–liquid chromatography (GC/LC) mass spectrometry 
profiling of the human metabolome. Our two complementary aims were: (1) biologically, 
to uncover metabolite signals associated with mortality in sepsis; and (2) methodologi-
cally, to determine to what extent metabolite selection and prioritization through ML 
provided consistent, robust identification of metabolites despite a small cohort size, 
and whether these methods enhanced metabolite–outcomes links beyond conventional 
logistic regression. This study extends prior analyses from this cohort [12, 13] which 
employed conventional statistical methods including logistic regression, now com-
paring observations from ML approaches with those from the conventional statistical 
approaches.

Methods
Study cohort

The study population consisted of 60 adult patients with sepsis—30 of whom also 
had acute respiratory distress syndrome (ARDS)—admitted to the Medical Inten-
sive Care Unit (ICU) at Brigham and Women’s Hospital in Boston, MA, USA (Regis-
try of Critical Illness; RoCI), as previously described. [12] The study was approved by a 
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local institutional ethics board. All subjects provided informed consent. Patients were 
enrolled in the larger RoCI  cohort study between September,  2008 and May,  2010. In 
a subset of 225 patients, interleukin (IL)-18 levels were analyzed in a separate study of 
inflammasome-regulated cytokines in acute lung injury​ [12]. As a follow-up to this study, 
RoCI  patients were selected for metabolomic profiling on the basis of  whether ARDS 
complicated sepsis or not, and whether IL-18 was elevated or not (sepsis patients with 
low IL-18 levels and ARDS with high IL-18 levels, were included). This initial metabo-
lomics study identified pathway analytes of interest that were independently validated in 
a separate critical illness cohort (the CAPSOD cohort). [14]. No outcomes enrichment 
nor selection on the basis of metabolite features was undertaken. Herein, we set out to 
evaluate differential analytic approaches to this dataset.

Plasma metabolomics

Plasma was obtained from patients within 72 h of ICU admission. Gas and liquid chro-
matography and mass spectrometry was performed by Metabolon, Inc., as previously 
described [12]. Briefly, blood samples were collected in EDTA-coated blood collection 
tubes within 72 h of ICU admission and processed within 4 h after collection. The liquid 
chromatography/mass spectrometry (LC/MS) portion of the platform was performed 
on a Waters ACQUITY UPLC and a Thermo-Finnigan LTQ mass spectrometer, consist-
ing of an electrospray ionization (ESI) source and linear ion-trap (LIT) mass analyzer. 
The gas chromatography/mass spectrometry (GC/MS) portion of the platform was per-
formed on a Thermo-Finnigan Trace DSQ fast-scanning single-quadrupole mass spec-
trometer using electron impact ionization. Extracts were reconstituted with water and 
methanol. Data from 411 metabolites were available. Drug metabolites were excluded 
from this analysis.

Statistical methods

Metabolites were pre-processed, filtered, and imputed where necessary (Additional 
file 1: Methods). This included a log10 transformation. Metabolites with > 10% of values 
below the lower detection limit were excluded from the analysis. We fit 7 ML and logis-
tic regression models to predict mortality and then extracted the individual metabolites 
which contributed to the most accurate prediction models, viewing this as a measure of 
association with death. We performed multiple diverse ML methods (random forests, 
support vector machines, random k-nearest neighbors, nearest shrunken centroids, 
adaptive bagging/boosting, and Lasso regression), conventional bilinear factor mod-
els (partial least squares-discriminant analysis [PLS-DA]), as well as penalized logistic 
regression, predicting mortality using the post-processed metabolomics data. Models 
were trained under the precision recall (PR) curve using 50 repeats of fivefold cross-
validation. Training under the PR curve was undertaken given theoretical advantages in 
imbalanced datasets, including providing a better assessment of the performance of a 
classifier on mortality [15]. Model sensitivity was assessed. For comparison, under the 
PR curve, a no skill classifier (one that performs no better than classifying all patients 
as positive) has an area under the PR curve equal to the observed event rate in the study 
population (0.42).



Page 4 of 13Kosyakovsky et al. Intensive Care Medicine Experimental           (2022) 10:24 

In the primary analysis, innate feature selection and ranking tools of ML models were 
used to prioritize metabolites (Additional file 1: Methods). The outcome used for pri-
oritization was prediction of 28-day mortality. The top metabolites contributing to suc-
cessful predictive model generation were compared across each method. An ensemble 
ranking procedure hybridizing multiple ML methods run in series provided a summary 
ranking of metabolites [16], and the variables with ensemble importance scores ≥ 0.5 
were identified. This method performs iterative and parallel ML steps, and ranks top fea-
tures (metabolites) based on the strength and consistency with which they are linked 
with the outcome. For each fitted model, we reported the metabolites that were selected/
ranked using each model’s implicit selection/ranking procedure. We assessed the con-
sistency between these different sets of selected (ranked) metabolites. We also assessed 
the performance of each of these ML models. In view of obtaining a more robust final 
set of important metabolites, we aimed to utilize the information obtained by each of 
these models. Thus, we created a score that represented the percentage of times that a 
metabolite was selected/ranked highly across all ML models.

All analysis was conducted in R v3.3.2 using packages caret (6.0–79), earth (4.6.2), 
spls (2.2–2), klaR, randomForest (4.6–14), RWeka (0.4–38), fastAdaboost (1.0.0), ada-
bag (4.2), plyr (1.8.4), sparseLDA (0.1–9), glmnet (2.0–16), Matrix (1.2–14), gbm (2.1.3), 
pamr (1.55), and kernlab (0.9–26).

Results
Patient cohort

Median (IQR) patient age was 58 (47, 62) years and 45% of patients were women 
(Table 1). Median (IQR) SOFA and APACHE II scores were 9 (6, 12) and 30 (23, 37), 
respectively. Mortality at 28 days was 42%. Patients who died had higher illness severity 
scores (SOFA, p = 0.004; APACHE II, p = 0.02), more frequently presented with acute 
respiratory failure (p = 0.03) and ARDS (p < 0.001, as well as had a prior history of malig-
nancy (p < 0.001).

Metabolome in sepsis

A total of 158 metabolites passed quality control and pre-processing filters and were 
included in the analysis, representing 8 super-pathways (Additional file  1: Table  S1). 
Overall differences in the metabolome were observed among survivors and non-survi-
vors (Fig. 1). Twenty principal components were required to explain 80% of the variance 
in the metabolome (Additional file 1: Figs. S1 and S2).

Model training and performance

Model specificity (for 28-day mortality) ranged from 0.619 to 0.821 (Additional file  1: 
Table S2). Specificity of survival status (that is, the ability of a model to correctly identify 
people who did not die) was highest for PLS-DA. Several metabolites were consistently 
prioritized by multiple ML methods (Fig. 2a, b), which are also separately categorized 
by metabolic super-pathway (Additional file 1: Fig. S3). PLS-DA and nearest shrunken 
centroids prioritized the greatest number of metabolites identified by at least one other 
method. Logistic regression and random forests selected a similar proportion of prior-
itized metabolites. Sparse linear and flexible discriminant analyses identified the fewest 
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metabolite contributors to mortality prediction, although the metabolites ranked were 
frequently ranked by multiple other methods. Logistic regression models penalized for 
multiple hypothesis testing demonstrated consistent results with many ML methods. 
The metabolites ranked the most frequently by multiple models included lactate, bile 
acid metabolites (glycolithocholate sulfate and glycochenodeoxycholate) and amino acid 
metabolism (kynurenine [tryptophan metabolism], 3-hydroxyisobutyrate [valine metab-
olism], and phenylalanine) (Fig. 2c). Receiver operating characteristic (ROC) curves for 
the assessment of each ML model’s performance are included in Additional file 1: Fig. 
S4.

Metabolites linked with survival

Across the metabolome, the 13 metabolites with the strongest linkage to mortal-
ity defined through an ensemble importance score (representing the consistency and 
strength with which a metabolite was highly selected across all the ML models) ≥ 0.5 
included lactate, bilirubin, kynurenine, glycolithocholate sulfate, glycochenodeoxycho-
late, indoleacetate, phenylalanine, 3-hydroxyisobutyrate, beta-hydroxyisovalerate, tauro-
cholenate sulfate, 3-methoxytyrosine, fucose, and hydroxyisovaleroylcarnitine (Table 2, 
Additional file 1: Fig. S5). These top metabolites are linked with the tryptophan, pyru-
vate, phenylalanine, pentose phosphate, and bile acid metabolic pathways. Distributions 
of actual and imputed datasets are provided for each metabolite in Additional file  1: 
Table S3.

Table 1  Baseline patient demographics

Data are presented as number (proportion) or median (interquartile range). Percentages may not sum to 100 due to 
rounding. APACHE Acute Physiology and Chronic Health Evaluation, ARDS acute respiratory distress syndrome, CKD chronic 
kidney disease, COPD chronic obstructive pulmonary disease. *Comparing survivors and non-survivors (Chi-squared 
likelihood test for categorical variables and Wilcoxon rank sum test for continuous variables). **Median (IQR) estimated 
glomerular filtration rate at admission = 47.6 (25.1, 88.3) mL/min/1.73 m2 in n = 60 patients in the cohort

Overall (n = 60) Survived (n = 35) Died (n = 25) p-value*

Age, years 58 (47,62) 53 (46, 63) 62 (48, 67) 0.33

Women 27 (45%) 17 (49%) 10 (40%) 0.51

Race/ethnicity 0.41

 White 53 (88%) 29 (83%) 22 (88%)

 Black 3 (5%) 4 (11%) 1 (4%)

 Hispanic 3 (5%) 2 (6%) 1 (4%)

 Asian 1 (2%) 0 (0%) 1 (4%)

Comorbidities

 Diabetes 12 (20%) 8 (23%) 4 (16%) 0.44

 Malignancy 23 (48%) 10 (29%) 19 (76%)  < 0.001

 CKD** 16 (27%) 6 (18%) 10 (40%) 0.06

 Liver disease 5 (8%) 3 (9%) 2 (8%) 0.91

 COPD 7 (12%) 4 (11%) 3 (12%) 0.95

Illness severity

 ARDS 30 (50%) 12 (34%) 18 (72%)  < 0.001

 Respiratory failure 51 (85%) 27 (77%) 24 (96%) 0.03

 SOFA score 9 (6, 12) 8 (5, 10) 11 (7, 15) 0.004

 APACHE II score 30 (23,37) 29 (22, 33) 35 (26, 39) 0.02
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Discussion
The complementary objectives of this study were: (1) biologically, to uncover metabo-
lites associated with sepsis mortality; and (2) methodologically, to evaluate ML meth-
ods as tools to support metabolite selection and prioritization in association studies, 
comparing their performance to that of conventional statistical methods. Across the 
broad metabolome profiled, top “hits” identified by ML methods included metabolites 
with well-established clinical importance (including lactate and bilirubin), as well as 
metabolites with less established links to sepsis outcomes (including those relating 
to tryptophan, pyruvate, phenylalanine, pentose phosphate, and bile acid metabo-
lism). An integrated, ML-based ensemble ranking method for prioritizing metabolites 
based on the strength and consistency of their linkage with survival provided robust 
metabolite rankings. The ensemble method combined the ranking results of multi-
ple training models in order to obtain a robust set of important metabolites. Overall, 
these findings support that the application of ML methods metabolomics data may 

Fig. 1  Heatmap showing normalized metabolite levels grouped by super-pathway among patients with 
sepsis. Heatmap showing normalized metabolite levels (rows), grouped by super-pathway, among patients 
with sepsis following hierarchical clustering (dendrogram, top); survival status is annotated (grey = yes, 
black = no). Differences in the metabolome among survivors and non-survivors were noted across multiple 
metabolic super-pathways
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support and possibly enhance biologic discovery, even in small cohorts of critically ill 
patients; further studies in larger cohorts will be needed to generalize these results.

Sepsis is a major catabolic insult that results in profound changes in carbohydrate, 
fat, and amino acid metabolism [17, 18]. Several metabolites are routinely used in 
clinical practice for prognostication and treatment decisions, including lactate [19, 
20]. Serum lactate may rise in sepsis due to mitochondrial dysfunction, adrenergic 
signaling, impaired hepatic metabolism, and tissue hypoxia and resultant anaerobic 
respiration [21–23]. The prioritized identification of lactate as a “top” metabolite by 
the ensemble consensus ranking procedure herein provides an important marker 
of external validity (effectively, a positive control for the statistical methods). Simi-
larly, levels of bilirubin and bile salt metabolites are increased in sepsis and have been 

Fig. 2  Comparison of top metabolites selected by each analysis method’s innate feature selection algorithm. 
Comparison of top metabolites selected by each analysis method’s innate feature selection algorithm, 
identifying metabolites that more meaningfully contribute to successful sepsis mortality prediction models. 
Such approaches may identify measures of association and individual metabolic links with mortality. 
Agreement was noted between the lists of top metabolites identified by several machine learning methods, 
which also overlapped with those identified by conventional panelized logistic regression. FDA flexible 
discriminant analysis, GBM generalized boosted regression models, LR logistic regression, NSC nearest 
shrunken centroids, PLS-DA partial least squares-discriminant analysis, sparse LDA sparse discriminant analysis
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associated with increased mortality; proposed mechanisms include attenuated bile-
acid transporter production and hepatic hypoperfusion, as well as enhanced cytokine 
and nitric oxide production with subsequent inflammation-mediated cholestasis [24, 
25]. Our findings consistently demonstrated strong links between numerous other bil-
iary pathway metabolites and sepsis survivorship. In addition, our study corroborated 
previously documented associations of several amino acid pathway metabolites with 
sepsis survivorship, including kynurenine (a downstream tryptophan metabolite) and 
phenylalanine [12, 13]. Elevated kynurenine levels have been previously identified as a 
predictor of the development of sepsis in trauma patients, and have also been associ-
ated with impaired vascular microreactivity, hypotension, and immune dysregulation 
in sepsis [26–29]. Alterations in tryptophan metabolism have also been documented 
in other inflammatory conditions, such as cardiac arrest, ischemia–reperfusion 
injury, systemic lupus erythematosus, and COVID-19 [30–33], suggesting that this 
association may be representative of an broad role for tryptophan metabolism in dis-
eases of dysregulated inflammation. Elevated phenylalanine levels have similarly been 

Table 2  Top-ranked metabolites linked with survival ranked by ensemble machine learning-derived 
summary importance score (defined as those with importance score ≥ 0.5), with corresponding 
median (interquartile range) normalized levels among septic patients who survived (N = 35) and 
those who died (N = 25)

1 Of these top identified metabolites, 4/13 (3-hydroxyisobutyrate, glycolithocholate sulfate, indoleacetate, and fucose) have 
not been previously correlated with sepsis survivorship. The remaining 9 metabolites have been previously identified in 
metabolomic studies in this and other cohorts.12,13

Metabolite Ensemble 
metabolite 
importance score

Median (IQR) 
normalized level 
among sepsis patients 
who survived (N = 35)

Median (IQR) 
normalized level 
among sepsis patients 
who died (N = 25)

p value

3-Hydroxyisobutyrate1 0.875 252,438.3 (205,768.5–
330,512.0)

447,733.7 (317,285.8–
649,937.2)

 < 0.001

Glycolithocholate 
sulfate1

0.875 25,510.2 (10,242.8–
134,807.9)

79,337.8 (43,853.3–
180,873.5)

0.013

Kynurenine 0.875 1,210,710.5 (842,693.3–
1,538,991.4)

2,157,986.3 (1,661,243.8–
3,509,181.0)

 < 0.001

Glycochenodeoxycho‑
late

0.75 272,981.5 (167,008.1–
465,149.2)

732,421.1 (438,467.2–
1,813,588.0)

0.007

Phenylalanine 0.75 32,946,718 (28,021,921–
39,246,282)

43,833,240 (35,133,532–
66,127,232)

0.001

Beta-hydroxyisovalerate 0.625 144,346.7 (99,003.9–
176,673.7)

211,728.6 (136,285.5–
467,855.3)

0.006

Bilirubin 0.625 49,090.9 (26,390.4–
76,850.4)

114,271.2 (48,093.5–
529,768.6)

0.01

Indoleacetate1 0.625 74,409.6 (51,108.5–
84,809.9)

102,489.8 (81,114.9–
136,096.5)

0.002

Taurocholenate sulfate 0.625 102,518.9 (50,764.5–
297,900.4)

468,138.2 (101,984.3–
639,836.3)

0.009

3-Methoxytyrosine 0.5 65,256.5 (50,705.4–
74,069.8)

72,094.6 (58,031.8–
96,055.7)

0.024

Fucose1 0.5 148,841.4 (80,563.7–
216,589.1)

260,624.5 (134,398.9–
312,514.6)

0.004

Hydroxyisovaleroylcar‑
nitine1

0.5 127,932.2 (81,047.1–
183,819.4)

237,218.2 (107,023.4–
276,240.9)

0.024

Lactate 0.5 91,420,816 (60,458,968–
113,868,176)

147,947,760 (76,580,752–
235,829,728)

0.012
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shown to both predict the development of sepsis and correlate with increased mor-
tality [12, 13, 23, 34]. Our study provides important clinical corroboration of these 
findings through data-driven molecular and statistical methods. Future studies are 
needed to determine to what extent these metabolites may be markers versus causal 
mediators of outcomes in sepsis.

Moreover, our study identified four metabolites (3-hydroxyisobutyrate, glycolitho-
cholate sulfate, indoleacetate, and fucose) not been previously linked with sepsis 
survival. 3-hydroxyisobutyrate is a catabolic byproduct of valine metabolism, and 
elevated levels have been previously linked with insulin resistance and diabetes [35, 
36]. Stress hyperglycemia and glycemic variability are associated with sepsis mortal-
ity, and accordingly this link may provide further corroboration and insight into this 
interaction [37, 38]. Fucose is known to play a role in the potentiation of leukocyte 
adhesion and lymphocyte homing, as well as an inhibitory role in antibody-mediated 
cellular cytotoxicity [39]. This interaction with both innate and adaptive immunity 
may play a role in the association of higher fucose levels with poor sepsis survivor-
ship. Lastly, elevations in glycolithocholate sulfate, a secondary bile acid metabo-
lite, and indoleacetate, a tryptophan byproduct, among non-survivors may relate to 
the complex patterns of bilirubin and tryptophan metabolism in sepsis as described 
above. ML methods may hence present an important tool for the discovery of new 
targets to improve sepsis care and better understand pathophysiology.

This current report builds upon a prior analysis from this cohort which had used 
conventional logistic regression, as well as a network-based approach [12]. One of 
the key objectives in the current study was to examine whether ML methods could 
improve the detection of metabolite associations beyond conventional statistical 
methods. Indeed, 4 of the top 13 metabolites identified by ML prioritization herein 
had not previously been linked with sepsis survival, while the remainder corroborated 
this previously work. Conventional statistical approaches may have limitations when 
applied to large, complex biologic systems such as the metabolome. Many of these 
limitations are due to the high degree of internal correlation structure, subclass heter-
ogeneity, and missingness inherent in the study of interconnecting biologic pathways 
and processes [40]. The theoretical advantages of ML strategies include the ability to 
flexibly integrate multiple forms of data analysis, enhance complex pattern recogni-
tion, classify high-order metabolite–metabolite interactions and manage internal cor-
relation, and better address high dimensionality and small sample size of data [41, 
42], Each of these advantages may enable ML methods to support deeper interroga-
tion of the metabolome as a complete system. Indeed, ML methods have been used 
broadly in clinical risk prediction, including in sepsis [12, 13] and other diseases 
such as cardiovascular disease [11]. However, beyond this role in building accurate 
risk prediction models, ML methods may also support biologic target discovery and 
prioritization—as we evaluated herein. This latter application has been demonstrated 
in functional and regulatory genomics, tumor biomarker discovery, and evolutionary 
population genetics [43–45]. Overall, our results support the use of feature selection 
tools innate to AI/ML methods for biologic discovery, demonstrating internally con-
sistent and biologically plausible results. Moreover, the ensemble method used herein 
may be useful as a composite ranking procedure for target prioritization.
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These findings should be considered hypothesis-generating in view of several poten-
tial limitations. First, patients with sepsis were selected for this exploratory study on the 
basis of interleukin-18 levels as well as based on having concurrent ARDS or not, which 
may limit external generalizability, as may the incidentally high proportion of partici-
pants with comorbid malignancy in this cohort. Other relevant clinical variables which 
were not available for assessment include nutritional status and ARDS severity. Given 
that these clinical features may influence the metabolome of sepsis patients as well as 
confound the observed metabolic patterns specific to survivors, these results require val-
idation in external cohorts. Additionally, the observed associations of metabolites with 
survival may not be a specific feature of sepsis; without a control group, these associa-
tions may be a broader feature of critical illness or infection. Further studies with appro-
priate controls will be necessary to delineate this. Similarly, the final list of metabolites 
linked with survival depends on the selection of metabolites included in the platform; 
however, the 158 metabolites that passed quality control and pre-processing filters and 
were included in the primary analysis represented a diversity of biology functions and 
pathways potentially relevant in sepsis. Furthermore, sepsis [46–50], ARDS [51], and 
other critical illnesses [52] are increasingly recognized as heterogeneous conditions with 
potentially important subclasses. Our cohort was too small to stratify by the selection 
variables or by potential subclasses. Second, numerous, non-physiologic variables con-
tribute to clinical course in the ICU, including patients’ and surrogate decision-makers’ 
preferences around the provision of life-sustaining care [53, 54], potentially limiting bio-
logic association studies. Third, given that the purpose of our analysis was to identify 
potential metabolic mediators of sepsis outcomes, and not to build clinical prediction 
tools [12], we intentionally did not adjust for clinical variables, including illness sever-
ity. Worse illness severity may mediate the associations between metabolites and mor-
tality, and adjusting for collinear variables would potentially attenuate associations and 
limit discovery. Future studies may build upon our exploratory results to establish these 
metabolic associations in larger cohorts and utilize ML for the purpose of clinical risk 
prediction. Fourth, plasma was collected within 72 h of ICU admission; this window may 
be long in view of the rapidity of the disease course in sepsis. Finally, as noted above, we 
did not undertake external validation of the findings in an independent cohort. While 
a number of the metabolites linked with sepsis mortality herein are previously known, 
lending some support to external validity, further investigation is required particularly 
in the validation of the four new metabolite associations identified. Given the limitations 
discussed above in the size, selection, and clinical features in this exploratory analysis, 
further validation in an external cohort is required in order to increase the generalizabil-
ity and ascertainment of validity of these results.

Conclusions
In this modest-sized cohort of critically ill patients with sepsis, application of multiple 
artificial/machine learning methods supported identification of metabolites associated 
with clinical outcomes. While these hypothesis-generating results require validation in 
external cohorts, such metabolites and metabolic pathways may represent new diagnos-
tic, prognostic, or therapeutic targets. Advancing an understanding of these approaches 
will be critical in fostering such robust methods of biologic discovery in critical illness.
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